1 SUPPLEMENTAL FIGURES

Figure S1. Gating strategy for sorting immune cells from the small intestine of C57BL/6 mice. A
defined gating strategy was employed for sorting immune cell populations from the small intestine,
including B cells, T cells, macrophages, dendritic cells, ILC2 and ILC3.

- -

2 Figure S2. Circadian regulation of ILC3 by light cues and microbiota-derived signals. A. qPCR 3 analyses of indicated genes on sort-purified ILC3 from SI-LP of conventionally housed C57BL/6 mice or 4 mice treated with Abx for 2 weeks. Both groups of mice were sacrificed at ZT0, ZT6, ZT12 and ZT18 5 within a 24-hour cycle. The gene expression at each time point was first normalized to Actb2, then further 6 normalized to the sample with lowest expression at ZT0 within each group (n=6/group, pooled from 2 7 independent assays). B. Isolation of ILC3 from SI-LP of C57BL/6 mice sacrificed at ZT0, ZT6, ZT12 and 8 ZT18 within a 24-hour cycle (n=6, pooled from 2 independent assays). C. qPCR analysis of Csf2 9 expression on sort-purified ILC3 from SI-LP of C57BL/6 mice sacrificed at ZT0, ZT6, ZT12 and ZT18 10 within a 24-hour cycle. The relative gene expression was normalized as Fig. 1C (n=6, pooled from 2 11 independent assays). **D.** qPCR analysis of *Reg3b* expression on small intestinal epithelial cells from 12 C57BL/6 mice sacrificed at ZT0, ZT6, ZT12 and ZT18 within a 24-hour cycle. The relative gene 13 expression was normalized as Fig. 1C (n=6, pooled from 2 independent assays). E. qPCR analysis of 14 Rorc expression on sort-purified ILC3 from SI-LP of C57BL/6 mice housed in standard light:dark cycle 15 or mice housed in 9-hour advanced light:dark cycle, both groups of mice were sacrificed at ZT0, ZT6, 16 ZT12 and ZT18 within a 24-hour cycle. The relative gene expression is calculated as Fig. 1D (n=6/group,

1	pooled from 2 independent assays). F. qPCR analysis of Rorc expression on sort-purified ILC3 from SI-
2	LP of conventionally housed C57BL/6 mice or mice treated with Abx for 2 weeks. Both groups of mice
3	were sacrificed at ZT0, ZT6, ZT12 and ZT18 within a 24-hour cycle. The relative gene expression is
4	calculated as Fig. S2A (n=6/group, pooled from 2 independent assays). Results are shown as the mean \pm
5	s.e.m.
6	
7	
8	
9	
10	
11	
12	
40	
13	
14	
15	
16	
47	
17	
18	
19	
20	

1

2 Figure S3. Construct design and experimental validation of BAC transgenic IL-22-eGFP reporter 3 mice. A. On a bacterial artificial chromosome, an eGFP construct was inserted downstream of exon 1 4 within the *Il22* locus. **B.** qPCR analysis of *Il22* expression on sort-purified GFP⁻ILC3 and GFP⁺ ILC3 5 from SI-LP of IL-22-eGFP mice. The gene expression was normalized to Actb2 (n=5, pooled from 2 6 independent assays). C. Representative flow cytometry plots and bar graph of frequency of IL-22⁺ cells 7 from sort-purified GFP-ILC3 and GFP+ ILC3 after 4-hour in vitro re-stimulation with PMA and 8 Ionomycin. Cells were gated as Fig. 2C (n=5, pooled from 2 independent assays). Statistics are calculated 9 by paired two-tailed Student's t-test.

Figure S4. BMAL1^{ΔRorc} mice have intact ILC2 and Th17 cell responses in the intestine, and similar
cellularity of ILC3 in lymphoid tissues. A and B. Representative flow cytometry plots and bar graphs of
frequency and cell numbers of SI-LP ILC2 (A) and Th17 cells (B) from BMAL1^{fl/fl} mice and BMAL1^{ΔRorc}
mice. Cells were gated on live CD45⁺Lin⁻CD90.2⁺CD127⁺ for ILC2 and CD45⁺CD3ε⁺CD4⁺ for Th17

1	cells (representative of 4 independent assays). C. Bar graphs of cell numbers of ILC3 in Peyer's Patches,
2	mesenteric lymph nodes, inguinal lymph nodes from $BMAL1^{fl/fl}$ mice and $BMAL1^{\Delta Rorc}$ mice
3	(representative of 4 independent assays). D. Bar graphs of Peyer's Patch numbers from small intestine of
4	BMAL1 ^{fl/fl} mice and BMAL1 ^{$\Delta Rorc$} mice (n=10, pooled from 3 independent assays). E. qPCR analyses of
5	Il15 and Il12a expression on sort-purified CD11c ⁺ CD11b ⁺ myeloid cells from SI-LP of BMAL1 ^{fl/fl} mice
6	and BMAL1 ^{$\Delta Rorc$} mice. The expression of each target gene was normalized to <i>Hprt1</i> (representative of 2
7	independent assays). F. Representative flow cytometry plots and bar graphs of frequency and cell
8	numbers of SI-LP ILC3 from BMAL1 ^{fl/fl} mice and BMAL1 $^{\Delta Cd4}$ mice. Cells were gated as Fig. 3C. Results
9	are shown as the mean \pm s.e.m. Statistics are calculated by unpaired two-tailed Student's <i>t</i> -test.
10	
11	
10	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	

1

2 Figure S5. BMAL1 deficiency impacts T-bet⁺ ILC3 in the large intestine. A. Representative flow cytometry plots and bar graphs of frequency and cell numbers of LI-LP ILC3 from BMAL1^{fl/fl} mice and 3 BMAL1^{$\Delta Rorc$} mice. Cells were gated as Fig. 3C (representative of 4 independent assays). **B.** 4 5 Representative flow cytometry plots and bar graphs of frequency and cell numbers of T-bet⁺ ILC3 from LI-LP of BMAL1^{fl/fl} mice and BMAL1^{$\Delta Rorc$} mice. Cells were gated as Fig. 3D (representative of 4 6 independent assays). C. Bar graph of colon length of BMAL1^{fl/fl} mice and BMAL1^{ΔRorc} mice at day 13 7 8 after administration of DSS (pooled from 2 independent assays). **D**. Representative H&E staining sections of distal colon from BMAL1^{fl/fl} mice and BMAL1^{ΔRorc} mice at day 13 after administration of DSS. The 9

1	scale bar represents 100 μ m. Results are shown as the mean \pm s.e.m. Statistics are calculated by unpaired
2	two-tailed Student's t-test.
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

Figure S6. BMAL1 deficiency impairs intestinal ILC3 at weaning. A. qPCR analysis of Reg3b on small intestinal epithelial cells from BMAL1^{fl/fl} mice and BMAL1^{ΔRorc} mice. Both groups of mice were sacrificed at ZT6 and ZT18. The relative gene expression was normalized as Fig. 4D (n=6-8/group, pooled from 2 independent assays). B. Representative flow cytometry plots and bar graphs of frequency and cell numbers of SI-LP ILC3 from 4 weeks old BMAL1^{fl/fl} mice and BMAL1^{$\Delta Rorc$} mice. Cells were gated as Fig. 3C (representative of 2 independent assays). C and D. Bar graphs of frequency of Ki-67⁺ ILC3 (C) and MFI of Bim expression in ILC3 (D) from SI-LP of 4 weeks old BMAL1^{fl/fl} mice and BMAL1^{$\Delta Rorc$} mice (representative of 2 independent assays). Results are shown as the mean \pm s.e.m. Statistics are calculated by unpaired two-tailed Student's *t*-test.

2	Figure S7. Analysis of circadian genes in intestinal ILC3 from IBD patients. qPCR analyses of
3	indicated circadian genes on sort-purified ILC3 from distal non-inflamed versus matched inflamed
4	surgical resection tissues of IBD patients. The expression of each target gene was normalized to GAPDH.
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

Disease type	Age when collected	Sex	Race/Ethnicity	Antibiotic, currently	Antibiotic, ever	anti-TNF treatment, currently	anti-TNF treatment, ever
Crohn's	24	М	Caucasian	Yes	Yes	No	No
Crohn's	39	М	Caucasian	Yes	Yes	No	Yes
Crohn's	57	М	NA	Yes	Yes	No	Yes
Crohn's	26	F	Caucasian	Yes	Yes	Yes	Yes
Crohn's	31	F	NA	Yes	Yes	Yes	Yes
Crohn's	33	F	Caucasian	Yes	Yes	No	Yes
Crohn's	35	F	Hispanic	Yes	Yes	Yes	Yes
Crohn's	37	F	Caucasian	No	No	No	Yes
Crohn's	56	F	NA	No	Yes	Yes	No
Ulcerative Colitis	36	М	Caucasian	NA	Yes	No	No

NA: not available

Table S1. Clinical metadata associat	ed with the human samples.

4			
5			
6			
7			
8			

Primers	Sequence (5' to 3') or catlog number
Actb2 (mouse)	Qiagen QT01136772
Nr1d1 -forward (mouse)	TACATTGGCTCTAGTGGCTCC
Nr1d1 -reverse (mouse)	CAGTAGGTGATGGTGGGAAGTA
Per1 -forward (mouse)	TTCGTGGACTTGACACCTCTT
Per1-reverse (mouse)	GGGAACGCTTTGCTTTAGAT
Cry2-forward (mouse)	CACTGGTTCCGCAAAGGACTA
Cry2-reverse (mouse)	CCACGGGTCGAGGATGTAGA
Nfil3-forward (mouse)	CTTTCAGGACTACCAGACATCCAA
<i>Nfil</i> 3-reverse (mouse)	GATGCAACTTCCGGCTACCA
Arntl-forward (mouse)	AACCTTCCCGCAGCTAACAG
Arntl-reverse (mouse)	AGTCCTCTTTGGGCCACCTT
Per2-forward (mouse)	CACACTTGCCTCCGAAATAACTC
Per2-reverse (mouse)	AGCGCACGGCTGTCTGA
Per3-forward (mouse)	AAAAGCACCACGGATACTGGC
Per3-reverse (mouse)	GGGAGGCTGTAGCTTGTCA
Rorc (mouse)	Qiagen QT00197722
II22-forward (mouse)	GCTCAGCTCCTGTCACATCA
II22-reverse (mouse)	CAGTCCCCCAATCGCCTTGA
Reg3b (mouse)	Qiagen QT00239302
<i>II17a</i> (mouse)	Qiagen QT00103278
Csf2 (mouse)	Qiagen QT00251286
II15-forward (mouse)	ACATCCATCTCGTGCTACTTGT
II15-reverse (mouse)	GCCTCTGTTTTAGGGAGACCT
<i>II12a</i> (mouse)	Qiagen QT01048334
Hprt1 -forward (mouse)	CTTGCTGGTGAAAAGGACCTCTC
Hprt1 -reverse (mouse)	GAAGTACTCATTATAGTCAAGGGCA
GAPDH-forward human)	GGAGCGAGATCCCTCCAAAAT
GAPDH-reverse (human)	GGCTGTTGTCATACTTCTCATGG
NR1D1 (human)	Qiagen QT00000413
PER3 (human)	Qiagen QT00097713
NFIL3 (human)	Qiagen QT00013944
ARNTL (human)	Qiagen QT00011844
CRY1 (human)	Qiagen QT00025067

2 Table S2. Primers used in the study.