

Supplementary Information for

Retinal Inputs Signal Astrocytes to Recruit Interneurons into Visual Thalamus

Jianmin Su^{*}, Naomi E. Charalambakis^{*}, Ubadah Sabbagh, Rachana D. Somaiya, Aboozar Monavarfeshani, William Guido[#], Michael A. Fox[#].

Michael A. Fox

Email: mafox1@vtc.vt.edu

William Guido

Email: <u>william.guido@louisville.edu</u>

This PDF file includes:

Figures S1 to S6

Fig. S1. Gad67-GFP labels a subset of GABAergic neurons in visual thalamus.

(A) A subset of GABAergic interneurons in the visual thalamus labeled in *Gad67-GFP* mice. (B) A subset of GABAergic interneurons in the visual thalamus labeled in *Gad67-GFP* ::*Math5^{-/-}*. (C-E) Localization of *Gad1* mRNA (*in situ* hybridization) in dLGN (C), vLGN (D), and IGL (E) of interneurons in P22 *Gad67-GFP* mice. White arrowheads indicate *Gad1*⁺GFP⁻ neurons; white arrows indicate *Gad1*⁺GFP⁺ neurons. dLGN, vLGN, and IGL are outlined with dashed lines in C, D, and E, respectively. (F) Immunostaining for Otx2 revealing co-expression in GFP⁺ GABAergic interneurons in dLGN (outlined in white) of *Gad67-GFP* mice. White arrowheads indicate Otx2⁺GFP⁻ neurons inside IGL. Scale bars: 150 μm A,B; 70 μm for C-F; 20 μm for C',D',E',F'.

Fig. S2. Loss of GFP⁺ interneurons in *Gad67-GFP::Math5^{-/-}* mice is due to misrouting, not programmed cell death.

(A-B) Number of GFP⁺ interneurons throughout the developing dLGN (A) and VB (B) of *Gad67-GFP* and *Gad67-GFP::Math5^{-/-}* mice. Data points indicate mean \pm SEM. Asterisks (*) represent significance (p<0.001) between control and mutant (Two-Way ANOVA). (C-N) Immunostaining for cleaved Caspase 3 (Casp3*) in dLGN of P0-P24 *Gad67-GFP* mice. Note the sparse Casp3* immunoreactivity in visual thalamus of both *Gad67-GFP* and *Gad67-GFP*::*Math5^{-/-}* mice. (O-R) Immunostaining for cleaved Caspase 3 (Casp3*) in the pretectal migratory path of neonatal *Gad67-GFP* and *Gad67-GFP*::*Math5^{-/-}* mice indicating no apoptosis of GFP⁺ cells along that route. (S-V) Immunostaining for cleaved Caspase 3 (Casp3*) in the thalamic migratory path of neonatal *Gad67-GFP* and *Gad67-GFP*::*Math5^{-/-}* mice indicating no apoptosis of GFP⁺ cells along that route. Scale bars = 70 µm for C-F, I-L; 150 µm for G, H, M, N; 20 µm for O-V.

Fig. S3. GABAergic interneurons in visual thalamus express Asic4.

(A) *In situ* hybridization of *Asic4* mRNA in WT LGN. (B) Double *in situ* hybridization of *Asic4* mRNA and *Gad1* mRNA demonstrating that thalamic GABAergic interneurons express *Asic4*. (C) Double *in situ* hybridization of *Asic4* mRNA and *Gad1* mRNA demonstrating that hippocampal GABAergic neurons do not express *Asic4*. (D) *In situ* hybridization of *Asic4* mRNA in thalamus of *Math5*^{-/-} mutants indicates the presence of *Asic4*⁺ cells in inappropriate thalamic regions (D'-D''). (E) *In situ* hybridization of *Asic4* mRNA in thalamus of *Fgf15*^{-/-} mutants indicates the presence of *Asic4*⁺ cells in inappropriate the presence of *Asic4*⁺ cells in the

Fig S4. Loss of FGF15 does not impair the generation of OTX2⁺ cells or increase programmed cell death.

(A,B) Immunostaining for OTX2 in embryonic tectum of WT and *Fgf15^{/-}* mice. (C) Quantification of expression of OTX2⁺ cells in the embryonic tectum of WT and *Fgf15^{/-}* mice. Data are shown as means \pm SEM. (D-G) Immunostaining for cleaved Caspase 3 in LGN of *Gad67-GFP and Gad67-GFP:: Fgf15^{/-}* mice. (H-I) Immunostaining for cleaved Caspase 3 in tectum of *Gad67-GFP and Gad67-GFP:: Fgf15^{/-}* mice. (H-I) Immunostaining for cleaved Caspase 3 in tectum of *Gad67-GFP and Gad67-GFP:: Fgf15^{/-}* mice. (H-I) Immunostaining for cleaved Caspase 3 in tectum of *Gad67-GFP and Gad67-GFP:: Fgf15^{/-}* mice. (J-K) Immunostaining for cleaved Caspase 3 in optic tract of *Gad67-GFP and Gad67-GFP:: Fgf15^{/-}* mice. Scale bars = 150 µm for A,B; 70 µm for D-K.

Fig S5. *Fgf15* is generated by astrocytes and not thalamic neurons or RGCs during neonatal development.

(A) *In situ* hybridization for *Fgf15* and immunostaining for NeuN in P0 visual thalamus (dLGN outlined with dashed lines). White arrowheads indicate *Fgf15**NeuN⁻ cells. (B) *In situ* hybridization for *Fgf15* and immunostaining for CALB in P0 visual thalamus (dLGN outlined with dashed lines). White arrowheads indicate *Fgf15**NeuN⁻ cells. White arrowheads indicate *Fgf15**CALB⁻ cells. (C) *In situ* hybridization for *Fgf15* and immunostaining for CALR in P3 retina. (D) *In situ* hybridization for *Fgf15* in superior colliculus of *Aldh111-GFP* mice demonstrating astrocytic expression of *Fgf15*.
(E) *In situ* hybridization for *Fgf15* in optic tract of *Aldh111-GFP* mice demonstrating astrocytic expression of *Fgf15*.

Fig S6. Loss of retinal input or *Fgf15* does not impact the distribution of *Gja1*⁺ astrocytes in visual thalamus.

(A,B) In situ hybridization for *Gja1*, a marker of astrocytes, in WT (A) and *Math5-/-* (B) dLGN (outlined with dashed lines). (C) Quantification of *Gja1*-expressing cells in dLGN of WT and *Math5-/-* mice. Data are shown as means \pm SEM. (D,E) In situ hybridization for *Gja1*, a marker of astrocytes, in WT (D) and *Math5-/-* (E) vLGN (outlined with dashed lines). (F) Quantification of Gja1-expressing cells in vLGN of WT and *Math5-/-* mice. Data are shown as means \pm SEM. (G,H) In situ hybridization for *Gja1*, a marker of astrocytes, in WT (D) and *Math5-/-* (E) vLGN (outlined with dashed lines). (F) Quantification of Gja1-expressing cells in vLGN of WT and *Math5-/-* mice. Data are shown as means \pm SEM. (G,H) In situ hybridization for *Gja1*, a marker of astrocytes, in WT (G) and *Fgf15-/-* (H) dLGN (outlined with dashed lines). (I) Quantification of *Gja1*-expressing cells in dLGN of WT and *Fgf15-/-* mice. Data are shown as means \pm SEM. (J,K) In situ hybridization for *Gja1*, a marker of astrocytes, in WT (J) and *Fgf15-/-* (K) vLGN (outlined with dashed lines). (L) Quantification of *Gja1*-expressing cells in vLGN of WT and *Fgf15-/-* mice.

Scale bar = 50 μ m for A-E; 70 μ m for G-K.