

Appendix to:

EFSA (European Food Safety Authority), 2018. Conclusion on the peer review of the pesticide risk assessment of the active substance Alpha-cypermethrin. EFSA Journal 2018;16(8):5403, 39 pp. doi:10.2903/j.efsa.2018.5403

© European Food Safety Authority, 2018

List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Alpha-cypermethrin
Function (e.g. fungicide)	Insecticide
Rapporteur Member State	Belgium
Co-rapporteur Member State	Greece

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	Racemate comprising
	(R) - α -cyano-3-phenoxybenzyl (1 <i>S</i> ,3 <i>S</i>)-3-(2,2- dichloroyinyl) 2.2 dimethyloyclopropanecarboxylate and
	(S) - α -cyano-3-phenoxybenzyl $(1R,3R)$ -3- $(2,2-$
	dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate
	or
	(<i>R</i>)-α-cyano-3 phenoxybenzyl-(1 <i>S</i>)- <i>cis</i> -3-(2,2- dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate
	and (S) - α -cyano-3 phenoxybenzyl- $(1R)$ - cis -3- $(2,2-$ dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate
Chemical name (CA)	(<i>R</i>)-cyano(3-phenoxyphenyl)methyl (1 <i>S</i> ,3 <i>S</i>)- <i>rel</i> -3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylate
	(Cis-II isomeric pair of cypermethrin)
CIPAC No	454
CAS No	[67375-30-8]
EC No (EINECS or ELINCS)	Not allocated
FAO Specification (including year of publication)	454/TC (2013) min. 930 g/kg
Minimum purity of the active substance as manufactured	980 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	hexane max. 1 g/kg (not of concern at this level)
Molecular formula	C ₂₂ H ₁₉ Cl ₂ NO ₃

Molar mass

Structural formula

Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Melting point (state purity)	82.1 °C (99.3%)				
Boiling point (state purity)	Cannot be determined a	at atmospheric pressure			
	(a.s. decomposes at app	orox. 248°C)			
Temperature of decomposition (state purity)	Approx. 248°C (99.3%)				
Appearance (state purity)	Purified a.s. (99.8%): fi detectable odour	ne powder (solid), white, non-			
	a.s. as manufactured (96 (solid), creamy white, s	6.3%) : crystalline powder light chemical odour			
Vapour pressure (state temperature, state purity)	3.8 x 10 ⁻⁷ Pa at 20°C (9	9.3%)			
	8.5 x 10 ⁻⁷ Pa at 25°C (9	9.3%)			
Henry's law constant (state temperature)	$0.053 \text{ Pa m}^3 \text{ mol}^{-1} (20^\circ$	C)			
Solubility in water (state temperature, state purity	at 20°C (98%):				
and pH)	0.67 µg/L (pH 4)				
	3.97 μg/L (pH 7)				
	4.54 μg/L (pH 9)				
	$1.25 \ \mu g/L$ (double distil	lled water)			
	At 20°C (99.3%)				
	3 μg/L (pH 6.5)				
Solubility in organic solvents	at 24°C (99.3%)				
(state temperature, state purity)	toluene	> 250 g/L solvent			
	dichloromethane	> 250 g/L solvent			
	acetone	> 250 g/L solvent			
	etnyl acetate	> 250 g/L solvent			
	<i>n</i> -neptane methanol	25 - 29 g/L solvent			
	acetonitrile	200 - 250 g/L solvent			
Surface tension	Not applicable, as alpha	a-cypermethrin technical is solid			
(state concentration and temperature, state purity)	at ambient temperature	and water solubility is $< 1 \text{ mg/L}$			
Partition coefficient	log Pow = 5.8 (99.3%)				
(state temperature, pH and purity)	no effect of pH (no diss	sociation)			
Dissociation constant (state purity)	no dissociation of the a	.S.			
UV/VIS absorption (max.) incl. ε	at λ_{max} (276 nm): $\varepsilon = 2$	073 L.mol ⁻¹ .cm ⁻¹			
(state purity, pH)	at 300 nm : $\epsilon = 38.64$ L	mol ⁻¹ .cm ⁻¹			
Flammability (state purity)	not highly flammable (9	97.3%)			
Explosive properties (state purity)	not explosive (97.3%)				
Oxidising properties (state purity)	not oxidising (97.3%)				

Summary of representative uses evaluated, for which all risk assessments needed to be completed (*name of active substance or the respective variant*) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Crop	F Pests o		Dests on group of posts	Forn	nulation	Application			Application rate per treatment			DIII			
and/or situation (a)	Member State	Product Name	G I (b)	controlled (c)	Type (d-f)	Conc of a.i. g/kg (i)	Method kind (f-h)	Growth stage and season (j)	Number min max (k)	Interval between applications (min)	g a.i./hl min max (g/hl)	Water l/ha min max	a.i./ha min max (*) (g/ha)	(days) (l)	Remarks (m)
Cereals (barley, wheat, oats, rye, triticale)	North-/ Central-/ South- EU	FASTAC ME (BAS 310 55 I)	F	Chewing and Sucking Pests <i>RHOPPA</i> <i>Rhopalosiphum padi</i> <i>METODR</i> <i>Metopolophium dirhodum</i> <i>MACSAV</i> <i>Sitobion avenae</i> <i>LEMAME</i> <i>Oulema melanopus</i> <i>SITDMO</i> <i>Sitodiplosis mosellana</i> -All growth stages	ME	50 g/L	Spraying	BBCH 51-83	1-2	7 days	2.5 - 10	100 - 400	10	28	
Oilseed rape winter	North-/ Central-/ South- EU	FASTAC ME (BAS 310 55 I)	F	CEUTNA Ceutorhynchus napi CEUTAS Ceutorhynchus assimilis MELIAE Meligethes aeneus -Adults-	ME	50 g/L	Spraying	BBCH 51-59	1-2	7 days	2.5 - 10	100 – 400	10	28	
Lettuces	North-/ Central- EU	FASTAC ME (BAS 310 55 I)	F	NASORN Nasonovia ribisnigri APHISP Other aphids -All growth stages-	ME	50 g/L	Spraying	BBCH 10-49	1-2	7 days	1-5	200 - 1000	10	3	
Lettuces	South- EU	FASTAC ME (BAS 310 55 I)	F	NASORN Nasonovia ribisnigri APHISP Other aphids -All growth stages-	ME	50 g/L	Spraying	BBCH 10-49	a) 1 b) 2	a) n.a. b) 7 days	a) 2 – 10 b) 1 – 5	200 – 1000	a) 20 b) 10	3	Max. total seasonal rate per crop: 20 g a.s./ha

Leafy brassica	North-/ Central- EU	FASTAC ME (BAS 310 55 I)	F	BRVCBR Brevicoryne brassicae -All growth stages- PIERSP Pieris sp PLUTMA Plutella maculipennis -Larval stages-	ME	50 g/L	Spraying	BBCH 10-49	1-2	7 days	1-5	200 – 1000	10	3	
Leafy brassica	South- EU	FASTAC ME (BAS 310 55 I)	F	BRVCBR Brevicoryne brassicae -All growth stages- PIERSP Pieris sp PLUTMA Plutella maculipennis -Larval stages-	ME	50 g/L	Spraying	BBCH 10-49	a) 1 b) 2	a) n.a. b) 7 days	a) 2 – 10 b) 1 – 5	200 – 1000	a) 20 b) 10	3	Max. total seasonal rate per crop: 20 g a.s./ha
Cucumber, Courgette	North-/ Central- EU	FASTAC ME (BAS 310 55 I)	G	APHIGO Aphis gossypii MYZUPE Myzus persicae TRIAVA Trialeurodes vap. BEMITA Bemisia tabaci -All growth stages-	ME	50 g/L	Spraying	BBCH 10-89	1	n.a.	2 - 15	200 - 1500	30	3	Permane nt glasshou ses
Cucumber, Courgette	South- EU	FASTAC ME (BAS 310 55 I)	G	APHIGO Aphis gossypii MYZUPE Myzus persicae TRIAVA Trialeurodes vap. BEMITA Bemisia tabaci -All growth stages-	ME	50 g/L	Spraying	BBCH 10-89	a) 1 b) 2	a) n.a. b) 7 days	a) 2 – 15 b) 1 – 7.5	200 - 1500	a) 30 b) 15	3	Permane nt glasshou ses Max. total seasonal rate per crop: 30 g a.s./ha

- * For uses where the column "Remarks" in marked in grey further consideration is necessary. Uses should be crossed out when the notifier no longer supports this use(s).
- (a) For crops, the EU and Codex classification (both) should be taken into account ; where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- (c) *e.g.* biting and suckling insects, soil born insects, foliar fungi, weeds
- (d) *e.g.* wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) GCPF Codes GIFAP Technical Monograph N° 2, 1989
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant type of equipment used must be indicated
- (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).

(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell,

- ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) Indicate the minimum and maximum number of application possible under practical conditions of use
- (1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
- (m) PHI minimum pre-harvest interval

Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (*name of active substance or the respective variant*)

Regulation (EC) N° 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Сгор	Member		F	Pests or	Prepa	aration		Applic	ation		Applicati	on rate per	treatment		
and/or situation (a)	State or Country	Product name	G or I (b)	Group of pests controlled (c)	Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s /hL min-max (l)	Water L/ha min-max	kg a.s./ha min-max (l)	PHI (days) (m)	Remarks
MRL A	oplication	(according	g to 4	Article 8.1(g)	of Regu	lation (E	C) No 11	07/2009)							
		10.1.1			11 . 1	• .		1 1	(1) /	//) / ll			<u> </u>		(1' · · · · · · · · · · · · · · · · · ·
(a) For cro situatio	ps, the EU and n should be de	a Codex clas	fumi	gation of a struct	d be taken ire)	into accour	it; where re	elevant, the use	(1) g/kg or the var	iant in order to	the rate show	ne rate for s	for the active ame active si	substances	used in different variants (e.g.
(b) Outdoo	r or field use	(F), greenho	use ap	plication (G) or in	ndoor appl	ication (I)			fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give						
(c) e.g. biti	ng and suckin	ig insects, so	il bor	n insects, foliar fu	ngi, weeds	5			the rate for the variant (e.g. benthiavalicarb-isopropyl).						
(d) <i>e.g.</i> we	ttable powder	(WP), emula	sifiabl	e concentrate (EC), granule	(GR)		<u>,</u>	(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997						
(e) CropLi	te Internationa	al Technical	Mone	ograph no 2, 6th E	dition. Re	vised May	2008. Catal	ogue of	Blackw	ell, ISBN 3-8	5263-3152-4)	, including	where releva	ant, infor	mation on season at time of
(f) All abb	reviations use	d must be ex	nlain	be					(k) Indicate	uon e the minimum	and maximu	n number of	applications	nossible u	der practical conditions of use
(1) All abbreviations used must be explained (a) Method, e.g. high volume spraving, low volume spraving, spreading, dusting, drepph								(I) The val	lues should be	given in g o	r ko whateve	applications for gives the r	nore mana	geable number (e.g. 200 kg/hz	
(h) Kind, e	.g. overall. bro	padcast, aeri	al spra	ving, row, individ	dual plant.	between th	e plant- typ	e of equipment	instead	of 200 000 g/h	a or 12.5 g/h	instead of 0	.0125 kg/ha	nore mun	igeuere number (e.g. 200 kg/it
used m	ust be indicate	ed	opre	-,,, ma i (1	piunt,		- r-me typ	pinone	(m) PHI - n	ninimum pre-ha	rvest interva				

Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

Alpha-cypermethrin exhibits high levels of efficacy on a broad range of crop-relevant noxious insects. Alphacypermethrin, contained in the crop protection product BAS 310 55 I, has been registered in many EU countries with different formulations based on detailed national assessments of the efficacy package in compliance with Regulation (EC) No 545/2011 and according to the Uniform Principles (Regulation (EC) No 546/2011), with which Member States authorities were satisfied. To support the representative crop uses, BAS 310 55 I was tested in 231 trials across Europe in the EPPO-zones Maritime, Mediterranean, North East (N.E.) and South East (S.E.) at the dose rates of 0,2 l/ha and 0,4 l/ha or 0,6 l/ha respectively under various agronomical conditions (application systems, soil types, temperature, rainfall). However, a full assessment of the trials needs to be done in the framework of the registration of the formulations (MS level).

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

Alpha-cypermethrin has been applied since many years with several different formulations and different dose rates across a wide range of crops without any reports of a phytotoxic effect on treated or succeeding crops. Due to the broad range of crops in which the product has been used, most rotational crop possibilities have been appeared in practice. Therefore no negative impact on treated or succeeding crops is to be expected. A more detailed assessment should be performed for products authorization applications.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

Due to the broad range of crops in which the product has been used, most rotational crop possibilities have appeared in practice. Therefore no negative impact on adjacent or succeeding crops is to be expected. A more detailed assessment should be performed for products authorization applications.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

none

Assessment not triggered since there are no relevant metabolisms in groundwater for alpha-cypermethrin

Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)

Impurities in technical a.s. (analytical technique)

Plant protection product (analytical technique)

GC-FID (CIPAC Method 454)

HPLC-UV and GC-FID

GC-FID

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Food of plant origin	Cypermethrin including other mixtures of constituent isomers (sum of isomers)				
Food of animal origin	Cypermethrin including other mixtures of constituent isomers (sum of isomers)				
Soil	Alpha-cypermethrin				
Sediment	Alpha-cypermethrin				
Water surface	Alpha-cypermethrin				
drinking/ground	Alpha-cypermethrin				
Air	Alpha-cypermethrin				
Body fluids and tissues	Alpha-cypermethrin, 4-OH-PBA sulfate, DCVA glucuronide				

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	LC-MS/MS: LOQ of 0.01 mg/kg (target) for each isomer corresponding to 0.01 mg/kg for Cis-I and Trans-III, 0.00695 mg/kg for alpha-cypermethrin (Cis-II) and 0.00429 mg/kg for Trans IV (high water, high acid, dry [high starch and high protein], oily)
	Independently validated.
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	LC-MS/MS: LOQ of 0.01 mg/kg (target) for each isomer corresponding to 0.00695 mg/kg for alpha-cypermethrin (muscle, liver, kidney, milk, fat egg), 0.00429 mg/kg (for Trans-IV)
	Independently validated.
Soil (analytical technique and LOQ)	LC-MS/MS: LOQ of 0.001 mg/kg for each isomer
Water (analytical technique and LOQ)	LC-MS/MS: LOQ of 0.75 ng/L (target) corresponding to 0.825 ng/L for alpha-cypermethrin in surface and drinking water. Independently validated for surface and drinking water.
Air (analytical technique and LOQ)	GC-MS: LOQ of 0.06 μ g/m ³ (alpha-cypermethrin)
Body fluids and tissues (analytical technique and	LC-MS/MS: LOQ of 0.035 mg/L (alpha-cypermethrin)
LOQ)	Data gap for 4-OH-PBA sulfate, DCVA glucuronide

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

/

Substance

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:

Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:

Alpha-c	ypermethrin
---------	-------------

No classification with regard to physical and chemical properties

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N $^{\circ}$ 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic	Based on urinary excretion,
bioavailability	- after low dose (LD) (1-2 mg/kg bw): 40%
	- after high dose (HD) (20 mg/kg bw): 27%
Toxicokinetics	Blood: (LD/HD: 2 / 20 mg/kg bw)
	C _{max} : LD: 1.3-1.5 mg/kg bw
	HD: 6.7-7.5 mg/kg bw
	T _{max} : LD: 6-7 mg/kg bw
	HD: 6-9 mg/kg bw
	$T^{1}/_{2}$: LD: 2.8-4.4 h
	<u>Fat:</u> $T^{1}/_{2}$ (LD):
	2.5-2.7h (initial phase d1-8)
	17-26h (final phase d14-42)
Distribution	In well perfused organs and fatty tissue
Potential for bioaccumulation	Higher amounts retained in skin and fat (up to 0.6% after 7 days) but no significant potential for bioaccumulation.
Pate and extent of excretion	I D (2 mg/kg hw): 43.460% in uring*: 30.350% in factors
Rate and extent of excretion	(2 mg/kg ow). $+5-+0.0 m urme$, $50-55.0 m racces$
	(1 within 24 in)
	HD(20 Ing/kg bw). 27% In urme ⁻ , 24-28% In factors
	(*within 90ii)
Metabolism in animals	Moderately metabolised (~25% identified);
	main metabolites in urine (~16-17%): 4-OH-PBA sulfate and DCVA glucuronide
	α-cypermethrin excreted unchanged in faeces: 39-57%
	Hydrolytic cleavage of the ester bound and excretion of
	the cis cyclopropanecarboxylic acid moiety in free and
	conjugated form in urine. Minimal hydroxylation at the
	Hydroxylation of the phenoxy-ring and cleavage of the
	ether bridge with loss of the phenyl ring.
In vitro metabolism	Henatic microsome metabolism: oxidation predominant
	in rat, and hydrolysis predominant in human .
Toxicologically relevant compounds (animals and plants)	Alpha-cypermethrin
Toxicologically relevant compounds	Alpha aurormathrin
(environment)	Aipna-cypermetnrin

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD ₅₀ oral	40-80 mg/kg bw	H301
Rat LD ₅₀ dermal	> 2000 mg/kg bw	

Rat LC ₅₀ inhalation	1.33mg/L air /4h (nose-only)	H332 H335
Skin irritation	Non-irritant	-
Eye irritation	Non-irritant	-
Skin sensitisation	Not sensitising (GPMT)	-
Phototoxicity	No phototoxicity	-

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Neurotoxicity (rat, mouse, dog) Liver (rat, mouse)	
Relevant oral NOAEL	2 mg/kg bw per day (dog, 1-year) 13.1 mg/kg bw per day (rat, 90-day) 6.3 mg/kg bw per day (mouse, 90-day)	STOT- RE1 H372
Relevant dermal NOAEL	2000 mg/kg bw per day (rabbit, 28-day)	-
Relevant inhalation NOAEL	LOAEL 0.029 mg/L based on local adverse effects (rat, 14-day, complementary study)	-

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies	Ames test : Salmonella strains TA 98, TA 100, TA 1535, TA 1537 and TA 1538 ±S9 : Negative. L5178Y Mouse lymphoma cells: Negative. Chromosome aberrations in human lymphocytes ±S9: Negative	
In vivo studies	Micronucleus assay in mice (oral exposure): Negative. Chromosome aberrations in rat bone marrow (oral exposure): Equivocal. UDS <i>in vivo</i> after partial hepatectomy (oral exposure): Negative. Dominant lethal test in mice:Negative.	
Photomutagenicity	No data - Not required	
Potential for genotoxicity	Alpha-cypermethrin is unlikely to be genotoxic	

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Rat: 1 urea levels and kidney weight	-
Mouse: clinical signs, decreased BWG	

Relevant long-term NOAEL	0.5 mg/kg bw per day (rat, 2-year, cypermethrin)3 mg/kg bw per day (mouse, 18-month)	-
Carcinogenicity (target organ, tumour type)	No treatment-related tumours (rat, mouse) Alpha-cypermethrin is unlikely to pose a carcinogenic hazard to humans	-
Relevant NOAEL for carcinogenicity	50 mg/kg bw per day (rat, 2-year, high dose) 35 mg/kg bw per day (mouse, 18-month, high dose)	

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6) Reproduction toxicity

Reproduction target / critical effect	Rat multigeneration study (cypermethrin):	-
	Parental toxicity: ↓body weight, ↓food intake Offspring's toxicity: ↓litter weight	
	Reproductive toxicity: ↓pup survival at birth	
Relevant parental NOAEL	10 mg/kg bw per day	-
Relevant reproductive NOAEL	10 mg/kg bw per day	-
Relevant offspring NOAEL	10 mg/kg bw per day	-

Developmental toxicity

Developmental target / critical effect	Rat:	-
	Maternal toxicity: ↑clinical signs,↓body weight gain, ↓food	
	intake	
	Developmental toxicity: ↓body weight	
	Rabbit:	
	Maternal toxicity: ↓bw gain, ↓food intake Developmental toxicity : -	
Relevant maternal NOAEL	Rat: 3 mg/kg bw per day	-
	Rabbit: 15 mg/kg bw per day	
Relevant developmental NOAEL	Rat: 9 mg/kg bw per day	-
	Rabbit: 30 mg/kg bw per day	

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity, rat	NOAEL= 4 mg/kg bw based on clinical signs
Repeated neurotoxicity, rat	 4-week NOAEL= 10 mg/kg bw per day, based on increased beta-galactosidase activity in nerves. 90-day NOAEL = 36 mg/kg bw per day (top dose)
Additional studies:	Maternal NOAEL = 2 mg/kg bw per day,

Developmental neurotoxicity, rat

based on decreased BWG at the end of gestation Neurodevelopmental NOAEL < 0.25 mg/kg bw per day based on clinical signs in pups

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

 Supplementary studies on the active substance:
 Supplementary study, 28d rat

Endocrine disrupting properties Intact male rat study, 15d

Studies performed on metabolites or impurities

Systemic and immunotoxic NOAEL > 34 mg/kg bw per d

NOAEL = 3.5 mg/kg bw per day

LOAEL = 6.6 mg/kg b.w./d, based upon a weakly \downarrow b.w. gain, prostate weight, very weak \downarrow in Cauda epididymis and seminal vesicles weight, and subtle total sperm counts.

Group of hydroxylated derivatives of alpha-cypermethrin and their conjugates: unlikely to be genotoxic or to be more toxic than the parent.

Group of PBA and derivatives (4-OH-PBA, 4-OH-PBA sulfate, 3-PBA, 3-PBAldehyde): they could be initially considered unlikely to be of higher toxicity than the parent. Data gap for further studies submitted under confirmatory data on lamda-cyhalothrin.

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No detrimental effects on health in manufacturing personnel

Summary ³ (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)	Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	0.00125	DNT, rat	200
Acute Reference Dose (ARfD)	0.00125	DNT, rat	200
Acceptable Operator Exposure Level (AOEL)	0.0005	DNT, rat	200 40%*
Acute Acceptable Operator Exposure Level (AAOEL)	0.0005	DNT, rat	200 40%*

*: 40% oral absorption value

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (*indicate name, type e.g.* EC *and concentration of active substance*)

Concentrate: 3 % Spray dilution:0.7 %

³ If available include also reference values for metabolites

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Γ

Operators	Use: (i)Lettuces and leafy cabbages (field)	20g/ha,
	1000L/ha, Tractor mounted boom sp application	rayers, 1
	Exposure estimates (model): % of AC	DEL
	German model:	
	Without PPE:	100
	With PPE (gloves):	16
	UK POEM model	
	Without PPE:	232
	With PPE (gloves):	28
	AOEM	
	Without PPE:	871
	With PPE (gloves):	79
	(ii)Cucumbers and courgettes (green) 1500L/ha, spray pistol/lance applicat application	house) 30g/ha, ion, 1
	Greenhouse (S.E-model):	
	Without PPE:	100
	PPE (gloves):	79
Workers	Europoem	
	Without PPE:	60
	PPE (gloves):	14
Bystanders and residents	German model	
	Adult bystanders	1.9
	Children bystanders	1.5
	Adult residents	0.13
	Children resident	0.86
	EFSA model	
	Adult residents	56
	Children resident	233
	EFSA model + refinement*	
	Adult residents	12
	Children resident	24
	*: using data from air measurements	

Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance :	Alpha-cypermethrin
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ⁴ :	Acute Tox 3; H301 Toxic if swallowed STOT SE 3; H335 May cause respiratory irritation STOT RE 2; H373; May cause damage to organs through prolonged or repeated exposure
Peer review proposal ⁵ for harmonised classification according to Regulation (EC) No 1272/2008:	In addition to the harmonised classification: Acute Tox 4; H332 Harmful if inhaled STOT RE 1 ; H372 "Causes damage to organs through prolonged or repeated exposure",

⁴ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

 ⁵ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

Residues in or on treated products food and feed

Metabolism in plants	(Regulation (EU)	N° 283/2013,	Annex Part A, p	oints 6.2.1, 6.5.1,	6.6.1 and
6.7.1)					

Primary crops	Crop groups	Crop(s)	Applicati	on(s)	DAT (days)	
(Plant groups covered) OECD Guideline 501	Fruit crops	Apples ⁽¹⁾	Applied direct syringe) to frui leaves (applica not specified); <i>cis</i> -cypermethi [¹⁴ C-Ph / ¹⁴ C-C <i>trans</i> -cyperme [¹⁴ C-Ph]	ly (via its and ition rate rin Cy]; thrin	26 (leaves); 22 (apples)	
	Root crops	-	-		-	
	Leafy crops	cabbage ⁽¹⁾	3 x 50 g a.s./ha Alpha-cyperm [¹⁴ C-benzyl]; <i>Cis</i> -cypermeth [¹⁴ C-benzyl]	a (7.5N) ethrin rin	43 (at harvest)	
		lettuce	2 x 50 g a.s./ha Alpha-cyperm [¹⁴ C-benzyl / ¹⁴ cyclopropane]	a (5N) ethrin ⁴ C-) ¹ 3,7	
	Corrects/grade erens	winter wheat	1 x 10 g a.s./ha 1 x 100 g a.s./l Alpha-cyperm [¹⁴ C-benzyl / ¹	a (0.5N) na (5N) ethrin ⁴ C-vinyl]	57 (at harvest) 62 (at harvest)	
	Cereals/grass crops	spring wheat	2 x 80 g a.s./ha Alpha-cyperm [¹⁴ C-benzyl / ¹⁴ cyclopropane]	a (8N) ethrin ⁴ C-	0, 7 (after 1st appl.); 0, 21, 42 (after 2nd appl.)	
	Pulses/Oilseeds	-	-		-	
	Miscellaneous	-	-		-	
	¹⁴ C-Ph: ¹⁴ C-[phenoxybenzyl]; ¹⁴ C-Cy: ¹⁴ C-cyclopropyl (labelling always tested separately) ⁽¹⁾ <i>No stand-alone fully OECD guideline-compliant study (deficiencies noted).</i>					
Rotational crops	Crop groups	Crop(s)	PBI (days)	С	omments	
(metabolic pattern)	Root crops	Sugar beet	29, 60, 120	Bare soil	; 1 kg a.s./ha	
OECD Guideline 502	Leafy crops	Lettuce	29, 60, 120	(33N)	ul aunormothrin	
	Cereals (small grain)	Wheat	29, 60, 120	(all crops	s) and	
	Pulses and oilseeds	Cotton	29, 60, 120	¹⁴ C-cyclopropyl cypermethrin (sugar bee only)		
Rotational crop and primary crop metabolism similar?	Metabolites' identifica representative uses an rotational crop metabo insignificant total resid	tion was not atte d given the 33 olism data can ues expected at	empted in this st fold applicatio be waived for 1N.	udy. Howe on rate to representat	ever based on the bare soil further tive uses, due to	
Processed commodities (standard hydrolysis study)	Conditions	Alpha- cyper- methrin	3-phenoxy- enzaldehyde	DCVA	¹⁴ C-radiolabel	

OECD Guideline 507	20 min, 90°C, pH 4	95%	2.5%	2.5%-Benzy2.4%-Benzy13%23%Benzy13%23%Benzy13%23%Benzyied radioactivityIabeling pasteurization, boiling, bakilving sterilisation and other poH ≥6).here are indications that degraed by the food matrix: e.g. ste (pH 4.3-4.5) upon cold storageved during canning of peeledenzaldehyde and DCVArimary crops is applicable tosessment of the toxicological relmoiety (3-PBAldehyde).ncluding other mixtures of co'isomers)ncluding other mixtures of coof isomers)ncluding other mixtures of co'eview of the preliminary conclustionthe assessment of the genotoxic preview of the preliminary conclustionthe whole group of related mephenoxybenzoyl moiety (beside4-OH-PBA) once the confirmationlothrin have been peer reviewedfinalisation of residue definition	Benzyl-label		
	60 min, 100°C, pH 5	97%	2.4%	-	Benzyl-label		
	20 min, 120°C, pH 6	86% 66%	23%	Benzyl-label Cyclopropyl- label			
	Results expressed as me	ean % of the	applied radioacti	vity			
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Yes (for processed commodities involving pasteurization, boiling, baking and/or brewing);						
	No (for processed commodities involving sterilisation and other processing operations combining high temperature/pH \geq 6).						
	Cypermethrin is thermally unstable. There are indications that degradation of cypermethrin is significantly influenced by the food matrix: e.g. significant degradation also observed in tomato paste (pH 4.3-4.5) upon cold storage (12 days at 5°C); Significant degradation observed during canning of peeled tomatoes (Publication from the open literature).						
	Main degradation products: 3-phenoxybenzaldehyde and DCVA						
	The same residue definition as for primary crops is applicable to processed commodities upon finalisation of the assessment of the toxicological relevance of metabolites with the 3-phenoxybenzoyl moiety (3-PBAldehyde).						
Plant residue definition for OECD Guidance, series o	monitoring (RD-Mo) n pesticides No 31	Cypermethrin including other mixtures of constituent isomers (sum of isomers)					
Plant residue definition for RA)	risk assessment (RD-	Cypermeth isomers (s finalisation of 3-PBA a toxicology bearing th also e.g. PL on lambda-	rin including oth um of isomers) ⁽ of the assessmen and review of the on the whole gu e 3-phenoxybenz BAld, 4-OH-PBA cyhalothrin have	her mixtures ²⁾ – Provis at of the gent preliminary roup of relat oyl moiety) once the co been peer re	of constituent <i>ional</i> (pending potoxic potential conclusions in ted metabolites (besides 3-PBA mfirmatory data viewed).		
Conversion factor (monitor	ing to risk assessment)	Open (Pend assessment	ling finalisation o	of residue de	efinition for risk		
(2)				-			

⁽²⁾ Occurrence data for all cypermethrin isomers to be considered but toxicity of alpha-cypermethrin to be considered.

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	Study I: 0.8 and 2	14	73N and 182N (¹⁴ C-B/ ¹⁴ Cy)
		Study II: 0.9	14	82 N (¹⁴ C-B/ ¹⁴ Cy)
	Cow	0.5	4	16 N (¹⁴ C-B)
	Goat	0.3-0.4	7	<i>Ca.</i> 11 N $(^{14}\text{C-B}/^{14}\text{Cy})$
	Pig	-	-	-
	Fish	10 mg/kg feed	14	175 N (¹⁴ C-B/ ¹⁴ Cy)

	Test substance ¹⁴ C-B: ¹⁴ C-be The general n	e: alpha-cypermethrin nzyl; ¹⁴ C-Cy: ¹⁴ C-cyclopropane netabolic pathway in rats and ruminants is comparable.
Time needed to reach a plateau concent milk and eggs (days)	tration in	Milk: 1-4 days Eggs: 6-8 days (hen metabolism study I); 12-13 days (hen metabolism study II); 21-24 days (hen feeding study)
Animal residue definition for monitoring (RD-Mo) OECD Guidance, series on pesticides No 31		Cypermethrin including other mixtures of constituent isomers (sum of isomers)
Animal residue definition for risk asses RA)	ssment (RD-	Cypermethrin including other mixtures of constituent isomers (sum of isomers) ⁽³⁾ – Provisional (pending upon assessment of the relative toxicity of the individual cypermethin isomers, in particular the enantiomer [1R- $(1\alpha(S^*),3\alpha)]$, the genotoxic potential of 3-PBA and the review of the preliminary conclusions in toxicology on the whole group of related metabolites with the 3- phenoxybenzoyl moiety).
Conversion factor (monitoring to risk a	ssessment)	Open (Pending finalisation of residue definition for risk assessment)
Metabolism in rat and ruminant similar	(Yes/No)	Yes
Fat soluble residues (Yes/No) (FAO, 2009)		Yes (Log P_{ow} =5.8 and distribution of residues between fat free muscle and fat in ruminant and poultry metabolism and feeding studies)

⁽³⁾: Occurrence data for all cypermethrin isomers to be considered but toxicity of alpha-cypermethrin to be considered.

Residues in succeeding crops (Regulation (EU) N° 283/20	013, Annex Part A, point 6.6.2)
--	---------------------------------

Confined rotational crop study (Quantitative aspect) OECD Guideline 502	Confined rotational crop study conducted with wheat, sugar beet, lettuces and cotton planted 29, 60 and 120 days after soil application with (¹⁴ C-benzyl and ¹⁴ C-cyclopropyl)-labelled Cypermethrin at a rate of 1 kg a.s./ha (33N) indicated that residue levels in rotational crops will be below 0.01 mg/kg when primary crops are treated at a 1N rate according to the representative uses.
Field rotational crop study OECD Guideline 504	1-3 treatments (to bare soil) at rate 20 g a.s./ha (alpha- cypermethrin); plant-back interval of \leq 19 days on leafy crops (cabbage, lettuce), root crops (carrots), cereals (wheat):
	Cypermethrin isomer pairs cis-I, cis-II, trans-III:
	each < LOQ (0.01 mg/kg) in all crop parts;
	Cypermethrin isomer pair trans-IV:
	Root crops (carrot):
	< 0.01 mg/kg (root); <0.01 - 0.03 mg/kg (foliage)
	Cereals (wheat) whole plant, grain, straw: <0.01 mg/kg
	Leafy crops (lettuce, cabbage): ≤0.01 mg/kg

Plant products	C 1 ¹ / ₁	Т	Stability (Months)
(Category)	Commodity	(°C)	Stability (Months) Alpha-cypermethrin ⁽⁴⁾ 8 $12^{(4)}$ 8 $12^{(4)}$ 0 $12^{(4)}$ 8 $12^{(4)}$ 0 $24^{(4)}$ 8 $12^{(4)}$ 0 24 8 $12^{(4)}$ 0 24 0 24 0 24 0 24 0 24 0 24 0 $6^{(4)}$
High water content	lettuce leaves	≤ -18	12 (4)
	tomato fruit	≤ -18	12 (4)
	oilseed rape whole plants	- 20	12 (4)
	cereal whole green plant	≤ - 18	12 (4)
High acid content	pineapple fruit	≤ - 20	24
High starch content	cereal grain	≤ -18	12 (4)
	barley grain	≤ - 20	24
High oil content	oilseed rape seeds	- 20	12 (4)
High protein content	bean seed	≤ - 20	24
Other	oilseed rape whole pods	- 20	6 (4)
	cereal straw	[12 (4)

Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1) OECD Guideline 506

⁽⁴⁾ In most studies, the analytical method used determined the total cypermethrin residues (sum of isomers) and was not validated to be specific for alpha-cypermethrin isomers.

Animal	Animal commodity	T (°C)	Stability (Month)
Cattle	Muscle	\leq -10°C	6
Cattle	Liver	\leq -10°C	6
Cattle	Kidney	\leq -10°C	6
Cattle	Milk	\leq -10°C	9
Cattle	Fat	\leq -10°C	6
Hen	Eggs	\leq -10°C	1.5
Upon frozen storage, re	sidues of alpha-cypermethri	n remain stal	ble for at least 6 months in cattle tissues, at

least 9 months in cattle milk and at least 1.5 month in hen eggs.

Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop (cGAP)	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representative us	es					
Cucumbers (extrapolation to courgettes) (1 x 30 g/ha; PHI 3 days)	Indoor	<i>1x 40 g/ha</i> : 2 x <0.01, 0.012, 2 x 0.014, 0.02, 0.031, 0.037 Scaled down to cGAP rate (1x 30 g/ha): 2 x <0.01, 0.009, 0.011 ,0.011, 0.015, 0.023, 0.028	Proportionality concept applied due to trials being conducted at rate >25% deviating from cGAP rate. Data gap: Sufficient residue trials on cucumbers compliant with the indoor GAP and supported by acceptable storage stability data are required in view of the identified acute intake concern.	0.05	0.028	0.011
Leafy brassica (2 x 10 g/ha; PHI 3 days)	NEU	Kales: 2x 12.5 g/ha: 0.23 ⁽⁵⁾ , 0.35, 0.38, 0.59 Scaled down to cGAP rate (2x10 g/ha): 0.23, 0.28, 0.30, 0.47	 ⁽⁵⁾ Level measured 3 days after single treatment (1x12.5 g/ha) (0.170 mg/kg found 3 days after 2 treatments). Scaling on this value not applicable. Data gap: 2 residue trials and 4 residue trials on 	1	0.47	0.29
Leafy brassica (1 x 20 g/ha; PHI 3 days)	SEU	Kales: 1x 25 g/ha: 0.28, 0.44 Scaled down to cGAP rate (1x20 g/ha): 0.22, 0.35	kales and compliant respectively with the NEU and SEU outdoor GAP on leafy brassica to be extrapolated to the whole sub-group of leafy brassica.			
Lettuces (2 x 10 g/ha; PHI 3 days)	NEU	2x 12.5 g/ha: <0.01, 0.021, 0.055 ⁽⁶⁾ , 0.072, 0.12, 0.13, 0.22, 0.24, 0.27, 0.72 Scaled down to cGAP rate (2x10 g/ha): <0.01, 0.017, 0.044, 0.057, 0.096, 0.104, 0.176, 0.192, 0.21, 0.58	⁽⁶⁾ Trial on open leaf lettuce variety; Proportionality concept could be applied due to all trials being overdosed (at rate 25% deviating from cGAP rate). Data gap: Sufficient residue trials on lettuces and compliant respectively with the NEU and	0.9	0.58	0.10

Crop (cGAP)	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
			SEU GAP are required in view of the identified			
Lettuces (1 x 20 g/ha; PHI 3 days)	SEU	$Ix 25 g/ha: <0.01, 0.10, 0.11^{(6)}, 0.20^{(6)}, 0.21^{(6)}, 0.31^{(6)}, 0.32^{(6)}, 0.39^{(6)}, 0.41^{(6)}, 0.59^{(6)} $ Scaled down to cGAP rate (1x20 g/ha): <0.01, 0.08, 0.08, 2 x 0.16, 2 x 0.25, 0.31, 0.33, 0.47	acute intake concern.	0.8	0.47	0.21
		2x12.5 g/ha: 0.032 ⁽⁶⁾ , 0.037, 0.049 ⁽⁶⁾ , 0.075 ⁽⁶⁾ , 0.091 ⁽⁶⁾ 0.11 ⁽⁶⁾ , 0.21 ⁽⁶⁾ , 0.24 ⁽⁶⁾ Scaled down to cGAP rate (2x10 g/ha): 0.025, 0.03, 0.04, 0.06, 0.07, 0.088, 0.17, 0.19		0.4	0.19	0.07
Oilseed rape (seeds)	NEU	2x 12.5 g/ha: 10 x <0.01		0.07	0.01	0.01
(2 x 10 g/ha; PHI 28 days)	SEU	7 x <0.01, 0.012, 0.015, <0.05, 0.06			0.06	0.01
	NEU + SEU	17 x <0.01, 0.012, 0.015, <0.05, 0.06	Populations similar (U-test; α=0.05) MRL proposal derived from merged datasets.		0.06	0.01
Barley (grain) (2 x 10 g/ha; PHI 28 days) (extrapolation to oats grain)	NEU	2x 12.5 g/ha: 0.02, 0.03, 0.031, 0.032, 0.035, 0.053, 0.077, 0.079 Scaled down to cGAP rate (2x10 g/ha): 0.016, 0.024, 0.025, 0.026, 0.028, 0.042, 0.062, 0.063	Proportionality concept applied due to all trials being overdosed (at rate ca. 25% deviating from cGAP rate).	0.15	0.063	0.027
	SEU	2x 12.5 g/ha: 0.024, 0.026, 0.035, 0.05, 0.066, 0.079, 0.083	Proportionality concept applied due to all trials being overdosed (at rate ca. 25% deviating from		0.066	0.034

Crop (cGAP)	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
		Scaled down to cGAP rate (2x10 g/ha): 0.019, 0.021, 0.028, 0.040, 0.047, 0.063, 0.066	cGAP rate). Data gap: 1 additional residue trial on barley and compliant with the SEU GAP is required.			
	NEU + SEU	Scaled residue values: 0.016, 0.019, 0.021, 0.024, 0.025, 0.026, 0.028, 0.028, 0.040, 0.042, 0.047, 0.062, 0.063, 0.063, 0.066	Populations similar (U-test; α=0.05); MRL proposal derived from merged scaled datasets.		0.066	0.028
Wheat (grain)	NEU	5 x <0.01		0.01*	0.01	0.01
(2 x 10 g/ha; PHI 28 days)	SEU	10 x <0.01			0.01	0.01
(extrapolation to rye grain)						
Barley (straw) (2 x 10 g/ha; PHI 28 days) (extrapolation to	NEU	2x12.5 g/ha: 0.20, 0.25, 0.26, 0.35, 0.41, 0.47, 0.48, 0.49 Scaled down to cGAP rate (2x10 g/ha): 0.16, 0.2, 0.21, 0.28, 0.33, 0.37, 0.38, 0.39		n.a.	0.39	0.31
oats straw)	SEU	2x12.5 g/ha: 0.21, 0.24, 2x 0.40, 0.43, 0.47, 0.68 Scaled down to cGAP rate (2x10 g/ha): 0.17, 0.19, 0.32, 0.32, 0.34, 0.37, 0.54		n.a.	0.54	0.32
	NEU + SEU	Scaled residue values: 0.16, 0.17, 0.19, 0.2, 0.21, 0.28, 0.32, 0.32, 0.33, 0.34, 0.37, 0.37, 0.38, 0.39, 0.54		n.a.	0.54	0.32
Wheat (straw) (2 x 10 g/ha; PHI 28 days) (extrapolation to	NEU	2x12.5 g/ha: 0.29, 0.36, 2 x 0.40, 0.53 Scaled down to cGAP rate (2x10 g/ha): 0.23, 0.29, 0.32, 0.32, 0.42		n.a.	0.42	0.32
rye straw)	SEU	2x12.5 g/ha: 0.18, 0.33, 0.35, 0.37, 0.47, 0.54, 0.62, 0.82, 2 x 1.04		n.a.	0.86	0.39

Crop (cGAP)	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
		Scaled down to cGAP rate (2x10 g/ha): 0.14, 0.26, 0.28, 0.3, 0.37, 0.4, 0.43, 0.68, 0.68, 0.86				
	NEU + SEU	Scaled residue values: 0.14, 0.23, 0.26, 0.28, 0.29, 0.3, 0.32, 0.32, 0.37, 0.4, 0.42, 0.43, 0.68, 0.68, 0.86		n.a.	0.86	0.32
Barley & Wheat (straw) (2 x 10 g/ha; PHI 28 days)	NEU + SEU	Scaled residue values: 0.14, 0.16, 0.17, 0.19, 0.2, 0.21, 0.23, 0.26, 2 x 0.28, 0.29, 0.3, 4 x 0.32, 0.33, 0.34, 3 x 0.37, 0.38 0.39, 0.4, 0.42, 0.43, 0.54, 2 x 0.68, 0.86	Datasets on barley straw (n=16) and wheat straw (20) were merged, as populations are similar (U-test; α =0.05). Extrapolation to rye and oats straw.	n.a.	0.86	0.32
MRL application	1					
Leafy brassica		See assess	nent for the representative use			
Summary of the	data on formulat	tion equivalence OECD Guideline 509				
Сгор	Region	Residue data (mg/kg)	Recommendations/comments			
The equival	lence between the	different formulations used in the residue trials was d	emonstrated from bridging studies conducted on from	uit crops, pota	toes and lettu	ices.
Summary of dat	a on residues in _l	pollen and bee products (Regulation (EU) No 283/2	013, Annex Part A, point 6.10.1)			
Product(s)	Region	Residue data (mg/kg)	Recommendations/comments			
Nectar & pollen (oilseed rape)	Germany (4 locations)	Nectar: <0.01 – 0.046 Pollen: 0.34 – 1.2	Oilseed rape crop covered by tunnel; treated at 1x30 g/ha (BBCH 63-65); Only results for nectar collected from forager bees and pollen collected via pollen traps (1 DAA) are presented. Considerable reduction of residue levels was observed at later sampling occasions: <i>see conclusions DRAR Vol.1.</i>	-	-	-
Nectar & pollen (<i>Phacelia</i>)	Germany (1 location)	Nectar: <0.01 Pollen: <0.01 – 0.01	<i>Phacelia tanacetifolia;</i> 1x30 g/ha at 80% flowering; pollen collected via pollen trap and nectar collected from hives (7 and/or 14 DAA)	-	-	-
Nectar & pollen	Germany (4	Honey/nectar: <0.01	Phacelia tanacetifolia; 1x30 g/ha pollen and	-	-	-

Crop (cGAP)	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
(Phacelia)	locations) and Italy (1 location)	Pollen: <0.01 – 0.026	honey/nectar collected from hives (7 and/or 14 DAA)			
Considering that a low translocation of alpha-cypermethrin residues in the different plant parts was observed in the plant metabolism and taking into account the lipophilic properties of the active substance, further residue trials for the determination of residues of alpha-cypermethrin and its relevant metabolities in honey in regards to the						

properties of the active substance, further residue trials for the determination of residues of alpha-cypermethrin and its relevant metabolites in honey in regards to the representative uses are not required to address the data requirement for the determination of residues in pollen and bee products for human consumption resulting from residues taken up by honeybees from crops at blossom.

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (*e.g.* 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use **Mo/RA** to differentiate data expressed according to the residue definition for **Monitoring** and **Risk** Assessment.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{Mo}).

(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{Mo}).

(*): Residue trials not supported by the available storage stability data for total cypermethrin residues.

Inputs for animal burden calculations

Faad aammadiin	Medi	an dietary burden	Maxi	mum dietary burden
Feed commonly	(mg/kg)	Comment	(mg/kg)	Comment
Kale leaves	0.29		0.47	
Cereal straw (barley, oat, wheat, triticale, rye)	0.32	STMR (merged data wheat/barley)	0.83	HR (merged data wheat/barley)
Cereal grain (barley, oat)	0.028	STMR	0.028	STMR
Cereal grain (wheat, triticale, rye)	0.01	STMR	0.01	STMR
Brewer's grain (dried)	0.026	STMR-P = STMR (barley grain) x 0.93 (PF spent barley grain)	0.026	STMR-P = STMR (barley grain) x 0.93 (PF)
Canola / Rapeseed meal	0.01	STMR	0.01	STMR
Distiller's grain (dried)	0.026	STMR-P = STMR (barley grain) x 0.93 (PF spent barley grain)	0.026	STMR-P = STMR (barley grain) x 0.93 (PF spent barley grain)
Wheat gluten meal	0.059	STMR-P = STMR (wheat grain) x 5.85 (PF pearling barley dust/bran)	0.059	STMR-P = STMR (wheat grain) x 5.85 (PF pearling barley dust/bran)
Wheat, milled by-products (covering wheat bran)	0.059	STMR-P = STMR (wheat grain) x 5.85 (PF pearling barley dust/bran)	0.059	STMR-P = STMR (wheat grain) x 5.85 (PF pearling barley dust/bran)

Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations		Run	ninant		Pig/	Swine	Pou	ltry	Fis	sh
Highest expected intake	Beef cattle	0.016	Ram/Ewe	0.020	Breeding	0.008	Broiler	0.002	Carp	0.048
(mg/kg bw/d)	Dairy cattle	0.026	Lamb	0.026	Finishing	0.001	Layer	0.009	Trout	0.057
(mg/kg DM for fish)							Turkey	0.002	Fish intake >0	.1 mg/kg DM
Intake >0.004 mg/kg bw	Y	es	Y	'es	Yes		Yes		No	
Feeding study submitted	Y	es	No		No No		Y	es	No (feedin metabolis preser	g level of sm study nted)
Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and	Level 0.1	Beef: 6 N Dairy: 3.8 N	Level 0.1	Lamb: 3.8 N Ewe: 5N	Level 0.1	Breed/Finish: 12.5 N /100 N	Level 0.1	B or T: 33 N Layer: 11 N	Level 10	Carp: 208 N Trout: 175 N
N rates	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals
Muscle	< 0.05	0.05*	< 0.05	0.05*	< 0.05	0.05*	< 0.05	0.05*	< 0.01	0.05*
Fat	(0.020)	0.05*	(0.046)	0.05*	(0.012)	0.05*	< 0.05	0.05*	< 0.01	0.05*
Meat ^(b)	< 0.05		< 0.05		< 0.05		< 0.05			
Liver	< 0.05	0.05*	< 0.05	0.05*	< 0.05	0.05*	< 0.05	0.05*		
Kidney	< 0.05	0.05*	< 0.05	0.05*	< 0.05	0.05*	-	0.05*		
Milk ^(a)	< 0.01	0.01*	< 0.01	0.01*						
Eggs							< 0.01	0.05*		
Method of calculation ^(c)	Tf		Tf		Tf		Tf		residue levels extrapolation metabolism s	estimated by n (Tf) from study results

^(a): Estimated HR calculated at 1N level (estimated mean level for milk).

^(b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

^(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

STMR calculations		Rum	inant		Pig/Sv	vine	Pou	ltry	F	ish
Median expected intake	Beef cattle	0.0103	Ram/Ewe	0.0088	Breeding	0.006	Broiler	0.002	Carp	0.048
(mg/kg bw/d)	Dairy cattle	0.0165	Lamb	0.0112	Finishing	0.001	Layer	0.005	Trout	0.057
(mg/kg DM for fish)							Turkey	0.002		
Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and	Level 0.1	Beef: 10 N Dairy: 6N	Level 0.1	Lamb: 9N Ewe:11.3N	Level 0.1	Breed/Finish 17N/100N	Level 0.1	B or T: 33N Layer: 20N	Level 10	Carp: 208 N Trout: 175 N
N rates	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR^(b) at 1N						
Muscle	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
Fat	0.056	< 0.05	0.056	< 0.05	0.056	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01
Meat ^(a)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Liver	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Kidney	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-		
Milk	< 0.01	< 0.01	< 0.01	< 0.01						
Eggs							< 0.01	<0.01		
Method of calculation ^(c)	Tf		Tf		Tf		Tf		residue level extrapolati metabolism	s estimated by on (Tf) from study results

STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry (a). (b)

When the mean level is set at the LOQ, the STMR is set at the LOQ.

The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals. (c)

Conversion Factors (CF) for monitoring to risk assessment

Not applicable; The relatively higher toxicological potency of alpha-cypermethrin compared to cypermethrin is considered in the risk assessment by applying the toxicological reference values for alpha-cypermethrin.

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

Crop (RAC)/Edible part or	Number	Processing Facto	r (PF)	Conversion
Crop (RAC)/Processed product	or studies ^(a)	Individual values	Median PF	for $\mathbf{RA}^{(b)}$
Gherkins / washed	1	0.24, 0.55, 0.80 ⁽⁷⁾	0.55	-
Gherkin / wash water	1	$0.42, 0.60, < 0.67^{(7)}$	0.60	-
Gherkins / canned	1	0.39, 0.65, 1.2 ⁽⁷⁾	0.65	-
Gherkins / vegetable stock	1	$<0.26, <0.50, <0.67^{(7)}$	< 0.50	-
Barley / malt	2	0.22, 0.45, 0.59, 0.73, 0.74, 1.09	0.66	-
Barley / malt germs, malt culms	2	0.18, 1.37, 2.21, 2.50, 2.91, 5.09	2.4	-
Barley / spent grain	2	0.23, 0.76, 0.86, 1.0, 1.18, 1.68	0.93	-
Spent hops		0.18 (2x), 0.19, 0.32	0.19	-
Spent yeast		<0.03, <0.04, <0.05, <0.09	<0.05	-
Trub	1	<0.17, <0.53	< 0.35	-
Yeast	1	<0.17, <0.53	< 0.35	-
Beer	2	<0.03, <0.04, <0.05, <0.09, <0.17, <0.53	<0.07	-
Barley / flour (side product of dehulling barley)	1	6.48, 7.59, 8.35, 12.27	7.97	-
Barley / pearling dust/bran (side product of dehulling barley)	1	4.91, 5.50, 6.19, 6.55	5.85	-
Pot barley (dehulled barley)	1	0.04, 0.09, 0.12, 0.14	0.11	-
Rapeseed / meal (press cake)	2	<1, <1	<1	-
Rapeseed / oil (refined, crude)	1	<1	n.a.	-

OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

⁽⁷⁾ mean of values determined for processed commodities derived from RAC samples originating from 2 dependent supervised residue trials (a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)

^(b): When the residue definition for risk assessment differs from the residue definition for monitoring

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9) Consumer risk assessment limited to the representative uses⁽⁸⁾

⁽⁸⁾ The consumer dietary risk assessment cannot be finalised considering the provisional residue definitions for risk assessment in plants and animal commodities and the identified data gaps for additional residue trials on cucumbers, kales, lettuces and barley.

ADI	0.00125 mg/kg bw per day
TMDI according to EFSA PRIMo (rev.2)	Highest TMDI: 67% ADI (NL child)
NTMDI, according to (to be specified)	Not applicable
IEDI (% ADI), according to EFSA PRIMo (rev.2)	Not applicable
NEDI (% ADI), according to (to be specified)	
Factors included in the calculations	MRLs derived for the representative uses; MRL of 0.05* mg/kg for animal matrices and poultry eggs; MRL of 0.01* mg/kg for milk.
ARfD	0.00125 mg/kg bw
IESTI (% ARfD), according to EFSA PRIMo (rev.2)	2541% (kales – NL child)
	1248% (lettuces – DE child)
	131% (cucumbers – NL child)
	104% (courgettes – UK toddler)
	99.4% (Milk and milk products – UK infant)
	Max. 38% (barley grain – NL adult))
	5.3% (rape seed – DE child)
NESTI (% ARfD), according to (to be specified)	Not applicable
Factors included in IESTI and NESTI	Highest residue values for the representative uses; 0.05 mg/kg for animal matrices and 0.01 mg/kg for milk and eggs.

Indicative sceening of the safety of the current EU MRLs for cypermethin (sum of isomers) (as established by Commission Regulation(EU) No 2017/626).

TMDI (% ADI), according to EFSA PRIMo (rev.2)	Highest TMDI: 3309 % ADI (UK toddler)
NTMDI (% ADI), according to (to be specified)	Not applicable
IEDI (% ADI), according to EFSA PRIMo (rev.2)	Calculation not performed
NEDI (% ADI), according to (to be specified)	Not applicable
Factors included in the calculations	EU MRLs (Reg. (EU) No 2017/626)
IESTI (% ARfD, according to EFSA PRIMo rev.2)	21219 % ARfD (oranges)
	14272 % ARfD (grapefruits)
	13988 % ARfD (scaroles)
	9423 % ARfD (peaches)
	7921 % ARfD (orange juice)
	4076 % ARfD (apple juice)
NESTI (% ARfD, according to (to be specified)	Not applicable

Factors included in IESTI and NESTI

EU MRLs (Reg. (EU) No 2017/626)

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Note: The safety of the derived MRLs can only be concluded once the assessment of the genotoxic potential of 3-phenoxybenzoic acid (3-PBA) and review of the preliminary conclusions on the whole group of related metabolites bearing the 3-phenoxybenzoyl moiety (i.e. 4-OH-PBA, 4-OH-PBA sulfate, 3-PBA, 3-PBAldehyde) is finalised. The proposed MRLs have therefore all to be considered tentative.

Code ^(a)	Commodity/Group	-	MRL/Import tolerance ^(b) (mg/kg) and Comments		
Plant comm	Plant commodities				
Representa	tive uses				
0232010	Cucumbers	-	No MRL proposal (acute intake concern identified)		
0232030	Courgettes	-	Extrapolation from cucumbers; No MRL proposal (acute intake concern identified)		
0243000	Leafy brassica	-	No MRL proposal -Insufficient residue trials on kales to be extrapolated to the whole sub-group of leafy brassica (data gap) (acute intake concern identified for kales).		
0251020	Lettuces	-	No MRL proposal (acute intake concern identified)		
0401060	Oilseed rape seeds	0.07			
0500010	Barley	0.15	Provisional (Data gap: 1 additional residue trial on barley and compliant with the SEU GAP is required)		
0500050	Oats	0.15	Provisional (Extrapolation from barley)		
0500070	Rye	0.01*	Extrapolation from wheat		
0500090	Wheat	0.01*			
MRL appli	cation				
0243000	Leafy brassica	-	No MRL proposal-Insufficient trials on kales to be extrapolated to the whole sub-group of leafy brassica (data gap) and acute intake concern identified for kales.		
Animal con	nmodities				
1000000 except 1020000	Products of animal origin – terrestrial animals	0.05*	MRL proposals derived considering representative uses only.		
1020000	Milk	0.01*	For (cattle) milk, there is an acute intake concern for residues above 0.01 mg/kg. However, further method validation may be required to enforce an MRL at this level (see section 1).		
1030000	Birds eggs	0.05*			
1100000	Products of animal origin –Fish, fish products and any other marine and freshwater food products	0.05*	EU MRLs for cypermethrin (sum of isomers) in <i>Salmonidae</i> fish (in muscle and skin in natural proportions: 0.05 mg/kg) have been established by Commission Regulation (EU) No 37/2010 for its use as a veterinary drug.		

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005

(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.

Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Mineralisation after 100 days	32.0 – 41.4% after 91-120 days (n= 3), cyclopropane label 33.0 – 51.4% after 91-120 days (n = 4), benzyl label
Non-extractable residues after 100 days	23.5 – 36.9% after 91-120 days (n= 3), cyclopropane label 32.2 – 44.7% after 91-120 days (n = 4), benzyl label
Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)	DCVA , 13.6% (cis-DCVA) at 7 days (n=1), cyclopropane M310I017 , 7.5 – 8.4% at 7-30 days (n=7), cyclopropane and benzyl labels
	3-PBA , 1.9 – 5.4% at 7 days (n=2), benzyl label
	The formation of trans isomers (trans-cypermethrin and trans- DCVA) from cis-cypermethrin is not observed.

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Mineralisation after 100 days	7.8% after 90 days, benzyl-label (n=1)6.6% after 90 days, cyclopropane-label (n=1)
Non-extractable residues after 100 days	29.6% after 90 days, benzyl-label (n=1) 14.0% after 90 days, cyclopropane-label (n=1)
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	 DCVA, max. 55.6% (cis-DCVA) after 120 days (n=1), cyclopropane label 3-PBA, max. 30.0% after 120 days (n=1), benzyl label M3101017, max. 7.0% after 8 days (n=1), cyclopropane label The formation of trans isomers (trans-cypermethrin and trans-DCVA) from cis-cypermethrin is not observed.

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	3-PBA , max. 17.9% after 30 days (n=1), benzyl label DCVA , max. 5.4% after 15 days (n=1), cyclopropane label The formation of trans isomers (trans-cypermethrin and trans- DCVA) from cis-cypermethrin is not observed.
Mineralisation at study end	1.9-6.2% after 15-30 days, benzyl-label (n=2)5.4% after 15 days, cyclopropane-label (n=1)
Non-extractable residues at study end	10.8-13.3% after 15-30 days, benzyl-label (n=2) 15.0% after 15 days, cyclopropane-label (n=1)

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Trigger endpoints

Alpha-	Dark aerobic conditions								
cypermethrin	No general trends can be drawn about the rate of degradation of specific isomers (R and S) of alpha-cypermethrin.								
Soil type	Estimated kinetic parameters	pH ^{a)}	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ^2)	Method of calculation		
Ipswich Sandy loam ^{d)}	k1: 0.08 k2: 0.009 g: 0.24	6.5 (KCl)	10°/50% MWHC	48.1 / 228.7	-	1.8	DFOP		
Ipswich Sandy loam ^{d)}	α: 2.6 β: 60.4	6.5 (KCl)	20°/50% MWHC	18.3 / 84.8	-	3.5	FOMC		
LUFA 5M Sandy loam ^{e)}	α: 0.8034 β: 2.7562	7.2 (CaCl ₂)	20°/50% MWHC	3.8 / 45.7	-	11.2	FOMC		
Li10 Loamy sand ^{d)}	k1: 0.08 k2: 0.008 g: 0.4	6.1 (CaCl ₂)	20°/40% MWHC	28.3 / 196.3	-	1.3	DFOP		
LUFA 2.2 Loamy sand ^{c)}	k1: 0.06 k2: 0.004 g: 0.50	5.4 (CaCl ₂)	20°/45% MWHC	35.0 / 329.4	-	1.7	DFOP		
LUFA 2.3 Sandy loam ^{c)}	α: 1.77 β: 50.5	5.9 (CaCl ₂)	20°/50% MWHC	24.3 / 134.6	-	1.2	FOMC		
Geometric mean (if not pH dependent)					-		-		
pH dependence						no			

^{a)} Measured in calcium chloride solution

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

^{c)} Cyclopropyl label
 ^{d)} Benzyl label

e) Benzyl labelled and cyclopropane labelled samples are considered as true replicates for kinetic analysis

Alpha- cypermethrin	Dark aerobic conditions							
Soil type	Estimated kinetic parameters	pH ^{a)}	t. °C / % MWHC	DT ₅₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation	
Ipswich Sandy loam ^{d)}	/	6.5 (KCl)	10°/50% MWHC	-	-	-	-	
Ipswich Sandy loam ^{d)}	α: 2.6 β: 60.4	6.5 (KCl)	20°/50% MWHC	25.5	25.5	3.5	FOMC (DT90/3.32)	
LUFA 5M Sandy loam ^{e)}	α: 0.8034 β: 2.7562	7.2 (CaCl ₂)	20°/50% MWHC	13.8	10.3	11.2	FOMC (DT90/3.32)	
Li10 Loamy sand ^{d)}	k1: 0.08 k2: 0.008 g: 0.4	6.1 (CaCl ₂)	20°/40% MWHC	75.3	75.3	1.3	DFOP (ln2/k2)	
LUFA 2.2 Loamy sand ^{c)}	k1: 0.06 k2: 0.004 g: 0.50	5.4 (CaCl ₂)	20°/45% MWHC	133.3	117.3	1.7	DFOP (ln2/k2)	
LUFA 2.3 Sandy loam ^{c)}	/	5.9 (CaCl ₂)	20°/50% MWHC	29.4	27.0	4.9	SFO	
Geometric mean (if not pH dependent)					36.3		-	
pH dependence					no			

Modelling endpoints

рн dep

^{a)} Measured in calcium chloride solution
 ^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
 ^{c)} Cyclopropyl label
 ^{d)} Benzyl label
 ^{e)} Benzyl label

^{e)} Benzyl labelled and cyclopropane labelled samples are considered as true replicates for kinetic analysis

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Trigger endpoints

M310I017	Dark aerobic conditions - alpha-cypermethrin dosed studies								
Soil type		pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation	
LUFA 5M Sandy loam ^{e)}	/	7.2	20°/50% MWHC	10.8/36.0	/	-	24.7	SFO (metabolite decline)	
Li10 Loamy sand ^{d)}	/	6.1	20°/40% MWHC	22.6/75.1	/	-	13.5	DFOP-SFO	
LUFA 2.2 Loamy sand ^{c)}	/	5.4	20°/45% MWHC	42.3/140.4	/	-	13.2	DFOP-SFO	
LUFA 2.3 Sandy loam ^{c)}	/	5.9	20°/50% MWHC	4.9/16.2	/	-	16.1	FOMC-SFO	
Geometric mean (if not pH dependent)						-			
Arithmetic mean					/				
pH dependence						No			

^{a)} Measured in calcium chloride solution

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

c) Cyclopropyl label

^{d)} Benzyl label ^{e)} Benzyl labelled and cyclopropyl labelled samples are considered as true replicates for kinetic analysis

M310I017	Dark aerobic conditions – alpha-cypermethrin dosed from which the f.f. was derived was 0.344							
Soil type		pH ^{a)}	t. °C / % MWHC	DT ₅₀ (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation
LUFA 5M Sandy loam ^{e)}	/	7.2	20°/50% MWHC	10.8	-	8.1 ^{e)}	24.9	SFO (metabolite decline)
Li10 Loamy sand ^{d)}	/	6.1	20°/40% MWHC	22.6	0.215	22.6	13.5	DFOP-SFO
LUFA 2.2 Loamy sand ^{c)}	/	5.4	20°/45% MWHC	42.3	0.188	37.2	13.2	DFOP-SFO
LUFA 2.3 Sandy loam ^{c)}	/	5.9	20°/50% MWHC	3.1	0.629	2.8	15.5	SFO-SFO
Geometric mean (if not pH dependent)						11.8		
Arithmetic mean					0.344			
pH dependence,						No		

Modelling endpoints

^{a)} Measured in calcium chloride solution
 ^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
 ^{c)} Cyclopropyl label
 ^{d)} Benzyl label
 ^{e)} Benzyl labelled and cyclopropyl labelled samples are considered as true replicates for kinetic analysis

(cis-)DCVA	Dark	aerobic c	conditions - al	lpha-cypermetl	hrin dose	d studies and n	netabolite d	osed studies
Soil type		pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ^2)	Method of calculation
LUFA 5M Sandy loam ^{c) 1)}	/	7.2	20°/50% MWHC	5.2/17.1	-	3.9	7.6	SFO (metabolite decline)
Li10 ²⁾	/	6.0	20°/40% MWHC	13.5/45.0	-	13.4	12.2	SFO
LUFA 2.2 ²⁾	/	6.4	20°/40% MWHC	4.7/15.7	-	3.9	4.1	SFO
LUFA 5M ²⁾	/	6.9	20°/40% MWHC	11.1/36.8	-	7.7	12.5	SFO
LUFA 2.2 ³⁾ Loamy Sand	/	5.8	20°/45% MWHC	3.4/10	-	3.4	-	SFO
LUFA 3A – Loam ³⁾	/	7.1	20°/45% MWHC	2.7/10	-	2.4	_	SFO
PTRL - Clay loam ³⁾	/	6.8	20°/45% MWHC	8/27	-	6.9	-	SFO
Geometric mean (if	not pH	I depende	ent)			5.1		
Arithmetic mean					-			
pH dependence							No	

Trigger and modelling endpoints

^{a)} Measured in calcium chloride solution

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

^{c)} Cyclopropyl label

¹⁾ cis-DCVA in Michel and Hassink, 2014a (study submitted for the renewal on alpha-cypermethrin, Doc. No.

2014/1000641)

²⁾ cis-DCVA in Sacchi, 2015b (metabolite-dosed study, study submitted for the renewal on alpha-cypermethrin, Doc. No. 2015/3003982)

³⁾ cis-DCVA in Class and Dorn, 2003 (metabolite-dosed study, accepted in the EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Scientific Report (2008) 196, 1-119; DOI: 10.2903/j.efsa.2009.196r).

3-PBA	Dark a	aerobic cor	nditions - m	etabolite dosec	l studies			
Soil type		pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ ²)	Method of calculation
Li10 ¹⁾	/	6.2	20°/40% MWHC	0.8/4.3	-	1.3	1.9	FOMC (DT90/3.32) α: 1.91; β: 1.83
LUFA 2.2 ¹⁾	/	5.3	20°/40% MWHC	0.3/2.6	-	0.6	3.0	FOMC (DT90/3.32) α: 1.05; β: 0.33
LUFA 5M ¹⁾	/	7.4	20°/40% MWHC	1.7/5.5	-	1.2	2.0	SFO
LUFA 2.2 Loamy Sand ²⁾	/	5.8	20°/45% MWHC	0.8/3.0	-	7 (slow phase)	-	bi-phasic
LUFA 3A – Loam ²⁾	/	7.1	20°/45% MWHC	1.7/7.0	-	2.7 (slow phase)	-	bi-phasic
PTRL - Clay loam ²⁾	/	6.8	20°/45% MWHC	5.0/16	-	4.3	-	SFO
Speyer 2.2, Loamy sand ³⁾	/	5.5	20°/50% MWHC	0.38/1.3	-	0.38	4.7	SFO
Speyer 2.3, Sandy loam ³⁾	/	6.6	20°/50% MWHC	0.8/2.8	-	0.79	3.9	SFO
Speyer 6S, Clay ³⁾	/	7.2	20°/50% MWHC	2.1/7	-	1.13	1.8	SFO
Geometric mean	n (if not	t pH depen	dent)			1.7		
Arithmetic mea	n				-			
pH dependence							No	

Trigger and modelling endpoints

^{a)} Measured in calcium chloride solution

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
¹⁾ Sacchi, 2015a (metabolite-dosed study, study submitted for the renewal on alpha-cypermethrin, Doc. No. 2015/3003981)

²⁾ Class and Dorn, 2003 (metabolite-dosed study, accepted in the EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Scientific Report (2008) 196, 1-119; DOI: 10.2903/j.efsa.2009.196r).

³⁾ Shepler, 2011 (metabolite-dosed study, accepted in EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance gamma-cyhalotrin. EFSA Journal (2014) 12,(2):3560, 93 pp; DOI: 10.2903/j.efsa.2014.3560)

Alpha- cypermethrin	Aerobic conditions							
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	pН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ^2)	DT ₅₀ (d) Norm ^{b)} .	Method of calculation
Dollern, sandy loam	Germany (DE1)	5.5 ^{a)}	0-90	46.1	153	11.0	46.1	SFO
Ölbronn-Dürrn, silt loam	Germany (DE2)	5.4 ^{a)}	0-90	12.9	43.0	12.5	12.9	SFO
Melbourne, loam	United Kingdom (UK)	6.3 ^{a)}	0-90	14.7	250.5	15.3	114.1	HS (ln2/k2) k1: 0.0472 k2: 0.0061 tb: 19.0
Letniza, silty clay loam	Bulgaria (BG)	6.9 ^{a)}	0-90	24.6	81.8	13.1	24.6	SFO
Almansa, sandy loam	Spain (ES)	7.6 ^{a)}	0-90	42.8	142.3	4.4	42.8	SFO
Barry d'Islemade, sandy clay loam	France (FR)	5.0 ^{a)}	0-90	8.0	38.7	3.5	11.7	FOMC (DT90/3.32) α: 2.3814 β: 23.8
Silt loam	Louisiana (USA)	6.2 ^{b)}	0-91	5.9	19.6	33.8	-	SFO
Sandy loam	Oklahoma (USA)	6.7 ^{b)}	0-91	6.3	20.9	6.3	-	SFO
Sand	New York (USA)	7.1 ^{b)}	0-91	3.4	27.9	13.5	-	FOMC $\alpha = 1.0718$ $\beta = 3.6844$
Sandy loam	California (USA)	6.8 ^{b)}	0-91	4.0	13.4	8.4	-	SFO
Geometric mean (if n	ot pH dependent)	·					30.7	
pH dependence						No		

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

^{a)} Measured in water

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

^{c)} Measured in $CaCl_2$ in upper 15 cm

* The experts agreed at the Pesticides Peer Review Meeting 172 (Environmental Fate and Behaviour, 12 April 2018) that, based on the available similarity assessment, the US field studies can be considered representative for EU conditions.

(cis-)DCVA		Aerobic conditions alpha-cypermethrin dosed from which the f.f. was derived was 0.371									
Soil type	Location		X^8	pH ^{a)}	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ ²)	DT ₅₀ (d) Norm ^{b)} .	f. f. k _f / k _{dp}	Method of calculation
Letniza, silty clay loam	Bulgaria (BG)			6.9	0-90	16.0	53.2	34.3	16.0	0.371	SFO-SFO
Almansa, sandy loam	Spain (ES)			7.6	0-90	32.4	107.6	34.5	32.4	0.326	SFO-SFO
Geometric me	ean (if not pH dependent)								-		
Arithmetic m	tic mean									-	
pH dependen	ce, Yes or No)							No		

^{a)} Measured in water
^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7 values are DegT50matrix

3-PBA		Aerobic conditions alpha-cypermethrin dosed from which the f.f. was derived was 0.437										
Soil type	Location		<i>X</i> ⁸	pH ^{a)}	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ^2)	DT ₅₀ (d) Norm ^{b)} .	f. f. k _f / k _{dp}	Method of calculation	
Letniza, silty clay loam	Bulgaria (B		6.9	0-90	17.1	56.9	25.5	17.1	0.364	SFO-SFO		
Almansa, sandy loam	Spain (ES)			7.6	0-90	35.8	119.0	25.4	35.8	0.437	SFO-SFO	
Geometric m	ean (if not pH						-					
Arithmetic m	mean									-		
pH dependen	ce, Yes or No)					No					

^{c)} Measured in water ^{d)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7 values are DegT50matrix

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)*

Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)

Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)

Kinetic formation fraction (f. f. k_f / k_{dp}) of transformation products, arithmetic mean

DT ₅₀ of 3	33.1 days
-	-
-	-

* Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

No accumulation in EU field studies since DT₉₀<1 year

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Alpha- cypermethrin	Dark a	inaerobi	c conditions				
Soil type	X ⁶	pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) 20 °C ^{b)}	St. (χ^2)	Method of calculation
LUFA 5M, sandy loam ^{c)}		7.9	20°	46.8/222	-	3.0	SFO
Geometric mean (if I	not pH c	lepende	nt)		-		

^{a)} Measured in water

^{b)} Normalised using a Q10 of 2.58

^{c)} Benzyl labelled and cyclopropane labelled samples are considered as true replicates for kinetic analysis

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

M310I017	Dark anae	Dark anaerobic conditions alpha cypermethrin dosed study								
Soil type	X ¹⁰	pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20°C ^{b)}	St. (χ ²)	Method of calculation		
LUFA 5M, sandy loam ^{c)}	$\label{eq:alpha} \begin{split} \alpha &= 1.99; \\ \beta &= 71.87 \end{split}$	7.9	20°	29.9/156.1	-	29.9	3.2	FOMC (metabolite decline)		
Geometric mean	(if not p;H	depende	ent)			-				
Arithmetic mean					-					

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} Normalised using a Q10 of 2.58

^{c)} Benzyl labelled and cyclopropane labelled samples are considered as true replicates for kinetic analysis

⁶ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3

Alpha- cypermethrin	Soil pho	otolysis			
Soil type	pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d) calculated at °N	St. (χ^2)	Method of calculation
Speyer F3, sandy silty loam	7.3	22°/45.7% MWHC	34.1 / 113.3 at °N *	5.5	SFO
Lufa 5M, sandy loam ^{b)}	7.9 ^{c)} /8.0 ^{d)}	22°/55% MWHC	26.9 / 89.2 at 49°N 103.6 / 343.4 at 35°N	3.1	SFO

a) Measured in water
b) Benzyl labelled and cyclopropane labelled samples are considered as true replicates for kinetic analysis
c) Benzyl labelled soil

^{d)} Cyclopropane labelled soil * A data gap is identified for correcting the DT50 values in the study by van Dijk (1993) into days of natural summer sunlight at a latitude of 30-50°N.

Soil adsorption	active substance	(Regulation	(EU) N°	283/2013,	Annex	Part A,	point	7.1.3.1.1
and Regulation	(EU) N° 284/2013	, Annex Part	A, point	9.1.2.1)				

Alpha-cypermethrin							
Soil Type	OC %	Soil pH ^{a)}	K _d	K _{doc}	K _F	K _{Foc}	1/n
			(mL/g)	(mL/g)	(mL/g)	(mL/g)	
Lufa 2.3	0.67	5.4	2366	353100	-	-	-
Lufa 2.2	1.72	5.8	4362	253632	-	-	-
Bruch West	1.62	7.1	3704	228622	-	-	-
Li10	0.95	6.3	3181	334804	-	-	-
Fiorentino Poggio Renatico 1	1.07	7.4	2927	273519	-	-	-
Geometric mean (if not pH dependent)*					284839	-
Arithmetic mean (if not pH dependent)					-	-
pH dependence					No		

^{a)} Measured in calcium chloride solution

* Only relevant after implementation of the published EFSA guidance. During the Pesticides Peer Review Meeting 172

(Environmental Fate and Behaviour, 12 April 2018), the experts agreed to use the geometric mean K_{Foc} value for PECgw, PECsw and PECsed modelling.

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

3-РВА								
Soil Type	OC %	Soil pH (CaCl ₂)	Soil pH (H ₂ O)	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
Engelstadt/Benz, silt loam ¹⁾	2.27	7.4	7.9 ^{a)}	1.823	80.3	1.038	46	0.7466
Ingelheim/Moers, sandy loam ¹⁾	1.33	7.6	8.1 ^{a)}	1.308	98.3	0.897	67	0.8165
Schwabenheim, silt loam ¹⁾	1.09	5.9	6.5 ^{a)}	1.927	176.8	0.949	87	0.7043
Speyer 2.2, loamy sand ¹⁾	2.29	5.9	6.5 ^{a)}	2.925	127.7	2.076	91	0.8608
LUFA 2.3, sandy loam ²⁾	0.98	6.4	6.9 ^{a)}	-	-	0.88	90.1	0.84
LUFA 6S, clay ²⁾	1.75	7.2	7.7 ^{a)}	-	-	1.06	60.5	0.88
Fraunhofer 02-A, silt loam ²⁾	1.30	-	6.6 ^{b)}	-	-	0.76	58.8	0.88
Drummer, silt clay ³⁾	2.56	-	6.4 ^{c)}	-	-	3.11	122	0.66
Thurston, sandy loam ³⁾	0.83	-	6.8 ^{c)}	-	-	0.98	118	0.65
Nixon, sandy loam ³⁾	1.14	-	5.6 ^{c)}	-	-	2.44	215	0.67
Speyer 2.2, Loamy sand ⁴⁾	2.1	5.5	6.1 ^{a)}	-	-	-	58	0.914
Speyer 2.3, Sandy loam ⁴⁾	1.0	6.6	7.1 ^{a)}	-	-	-	71	0.864
Speyer 6S, Clay ⁴⁾	1.7	7.2	7.7 ^{a)}	-	-	-	47	0.865
Geometric mean (n = 12, consid	dering only so	oils with pH	$I-H_2O > 5.6$	5) ^{d)} *			72.7	-
Arithmetic mean ($n = 12$, consid	5) ^{d)}			-	0.81			
pH dependence			Yes ^{e)}					

^{a)} Recalculated to pH-H2O using the equation pH-H2O = 0.953 pH-CaCl2 + 0.85 as presented in the Final Report of the FOCUS Ground Water Work Group (Sanco/13144/2010, version 3, 10 October 2014

^{b)} Measured in H₂O

^{c)} pH assumed to be measured in water, although not explicitly stated in the DAR on zeta-cypermethrin (May 2008)

^{d)} Excluding the soil with pH 5.6 from the dataset would result in conservative mean adsorption values to be used for PECgw, PECsw and PECsed modelling, as this acid soils is the soil within the dataset with the highest Kfoc values.

^{e)} pH dependency of Kfoc was tested with the Kendall's tau test and a significant correlation was found (at a significance level of 0.05) for the whole dataset (n=13). No significant pH-dependency (at a significance level of 0.05) is observed when excluding the sandy loam soil with pH 5.6 and the highest Kfoc value of 215 mL/g from the dataset.

* Only relevant after implementation of the published EFSA guidance. During the Pesticides Peer Review Meeting 172 (Environmental Fate and Behaviour, 12 April 2018), the experts agreed to use the geometric mean K_{Foc} value for PECgw, PECsw and PECsed modelling.

¹⁾ Holman 2002 (study submitted for the renewal on alpha-cypermethrin)

²⁾ Hein, 2009 (accepted in the EFSA conclusion on the peer review of the pesticide risk assessment of the active substance beta-cypermethrin. EFSA Journal 2014;12(6):3717; DOI: 10.2903/j.efsa.2014.3717)

³⁾ Gravelle, 1994 (accepted in the EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Scientific Report (2008) 196, 1-119; DOI: 10.2903/j.efsa.2009.196r)

⁴⁾ LaMar and Quistad, 2010 (accepted in EFSA conclusion regarding the peer review of the pesticide risk assessment of the active substance gamma-cyhalotrin. EFSA Journal (2014) 12,(2):3560, 93 pp; DOI: 10.2903/j.efsa.2014.3560)

Cis-DCVA												
Soil Type	OC %	Soil pH	K _d	K _{doc}	K _F	K _{Foc}	1/n					
		a)	(mL/g)	(mL/g)	(mL/g)	(mL/g)						
Bonnut, sandy loam ¹⁾	0.9	5.5	-	-	1.718	191	0.836					
Chateauroux, silt loam ¹⁾	1.3	6.5	-	-	0.743	57	0.692					
Thoree les pins, sandy loam ¹⁾	0.7	4.4	-	-	2.223	318	0.889					
Pithiviers, clay loam ¹⁾	1.4	7.1	-	-	0.514	37	0.754					
Ploudalmezeau, clay silt ¹⁾	1.5	6.4	-	-	0.711	47	0.728					
Geometric mean (n = 3, considering o			46.3	-								
Arithmetic mean ($n = 3$, considering o		-	0.72									
pH dependence			Yes									

^{a)} Measured in calcium chloride solution

^{b)} Excluding the soils with pH of 5.5 and 4.4 from the dataset would result in conservative mean adsorption values to be used for PECgw, PECsw and PECsed modelling, as these acid soils are the soils within the dataset with the highest Kfoc values.

* Only relevant after implementation of the published EFSA guidance. During the Pesticides Peer Review Meeting 172 (Environmental Fate and Behaviour, 12 April 2018), the experts agreed to use the geometric mean K_{Foc} value for PECgw, PECsw and PECsed modelling.

¹⁾ cis-DCVA in Malinsky, 2005 (study submitted for the renewal on alpha-cypermethrin)

M310I017												
Soil Type	OC %	Soil pH ^{a)}	K _d	K _{doc}	K _F	K _{Foc}	1/n					
			(mL/g)	(mL/g)	(mL/g)	(mL/g)						
Lufa 2.2, sandy loam	1.72	5.8	2393	139148	-	-	-					
Lufa 2.3, loamy fine sand	0.67	5.4	1738	259437	-	-	-					
Bruch west, sandy loam	1.62	7.1	2819	174041	-	-	-					
Li10, loamy fine sand	0.95	6.3	2956	311179	-	-	-					
Fiorentino Poggio Renatico 1, loam	1.07	7.4	3914	365806	-	-	-					
Geometric mean (if not pH dependent)			234901	-								
Arithmetic mean (if not pH dependent		-	-									
pH dependence		No										

^{a)} Measured in calcium chloride solution

* Only relevant after implementation of the published EFSA guidance. During the Pesticides Peer Review Meeting 172 (Environmental Fate and Behaviour, 12 April 2018), the experts agreed to use the geometric mean K_{Foc} value for PECgw,

PECsw and PECsed modelling.

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

Not required, sufficient information from adsorption/desorption study

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

(cypermethrin) No residue is found in the leachate (limit of determination $0.2 \mu g/l$)

DCVA reached 20% AR in the leachates from the silty clay soil and 3-PBA was found in concentrations around 5-10%

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies

Not required as information on mobility of the parent and its metabolites 3-PBA, DCVA and M310I017 is available.

Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1

Hydrolytic degradation of the active substance and pH 4: hydrolytical stability (no degradation after 10 metabolites > 10 % days) at 50°C pH 4: hydrolytical stability (no degradation after 30 days) at 25°C pH 5: DT₅₀ of 60.4 days at 25°C (SFO) pH 7: DT₅₀ of 28.7 days at 50°C (SFO) DT₅₀ of 5.7 days at 60°C (SFO) DT₅₀ of 2.2 days at 75°C (SFO) 3-PBAld was detected in maximum amounts of 21.6% (50°C), 71.7% (60°C), and 61.5% (75°C). pH 7: DT₅₀ of 54.2 days at 25°C (SFO) DT₅₀ of 85.3 days at 25°C (SFO) pH 9: DT₅₀ of 3.3 days at 25 °C (SFO) DT₅₀ of 0.1 day at 50 °C (SFO) 3-PBAld was detected at maximum 88.4% (25°C) and 92.1% TAR (50°C) were measured. 3-PBAld occurred in increasing amount until these maximum values measured during the last sampling points, indicating some aqueous stability of this compound in water. pH 9: DT₅₀ of 4.5 days at 25°C (SFO) DT₅₀ of 2.9 days at 50°C (SFO)

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %	Based on 8.4 hours of artificial light irradiation (1 solar day), DT_{50} and DT_{90} values of alpha-cypermethrin were 6.3 and 20.9 days, (benzyl label), respectively, and 3.4 and 11.7 days (cyclopropane label), respectively.							
	Major photolysis products (> 10% of appli- radioactivity):							
	3-PBAldehyde (max. 12.9% after 4 d, 4.1% after 15 d) (Bz-label)							
	3-PBA (max. 22.5% after 4 d, 8.5% after 15 d) (Bz- label)							
	DCVA, combination of cis and trans isomers (max. 43.7% after 8 d, 34.8% after 28 d) (Cp-label)							
	CO ₂ : 21.4% after 15 d (Bz-label), 7.7% after 28 d (Cp-label)							
Quantum yield of direct phototransformation in water at 2 > 290 nm	8.12 x 10 ⁻³ mol \cdot Einstein ⁻¹							

'Ready biodegradability' (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

Not ready biodegradable

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Alpha- cypermethrin										
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed ^{a)}	t. °C ^{b)}	DT ₅₀ /DT ₉₀ whole sys. (suspended sediment test)		St. (χ ²)	DT ₅₀ /DT ₉₀ Water (pelagic test)		St. (χ ²)	Method of calculation
				At study temp	Norm- alised to $x {}^{\circ}C^{\circ}$		At study temp (20°C)	Normalised to 12 °C ^{c)}		
Fresh water, low concentration, cyclopropyl-label	7.9	7.6	20°	-	-	-	3.1/43.0	6.6/91.8	9.9	DFOP
Fresh water, low concentration, benzyl-label	7.9	7.6	20°	-	-	-	2.3/86.8	4.9/185.3	9.8	DFOP
Fresh water, high concentration, cyclopropyl-label	7.9	7.6	20°	-	-	-	3.4/36.5	7.3/77.9	9.5	DFOP
Fresh water, low concentration, benzyl-label	7.9	7.6	20°	-	-	-	3.3/36.8	7.0/78.5	6.5	DFOP

^{a)} Measured in water ^{b)} Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

^{c)} Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling.

DCVA	Max in	total sy	stem 7	7.7% (cis-	DCVA) at	fter 59	days			
System identifier (indicate fresh, estuarine or	pH water phase	pH sed ^{a)}	t. °C ^{b)}	DT_{50} / DT_{90} whole sys. (suspended sediment test)		whole St. DT_{50}/DT_{90} ided (χ^2) Water (pelagic test)		St. (χ^2)	Method of calculation	
marine)				At study temp	Normali sed to x °C ^{c)}		At study temp	Norma lised to x °C ^{c)}		
Fresh water, low concentration, cyclopropyl-label	7.9	7.6	20°	-	-	-	No reliable endpoints derived	-	-	-
Fresh water, high concentration, cyclopropyl-label	7.9	7.6	20°	-	_	-	No reliable endpoints derived	_	-	-

^{a)} Measured in water

 ^{b)} Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C
^{c)} Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

3-PBA	Max in	Max in total system 52.9% after 7 days												
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed ^{a)}	t. °C ^{b)}	$\begin{array}{c c} DT_{50} / DT_{90} \text{ whole} \\ \text{sys. (suspended} \\ \text{sediment test)} \\ \text{At study} & \text{Normal} \\ \text{temp} & \text{ised to} \\ x \ ^{\circ}C^{\circ} \end{array}$		St. (χ ²)	DT ₅₀ /DT ₉₀ Water (pelagic test) At study Norm alised to x		St. (χ ²)	Method of calculation				
Fresh water, low	79	7.6	20°				No reliable	°C ^{c)}						
benzyl-label	1.9	7.0	20	-	-	-	derived	-	-	-				
Fresh water, high concentration, benzyl-label	7.9	7.6	20°	-	_	-	45.2/150. 2	-	9.4	DFOP-SFO				

^{a)} Measured in water ^{b)} Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C ^{c)} Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

Mineralisation and non extractable residues (for parent dosed experiments)												
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation <i>x</i> % after <i>n</i> d. (end of the study).	Non-extractable residues. max x % after <i>n</i> d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)							
Fresh water, low concentration, cyclopropyl-label	7.9	7.6	4.9% after 59 days	-	-							
Fresh water, low concentration, benzyl-label	7.9	7.6	32.8% after 59 days	-	-							
Fresh water, high concentration, cyclopropyl-label	7.9	7.6	3.5% after 59 days	-	-							
Fresh water, low concentration, benzyl-label	7.9	7.6	37.6% after 59 days	_	-							

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Trigger endpoints

Alpha- cypermethrin	Distribution : max in water 95.4% after 0 d. Max. sed 77.0% after 14 d The enantioselective effect on degradation behaviour in water and sediment is small and has no influence on risk assessment.										
Water / sediment system	pH water phase	pH sed ^{a)}	t. ⁰C	DT ₅₀ /DT ₉₀ whole sys.	St. (χ ²)	DT ₅₀ /DT ₉₀ water	St. (χ^2)	DT ₅₀ /DT ₉₀ sed	St. (χ ²)	Method of calculation	
System I (Rhine)	8.2	7.8 (KCl)	20°	4.5 /261.6 (FOMC)	7.8	0.1 / 2.6 (HS)	12.2	14.8 / 826.0 (FOMC)	4.6	/	
System II (Judenweiher)	7.2	7.1 (KCl)	20°	4.6 /24.1 (FOMC)	6.3	0.2 / 5.1 (HS)	7.3	8.0 / 27.8 (HS)	5.0	/	
System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	20°	13.5 /171.9 (DFOP)	3.0	0.3 / 8.5 (FOMC)	12.6	22.9 /229.3 (FOMC)	5.4	/	
System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	20°	51.3 /276.3 (DFOP)	3.8	0.2 / 6.6 (FOMC)	14.2	81.0 /269.1 (SFO)	4.4	/	

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

Modelling endpoints

Alpha- cypermethrin										
Water / sediment system	pH water phase	pH sed ^{a)}	t. °C	DT ₅₀ whole sys.	St. (χ ²)	DT ₅₀ water	St. (χ ²)	DT ₅₀ sed	St. (χ ²)	Method of calculation
System I (Rhine)	8.2	7.8 (KCl)	20°	56.4 ^{c)} (DFOP)	9.9	0.5 ^{d)} (HS)	12.2	248.8 ^{d)} (FOMC)	4.6	/
System II (Judenweiher)	7.2	7.1 (KCl)	20°	5.4 (SFO)	7.4	1.5 ^{d)} (HS)	7.3	8.2 (SFO)	9.1	/
System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	20°	20.6 (SFO)	11.6	2.6 ^{d)} (FOMC)	12.6	33.6 (SFO)	10.7	/
System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	20°	96.3 ^{c)} (DFOP)	3.8	2.0 ^{d)} (FOMC)	14.2	81.0 (SFO)	4.4	/
Geometric mean at 20°C ^{b)}				27.9		1.4		48.5		

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water] ^{b)} Normalised using a Q10 of 2.58 ^{c)} Calculated as $DT_{50} = ln2/k2$ ^{d)} Calculated as $DT_{50} = DT_{90}/3.32$

Trigger endpoints

3-PBA	Parent a 5.1% af	Parent alpha-cypermethrin dosed studies, distribution (max in water 18% after 7 d. Max. sed 5.1% after 7 d). Max in total system 23.1% after 7 days,											
Water / sediment system	pH water phase	pH sed ^{a)}	t. °C	DT ₅₀ /DT ₉₀ whole sys.	St. (χ ²)	DT ₅₀ /DT ₉₀ water	St. (χ ²)	DT ₅₀ /DT ₉₀ sed	St. (χ ²)	Method of calculation			
Benzyl, System I (Rhine)	8.2	7.8 (KCl)	20°	8.5/28.2 (SFO)	29.1	9.2/30.6 (SFO)	10.6	16.7/55.3 (SFO)	14.2	/			
Benzyl, System II (Judenweiher)	7.2	7.1 (KCl)	20°	7.6/25.3 (SFO)	26.8	11.4/38.0 (SFO)	20.4	19.3/64.1 (SFO)	11.8	/			
System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	20°	6.2 / 91.4 (HS)	3.8	11.6 /195.7 (HS)	3.0	n.c.	/	/			
System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	20°	n.c.	/	3.8 / 58.3 (HS)	11.5	n.c.	/	/			

n.c. : not calculated due to either limited number of data points available (Berghauser Althrhein) or not observed in the sediment phase (Ranschgraben)

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]
^{b)} Normalised using a Q10 of 2.58

Modelling endpoints - Dissipation (for FOCUS Step 1-2)

3-PBA	Parent alpha-cypermethrin dosed studies, distribution (max in water 18% after 7 d. Max. sed 5.1% after 7 d). Max in total system 23.1% after 7 days												
Water / sediment system	pH water phase	pH sed ^{a)}	t. ℃	DT ₅₀ whole sys.	St. (χ ²)	DT ₅₀ water	St. (χ ²)	DT ₅₀ sed	St. (χ ²)	Method of calculation			
Benzyl, System I (Rhine)	8.2	7.8 (KCl)	20°	10.2 (SFO)	11.2	9.2 (SFO)	10.6	16.7 (SFO)	14.2	/			
Benzyl, System II (Judenweihe r)	7.2	7.1 (KCl)	20°	12.5 (SFO)	18.0	11.4 (SFO)	20.4	19.3 (SFO)	11.8	/			
System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	20°	74.5 (HS)	3.8	161.2 (HS)	3.0	n.c.	/	/			
System IV (Ransch- graben)	7.3	5.9 (CaCl ₂)	20°	n.c. (DT50 water used for geomean whole sys.)	/	17.6 (HS)	11.5	n.c.	/	/			
Geometric mean at 20°C ^{b)}				20.2		23.4		18.1					

n.c. : not calculated due to either limited number of data points available (Berghauser Althrhein) or not observed in the sediment phase (Ranschgraben)

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} Normalised using a Q10 of 2.58

Modelling endpoints - Degradation (for FOCUS Step 3)

З-РВА	kinetic form alpha-cypern	kinetic formation fraction (k_f/k_{dp}) : in total system, formation fraction of 0.493 from alpha-cypermethrin									
Water / sediment system	pH water phase pH sed ^{a)} t. ^o C DegT ₅₀ /DegT ₉₀ whole system				St. (χ^2)	Method of calculation					
Cyclopropyl, System I (Rhine)	8.2	7.8 (KCl)	20°	8.5 Ffm from parent:0.460	29.1	DFOP-SFO					
Cyclopropyl, System II (Judenweiher)	7.2	7.1 (KCl)	20°	7.6 Ffm from parent:0.526	26.8	FOMC-SFO					
System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	20°	No reliable endpoints could be derived	/	/					
System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	20°	No reliable endpoints could be derived	/	/					
Geometric mean at 20°C ^{b)}			8.0								
Arithmetic mean ffm 0.493											

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water] ^{b)} Normalised using a Q10 of 2.58

Trigger endpoints

(cis-)DCVA	Parent alpha-cypermethrin dosed studies, distribution (max in water 47.3% after 14 d. Max. sed 19.5% after 14 d). Max in total system 66.8% after 14 days,									
Water / sediment system	pH water phase	pH sed ^{a)}	t. °C	DT ₅₀ /DT ₉₀ whole sys.	St. (χ^2)	DT ₅₀ /DT ₉₀ water	St. (χ^2)	DT ₅₀ /DT ₉₀ sed	St. (χ ²)	Method of calculation
Cyclopropyl, System I (Rhine)	8.2	7.8 (KCl)	20°	25.5/84.8 (SFO)	28.0	No reliable endpoints derived	-	36.4/120.8 (SFO)	12.7	/
Cyclopropyl, System II (Judenweiher)	7.2	7.1 (KCl)	20°	30.3/100.8 (SFO)	10.7	30.5/101.2 (SFO)	14.7	50.4/167.4 (SFO)	20.7	/
System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	20°	5.9 / 25.5 (DFOP)	0.3	6.6 / 30.0 (DFOP)	0.4	n.c.	/	/
System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	20°	n.c.	/	12.3 / 40.8 (SFO)	15.9	n.c.	/	/

n.c. : not calculated due to either limited number of data points available (Berghauser Althrhein) or not observed in the ^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

modeling enapor	Into D 100	ipation (i	101 1 0	Jeep blep 1	-/					
(cis-)DCVA	Parent a sed 19.5	Parent alpha-cypermethrin dosed studies, distribution (max in water 47.3% after 14 d. Max. sed 19.5% after 14 d). Max in total system 66.8% after 14 days,								
Water / sediment system	pH water phase	pH sed ^{a)}	t. °C	DT ₅₀ whole sys.	St. (χ^2)	DT ₅₀ water	St. (χ^2)	DT ₅₀ sed	St. (χ^2)	Method of calculation
Cyclopropyl, System I (Rhine)	8.2	7.8 (KCl)	20°	23.2 (SFO)	25.8	No reliable endpoints derived	-	36.4 (SFO)	12.7	/
Cyclopropyl, System II (Judenweiher)	7.2	7.1 (KCl)	20°	35.3 (SFO)	14.4	30.5 (SFO)	14.7	50.4 (SFO)	20.7	/
System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	20°	6.6 (SFO)	11.4	7.4 (SFO)	12.3	n.c.		
System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	20°	n.c. (DT50 water used for geomean whole sys.)	/	12.3 (SFO)	15.9	n.c.		
Geometric mean a	ut 20°C ^{b)}			16.1		14.1		42.8		

Modelling endpoints - Dissipation (for FOCUS Step 1-2)

n.c. : not calculated due to either limited number of data points available (Berghauser Althrhein) or not observed in the sediment phase (Ranschgraben) ^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} Normalised using a Q10 of 2.58

Modelling endpoints - Degradation (for FOCUS Step 3)

(cis-)DCVA	Parent alpha-cypermethrin dosed studies, distribution (max in water 47.3% after 14 d. Max. sed 19.5% after 14 d). Max in total system 66.8% after 14 days, kinetic formation fraction (k_f/k_{dp}): in total system, formation fraction of 0.816 from alpha-cypermethrin					
Water / sediment system	pH water phase	pH sed ^{a)}	t. °C	DegT ₅₀ /DegT ₉₀ whole system	St. (χ^2)	Method of calculation
Cyclopropyl, System I (Rhine)	8.2	7.8 (KCl)	20°	25.5 Ffm from parent:0.706	28.0	FOMC-SFO
Cyclopropyl, System II (Judenweiher)	7.2	7.1 (KCl)	20°	30.3 Ffm from parent:0.957	10.7	FOMC-SFO
System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	20°	4.4 Ffm from parent:0.599	20.4	DFOP-SFO
System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	20°	2.3 Ffm from parent:1.000	25.7	DFOP-SFO
Geometric mean at 20°C ^{b)}				9.4		

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]
^{b)} Normalised using a Q10 of 2.58

Mineralisation and non extractable residues (from parent dosed experiments)							
Water / sediment system	pH water phase	pH sed	Mineralisation x % after n d. (end of the study).	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)		
Benzyl, System I (Rhine)	8.2	7.8 (KCl)	24.9% after 105 days	23.2% after 61 days	18.9% after 105 days		
Benzyl, System II (Judenweiher)	7.2	7.1 (KCl)	53.1% after 105 days	37.3% after 30 days	21.2% after 105 days		
Benzyl, System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	43.2% after 100 days	22.5% after 28 days	20.1% after 100 days		
Benzyl, System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	33.4% after 100 days	20.5% after 57 days	15.9% after 100 days		
Cyclopropyl, System I (Rhine)	8.2	7.8 (KCl)	33.2% after 105 days	16.9% after 60 days	16.2% after 105 days		
Cyclopropyl, System II (Judenweiher)	7.2	7.1 (KCl)	40.0% after 105 days	37.1% after 105 days	37.1% after 105 days		
Cyclopropyl, System III (Berghauser Altrhein)	7.9	7.0 (CaCl ₂)	42.6% after 100 days	32.7% after 57 days	27.8% after 100 days		
Cyclopropyl, System IV (Ranschgraben)	7.3	5.9 (CaCl ₂)	32.0% after 100 days	28.1% after 79 days	26.0% after 100 days		

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air	Not studied - no data requested
Photochemical oxidative degradation in air	DT50 of 5.99 hours derived by the Atkinson model (version 1.92). OH (12 h) concentration assumed = 1.5 x 10^6 molecules/cm ³
Volatilisation	from plant surfaces (BBA guideline): Not studied - not required
	from soil surfaces (BBA guideline): Not studied – not required
Metabolites	-

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and	Soil: Alpha-cypermethrin, DCVA, 3-PBA and M310I017
ecotoxicology) and or requiring consideration for groundwater exposure	Surface water: Alpha-cypermethrin, DCVA and 3- PBA, 3-PBAldehyde and M310I017 (data gap for identification of the radioactive fractions RW7 and RW9)
	<u>Sediment</u> : Alpha-cypermethrin, DCVA, 3-PBA, 3- PBAldehyde-and M310I017
	Ground water: Alpha-cypermethrin, DCVA, 3-PBA, carboxamide and M310I017
	Air: Alpha-cypermethrin

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5

Soil (indicate location and type of study)	-
Surface water (indicate location and type of study)	Monitoring data are available from two countries, from France (2000 to 2007) and from Finland (only 2005). In sum 18695 measurements are available from river waters, however only two of them were > LOQ.
Ground water (indicate location and type of study)	-
Air (indicate location and type of study)	-

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent: alpha-cypermethrin	DT ₅₀ (d): 46.1 days
Method of calculation	Kinetics: SFO
	Field or Lab: worst case actual DT50 from US + EU
	field studies.

Application data

Crop: cabbage Depth of soil layer: 5cm Soil bulk density: 1.5g/cm³ % plant interception: 25% crop interception Number of applications: 1 Interval (d): -Application rate(s): 20 g a.s./ha

Note: RMS considers that the DT50 of 6.3 is not suitable, therefore only the initial PECsoil is acceptable.

PEC _(s) (mg/kg)		Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		0.020		-	
Short term	24h	0.020	0.020		
	2d	0.019	0.020		
	4d	0.019	0.019		
Long term	7d	0.018	0.019		
	28d	0.013	0.016		
	50d	0.009	0.014		
	100d	0.004	0.010		
Plateau					

Metabolite M310I0	17		Molecular weight relative to the parent: 1.038			
Method of calculation			DT ₅₀ (d): 42.	3 days		
			Kinetics: SF	C		
			Field or Lab: worst case lab studies.			
Application data			Application rate assumed: 1.3 g/ha (assumed M310I017 is formed at a maximum of 8.4% of the applied dose)			
PEC _(s)	Single	Single		Multiple	Multiple	
(mg/kg)	application	applicatio	on	application	application	
	Actual	Time wei	ghted	Actual	Time weighted	
		average			average	
Initial	0.0017			-		
Metabolite DCVA			Molecular weight relative to the parent: 0.502			
Method of calculation	on		DT_{50} (d): 13.5 days			

concentration

Kinetics: SFO Field or Lab: worst case lab studies. Application rate assumed: 1.0 g/ha (assumed **DCVA** is formed at a maximum of 13.6% of the applied dose)

PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.0014		-	

Metabolite 3-PBA			Molecular weight relative to the parent: 0.515		
Method of calculation			DT_{50} (d): 2.9 days (the correct value is 5 d)		
			Kinetics: SFO		
			Field or Lab: worst case lab studies.		
Application data			Application rate assumed: 2.2 g/ha (assumed 3-PBA is formed at a maximum of 28.6% of the applied dose)		
PEC _(s)	Single	Single		Multiple	Multiple
(mg/kg)	application	application		application	application
Actual Time wei average		ghted	Actual	Time weighted average	
Initial	0.0029			-	

PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

	· · · · · ·
Method of calculation and type of study (e.g.	For FOCUS gw modelling, values used –
modelling, field leaching, lysimeter)	Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.
	Model(s) used: FOCUS-PEARL 4.4.4 and FOCUS-PELMO 5.5.3
	Crop: Spring cereals, winter cereals, winter oilseed rape, cabbage
	Crop uptake factor: 0
	Parent alpha cypermethrin:
	Molecular weight: 416.3
	Water solubility (mg/L): 0.003 at pH 6.5 and 20°C
	Vapour pressure: 3.8×10^{-7} Pa at 20° C
	Geometric mean parent $DT_{50 \ lab/field}$ of 33.1 days (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
	$K_{OC}{:}\ 284839\ mL/g$ (geometric mean), $1/n=1$ (default value)
	Metabolite M310I017:
	Molecular weight: 432.3
	Water solubility (mg/L): 0.072 at 20°C
	Vapour pressure: 1.0×10^{-10} Pa at 20° C (worst case assumption)
	Geometric mean parent DT_{50lab} of 11.8 days (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
	$K_{OC}{:}\ 234901\ mL/g$ (geometric mean), $1/n=1$ (default value)
	Ffm: 0.344 from alpha-cypermethrin (for PEARL) ; Transformation rate of alpha-cypermethrin to M310I017 of 0.007204 (for PELMO)
	Metabolite DCVA:
	Molecular weight: 209.1
	Water solubility (mg/L): 129 at pH 4.0 and 20°C
	Vapour pressure: 1.0×10^{-10} Pa at 20° C (worst case assumption)
	Geometric mean parent DT_{50lab} of 4.8 days (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7) (Note: the correct value is 5.1 d).
	K_{OC} : 46.3 mL/g (geometric mean), $1/n = 0.72$ (arithmetic mean)
	Ffm: 1.0 from alpha-cypermethrin (for PEARL) ; Transformation rate of alpha-cypermethrin to DCVA of 0.020941 (for PELMO)
	Metabolite 3-PBA:
	Molecular weight: 214.2
	Water solubility (mg/L): 24.7 at pH 4.2 and 20°C
	Vapour pressure: 1.0 x 10^{-10} Pa at 20° C (worst case assumption)

Geometric mean parent $DT_{50 \text{ lab}}$ of 1.1 day (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7) (Note: the correct value is 1.7 d).

 K_{OC} : 78.5 mL/g (geometric mean), 1/n = 0.78 (arithmetic mean) (Note: the correct values are 72.7 mL/g (geometric mean), 1/n = 0.81 (arithmetic mean))

Ffm: 1.0 from alpha-cypermethrin (for PEARL) ; Transformation rate of alpha-cypermethrin to 3-PBA of 0.020941 (for PELMO)

For field and lysimeter studies : /

Spring cereals

Gross application rate: 10 g/ha.

Crop growth stage: BBCH 51

Canopy interception: 90% / 90%

Application rate net of interception: 1.0 g/ha.

No. of applications: 2

Application interval: 7 days

Time of application (absolute or relative application dates):

G	1 st	2^{nd}	
Scenario	application	application	
Châteaudun	11 th May	18 th May	
Hamburg	11 th June	18 th June	
Jokioinen	16 th June	23 rd June	
Kremsmünster	11 th June	18 th June	
Okehampton	11 th June	18 th June	
Porto	11 th May	18 th May	

Winter cereals

Gross application rate: 10 g/ha.

Crop growth stage: BBCH 51

Canopy interception: 90% / 90%

Application rate net of interception: 1.0 g/ha.

No. of applications: 2

Application interval: 7 days

Time of application (absolute or relative application dates):

Scenario	1 st application	2 nd application	
Châteaudun	6 th May	13 th May	
Hamburg	1 st June	8 th June	
Jokioinen	6 th June	13 th June	
Kremsmünster	1 st June	8 th June	
Okehampton	23 rd May	30 th May	
Piacenza	22 nd April	29 th April	
Porto	21 st April	28 th April	
Sevilla	22 nd March	29 th March	
Thiva	21 st April	28th April	

Winter oilseed rape Gross application rate: 10 g/ha.

Application rate

Crop growth stage: BBCH 51

Canopy interception: 80% / 80%

Application rate net of interception: 2.0 g/ha.

No. of applications: 2

Application interval: 7 days

Time of application (absolute or relative application dates):

Scenario	1 st applicatio n	2 nd application
Châteaudun	17 th April	24 th April
Hamburg	5 th May	12 th May
Kremsmünster	5 th May	12 th May
Okehampton	28 th April	5 th May
Piacenza	28th March	4 th April
Porto	17 th April	24 th April

Cabbage

Gross application rate: 20 g/ha.

Crop growth stage: BBCH 10

Canopy interception: 25%

Application rate net of interception: 15.0 g/ha.

No. of applications: 1

Application interval: -

Time of application (absolute or relative application dates):

Scenario	1 st application
Châteaudun, 1 st	21 st April
Châteaudun, 2 nd	1 st August
Hamburg, 1 st	21 st April
Hamburg, 2 nd	1 st August
Jokioinen	21 st May
Kremsmünster, 1 st	21 st April
Kremsmünster, 2 nd	1 st August
Porto, 1 st	1 st March
Porto, 2 nd	1 st August
Sevilla, 1 st	2 nd March
Sevilla, 2 nd	16 th June
Thiva,	16 th August

Tomatoes

Gross application rate: 30 g/ha.

Crop growth stage: BBCH 10

Canopy interception: 50%

Application rate net of interception: 15.0 g/ha.

No. of applications: 1

Application interval: -

Time of application (absolute or relative application dates):

Scenario	1 st application
Châteaudun	11 th May
Piacenza	11 th May
Porto	16 th March
Sevilla	16 th April
Thiva	11 th April

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Spring cereals

PEA	Scenario	Parent	Metabolites (µg/L)		
		(µg/L)	M310I017	DCVA	3-PBA
RL 4	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
4.4	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
/Spring cereals	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
	Porto	< 0.001	<0.001	< 0.001	<0.001

PEL	Scenario	Parent	Metabolites (µg/L)		
	(1	(µg/L)	M310I017	DCVA	3-PBA
10 5	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
5.5.3 /Spring cereal	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
s	Porto	< 0.001	< 0.001	< 0.001	<0.001

Winter cereals

	Scenario	Parent (µg/L)	Metabolites (µg/L)		
			M310I017	DCVA	3-PBA
PEARL 4.4.4 /winter cereals	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
	Piacenza	< 0.001	< 0.001	< 0.001	< 0.001
	Porto	< 0.001	< 0.001	< 0.001	< 0.001
	Sevilla	< 0.001	<0.001	< 0.001	<0.001
	Thiva	< 0.001	<0.001	< 0.001	<0.001

	Scenario	Parent	Metabolites (µg/L)		
		(µg/L)	M310I017	DCVA	3-PBA
-	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
ELN	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
MO 5.5.3 /winter cereals	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
	Piacenza	< 0.001	< 0.001	< 0.001	< 0.001
	Porto	< 0.001	< 0.001	< 0.001	< 0.001
	Sevilla	< 0.001	<0.001	< 0.001	<0.001
	Thiva	< 0.001	<0.001	< 0.001	<0.001

Winter oilseed rape

PEARI	Scenario	Parent	Metabolites (µg/L)		
		(µg/L)	M310I017	DCVA	3-PBA
, 4.4	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
,4 /w	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
inter	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
oilse	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
eed r	Piacenza	< 0.001	<0.001	< 0.001	<0.001
ape	Porto	< 0.001	< 0.001	<0.001	<0.001

PELMO 5.5.3 /winter oilseed rape	Scenario	Parent	Metabolites (µg/L)		
		(µg/L)	M310I017	DCVA	3-PBA
	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001
	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001
	Piacenza	< 0.001	< 0.001	< 0.001	< 0.001
	Porto	< 0.001	<0.001	< 0.001	<0.001

	Scenario	Parent	Metabolites (µg/L)		
н		(µg/L)	M310I017	DCVA	3-PBA
	Chateaudun, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
EAF	Chateaudun, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
RL 4.	Hamburg, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
.4.4 /cabbage	Hamburg, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
	Porto, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
	Porto, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
	Sevilla, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
	Sevilla, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
	Thiva	< 0.001	<0.001	< 0.001	< 0.001

Cabbage

	Scenario	Parent	Metabolites (µg/L)		
Ŧ		$(\mu g/L)$	M310I017	DCVA	3-PBA
	Chateaudun, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
ELN	Chateaudun, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
10 5	Hamburg, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
5.5.3 /cab	Hamburg, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001
bage	Kremsmunster, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
	Porto, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
	Porto, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
	Sevilla, 1 st	< 0.001	< 0.001	< 0.001	< 0.001
	Sevilla, 2 nd	< 0.001	< 0.001	< 0.001	< 0.001
	Thiva	< 0.001	<0.001	< 0.001	<0.001

PEARL 4.4.4 tomatoes	Scenario	Parent	Metabolites (µg/L)	/L)		
		(µg/L)	M310I017	DCVA	3-PBA	
	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001	
	Piacenza	< 0.001	< 0.001	< 0.001	< 0.001	
	Porto	< 0.001	< 0.001	< 0.001	< 0.001	
	Sevilla	< 0.001	< 0.001	< 0.001	< 0.001	
		Thiva	< 0.001	< 0.001	< 0.001	< 0.001

Tomatoes

PELMO 5.5.3 tomatoes	Scenario	Parent	Metabolites (µg/L)		
		(µg/L)	M310I017	DCVA	3-PBA
	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001
	Piacenza	< 0.001	< 0.001	< 0.001	< 0.001
	Porto	<0.001	< 0.001	< 0.001	< 0.001
	Sevilla	< 0.001	< 0.001	< 0.001	< 0.001
	Thiva	< 0.001	< 0.001	< 0.001	< 0.001

$\boldsymbol{PEC}_{(gw)}$ From lysimeter / field studies

Parent	1 st year	2 nd year	3 rd year
Annual average (µg/L)	Not available	Not available	Not available

Metabolite X	1 st year	2 nd year	3 rd year
Annual average (µg/L)	Not available	Not available	Not available

Parent Parameters used in FOCUSsw step 1 and 2	Version control no. of FOCUS calculator: STEPS1-2 in FOCUS version 3.2		
	Molecular weight (g/mol): 416.3		
	K _{OC} : 284839 mL/g (geometric mean)		
	DT ₅₀ soil (d): 33.1 days (geomean from combined Lab and field DT50's)		
	DT ₅₀ water/sediment system : 27.9 days (geomean from sediment water studies)		
	DT ₅₀ water : 27.9 days		
	DT ₅₀ sediment : 27.9 days		
	Vegetables, leafy		
	Crop interception (%): minimal crop cover		
Parameters used in FOCUSsw step 3 (if performed)	Version control no.'s of FOCUS software: FOCUS- PRZM version 4.3.1, FOCUS-MACRO version 5.5.4, FOCUS-TOXSWA version 4.4.3, SWASH version 5.1 and SWAN version 4.0.1		
	Water solubility (mg/L): 0.003 mg/L		
	Vapour pressure: 3.8×10^{-7} Pa at 20° C		
	Koc (mL/g): 284839 mL/g (geometric mean)		
	1/n: 1 (default value)		
	Q10=2.58, Walker equation coefficient 0.7		
	Crop uptake factor: 0		
	DT ₅₀ water : 1000 days (default value)		
	DT ₅₀ sediment : 27.9 days		
	Application method: ground spray		

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Application rate

Vegetables, leafy (FOCUS Step 1-2)
Crop and growth stage: minimal crop cover
Number of applications: 2
Interval : 7 days
Application rate(s): 10 g a.s./ha
Application window: March-May, North and South Europe
Crop and growth stage: minimal crop cover
Number of applications: 1
Interval : -
Application rate(s): 20 σ as /ha
Application window: March-May, North and South Europe
Application window. Match-May, North and Sodul Europe
Vegetables, fruiting – Greenhouse (FOCUS Step 2) default
drift value of 0.1%
Crop and growth stage: no interception
Number of applications: 2
Interval : 7 days
Application rate(s): 15 g a.s./ha
Application window: March-May, North and South Europe
Crop and growth stage: no interception
Number of applications: 1
Interval : -
Application rate(s): 30 g a.s./ha
Application window: March-May, North and South Europe
Spring and winter cereals (FOCUS Step 3-4)
Crop and growth stage: BBCH 51 - 83
Number of applications: 2
Interval (d): variable (PAT)
Application rate(s): 10 g a.s./ha
Application window: 70 days to 28 days before harvest
Winter oilseed rape (FOCUS Step 3-4)
Crop and growth stage: BBCH 51 - 59
Number of applications: 2
Interval (d): variable (PAT)
Application rate(s): 10 g a s /ha
Application window: 84 days to 47 days before harvest
Vegetables leafy (FOCUS Step 3-4)
Crop and growth stage: BBCH 10 - 49
Number of applications: 2
Interval (d): variable (PAT)
· · · · · · · · · · · · · · · · · · ·

Application rate(s): 10 g a.s./ha Application window: early application: 1 day after emergence to 37 days later; late application: 40 days before harvest to 3 days before harvest Crop and growth stage: BBCH 10 - 49 Number of applications: 1 Interval (d): -Application rate(s): 20 g a.s./ha

Application window: 1 day after emergence to 3 days before harvest

FOCUS STEP 1 Scenario	Day after	PEC _{sw}	PEC _{SW} (µg/L)		$PEC_{SED}(\mu g/kg)$	
	overall maximum	Actual	TWA	Actual	TWA	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.201		49.869		
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.201		49.869		

FOCUS STEP 2	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario North Europe	overall maximum	Actual	TWA	Actual	TWA
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	0.092		4.054	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.082		7.415	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.184		8.108	

FOCUS STEP 2	Day after	ter $PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario	overall	Actual	TWA	Actual	TWA
South Europe	maximam				
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	0.092		7.494	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.082		13.825	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.184		14.987	

FOCUS STEP 2	Day after overall maximum	PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)	
Scenario Greenhouse		Actual	TWA	Actual	TWA
Vegetables, fruiting; 2 x 15 g a.s. ha ⁻¹	0 h	0.005		0.063	
Vegetables, fruiting; 1 x 30 g a.s. ha ⁻¹	0 h	0.010		0.067	
FOCUS Step 3-4 PEC's in surface water

For Step 4: D = Drift mitigation by no-spray buffer zones [m]; N = Drift mitigation by drift reducing nozzles [%]

			$PEC_{sw,max}$ [µg L ⁻¹] and main entry route							
		Step 3	Step 3 Step 4							
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD			
D1	ditch	0.053	0.013	0.003	0.014	0.007	0.008			
		Drift	Drift	Drift	Drift	Drift	Drift			
D1	stream	0.046	0.011	0.002	0.017	0.008	0.009			
		Drift	Drift	Drift	Drift	Drift	Drift			
D3	ditch	0.052	0.013	0.003	0.014	0.007	0.008			
		Drift	Drift	Drift	Drift	Drift	Drift			
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001			
		Drift	Drift	Drift	Drift	Drift	Drift			
D4	stream	0.045	0.011	0.002	0.016	0.008	0.009			
		Drift	Drift	Drift	Drift	Drift	Drift			
D5	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001			
		Drift	Drift	Drift	Drift	Drift	Drift			
D5	stream	0.045	0.011	0.002	0.017	0.008	0.009			
		Drift	Drift	Drift	Drift	Drift	Drift			
R4	stream	0.034	0.009	0.002	0.013	0.006	0.007			
		Drift	Drift	Drift	Drift	Drift	Drift			

PEC _{SW max}	of alpha-cy	permethrin	following	single	application	of 10 g	as/ha to	spring	cereals

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m)

D = Drift mitigation by no-spray buffer zones [m]

N = Drift mitigation by drift reducing nozzles [%]

			PEC	-1] sw,max [μg L ⁻¹]	and main ent	ry route	
		Step 3			Step 4		
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD
D1	ditch	0.048	0.012	0.002	0.012	0.006	0.007
		Drift	Drift	Drift	Drift	Drift	Drift
D1	stream	0.040	0.010	0.002	0.014	0.007	0.007
		Drift	Drift	Drift	Drift	Drift	Drift
D3	ditch	0.047	0.012	0.002	0.012	0.006	0.006
		Drift	Drift	Drift	Drift	Drift	Drift
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001
		Drift	Drift	Drift	Drift	Drift	Drift
D4	stream	0.039	0.010	0.002	0.014	0.007	0.007
		Drift	Drift	Drift	Drift	Drift	Drift
D5	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001
		Drift	Drift	Drift	Drift	Drift	Drift
D5	stream	0.042	0.010	0.002	0.015	0.007	0.008
		Drift	Drift	Drift	Drift	Drift	Drift
R4	stream	0.030	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift

PEC _{SW max}	of al	pha-c	vpermethrin	following	twofold a	application	of 10	g as/ha to s	pring	cereals
- 0 W, IIIaA			/							

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m)

D = Drift mitigation by no-spray buffer zones [m]

N = Drift mitigation by drift reducing nozzles [%]

		PEC _{sw,max} $[\mu g L^{-1}]$ and main entry route							
		Step 3			Step 4				
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD		
D1	ditch	0.056	0.013	0.003	0.014	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
D1	stream	0.046	0.011	0.002	0.017	0.008	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
D2	ditch	0.056	0.013	0.003	0.014	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
D2	stream	0.047	0.012	0.002	0.017	0.008	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
D3	ditch	0.052	0.013	0.003	0.014	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
		Drift	Drift	Drift	Drift	Drift	Drift		
D4	stream	0.045	0.011	0.002	0.016	0.008	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
D5	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
	-	Drift	Drift	Drift	Drift	Drift	Drift		
D5	stream	0.048	0.012	0.003	0.018	0.009	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
D6	ditch	0.052	0.013	0.003	0.014	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
R1	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
		Drift	Drift	Drift	Drift	Drift	Drift		
R1	stream	0.034	0.009	0.002	0.013	0.006	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
R3	stream	0.048	0.012	0.003	0.018	0.009	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
R4	stream	0.034	0.009	0.002	0.013	0.006	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		

PEC _{SW,max} of a	lpha-cypermethrin	following st	ingle appl	lication of	10 g as	ha to	winter	cereals
<u></u>		-	• • • •					

 $^{\rm a}$ Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m) D = Drift mitigation by no-spray buffer zones [m]

N = Drift mitigation by drift reducing nozzles [%]

		$\operatorname{PEC}_{\operatorname{sw,max}}[\mu \operatorname{g} \operatorname{L}^{-1}]$ and main entry route							
		Step 3			Step 4				
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD		
D1	ditch	0.053	0.013	0.003	0.014	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
D1	stream	0.040	0.010	0.002	0.014	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
D2	ditch	0.051	0.013	0.002	0.013	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
D2	stream	0.041	0.010	0.002	0.015	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
D3	ditch	0.046	0.011	0.002	0.012	0.006	0.006		
		Drift	Drift	Drift	Drift	Drift	Drift		
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
		Drift	Drift	Drift	Drift	Drift	Drift		
D4	stream	0.039	0.010	0.002	0.014	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
D5	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
		Drift	Drift	Drift	Drift	Drift	Drift		
D5	stream	0.042	0.010	0.002	0.015	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
D6	ditch	0.051	0.013	0.002	0.013	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
R1	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
		Drift	Drift	Drift	Drift	Drift	Drift		
R1	stream	0.030	0.007	0.001	0.010	0.005	0.005		
		Drift	Drift	Drift	Drift	Drift	Drift		
R3	stream	0.042	0.010	0.002	0.015	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
R4	stream	0.030	0.007	0.001	0.010	0.005	0.005		
		Drift	Drift	Drift	Drift	Drift	Drift		

PEC _{SW,max}	of alpha-cy	permethrin	following t	wofold a	pplication	of 10 §	g as/ha to	winter c	ereals

 a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m) D = Drift mitigation by no-spray buffer zones [m]

N = Drift mitigation by drift reducing nozzles [%]

		PEC _{sw,max} [μg L ⁻¹] and main entry route								
		Step 3	Step 3 Step 4							
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD			
D2	ditch	0.053	0.013	0.003	0.014	0.007	0.008			
		Drift	Drift	Drift	Drift	Drift	Drift			
D2	stream	0.047	0.012	0.002	0.017	0.008	0.009			
		Drift	Drift	Drift	Drift	Drift	Drift			
D3	ditch	0.052	0.013	0.003	0.014	0.007	0.008			
		Drift	Drift	Drift	Drift	Drift	Drift			
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001			
	_	Drift	Drift	Drift	Drift	Drift	Drift			
D4	stream	0.044	0.011	0.002	0.016	0.008	0.008			
		Drift	Drift	Drift	Drift	Drift	Drift			
D5	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001			
		Drift	Drift	Drift	Drift	Drift	Drift			
D5	stream	0.044	0.011	0.002	0.016	0.008	0.009			
		Drift	Drift	Drift	Drift	Drift	Drift			
R1	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001			
	-	Drift	Drift	Drift	Drift	Drift	Drift			
R1	stream	0.034	0.009	0.002	0.013	0.006	0.007			
		Drift	Drift	Drift	Drift	Drift	Drift			
R3	stream	0.048	0.012	0.003	0.018	0.009	0.009			
		Drift	Drift	Drift	Drift	Drift	Drift			

PEC _{SW max}	of alpha-cy	permethrin	following	single a	application	of 10 g	g as/ha to	winter	oilseed	rape
<u>6, inter</u>		-		-	* *					

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m)

D = Drift mitigation by no-spray buffer zones [m]N = Drift mitigation by drift reducing nozzles [%]

		$PEC_{sw,max}$ [µg L ⁻¹] and main entry route							
		Step 3			Step 4				
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD		
D2	ditch	0.047	0.012	0.002	0.012	0.006	0.006		
		Drift	Drift	Drift	Drift	Drift	Drift		
D2	stream	0.040	0.010	0.002	0.014	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
D3	ditch	0.046	0.011	0.002	0.012	0.006	0.006		
		Drift	Drift	Drift	Drift	Drift	Drift		
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
	_	Drift	Drift	Drift	Drift	Drift	Drift		
D4	stream	0.038	0.010	0.002	0.013	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
D5	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
		Drift	Drift	Drift	Drift	Drift	Drift		
D5	stream	0.040	0.010	0.002	0.014	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
R1	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
	-	Drift	Drift	Drift	Drift	Drift	Drift		
R1	stream	0.029	0.007	0.001	0.010	0.005	0.005		
		Drift	Drift	Drift	Drift	Drift	Drift		
R3	stream	0.042	0.010	0.002	0.015	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		

PEC_{SW,max} of alpha-cypermethrin following twofold application of 10 g as/ha to winter oilseed rape

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m)

D = Drift mitigation by no-spray buffer zones [m]N = Drift mitigation by drift reducing nozzles [%]

		PEC _{sw,max} [µg L ⁻¹] and main entry route							
		Step 3			Step 4				
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD		
D3, 1 st	ditch	0.052	0.013	0.003	0.014	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
D3, 2 nd	ditch	0.052	0.013	0.003	0.014	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
	-	Drift	Drift	Drift	Drift	Drift	Drift		
D4	stream	0.041	0.010	0.002	0.015	0.007	0.008		
		Drift	Drift	Drift	Drift	Drift	Drift		
D6	ditch	0.051	0.013	0.003	0.014	0.007	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
R1, 1 st	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
	-	Drift	Drift	Drift	Drift	Drift	Drift		
R1, 1 st	stream	0.034	0.009	0.002	0.013	0.006	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
R1, 2 nd	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001		
	_	Drift	Drift	Drift	Drift	Drift	Drift		
R1, 2 nd	stream	0.034	0.009	0.002	0.013	0.006	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
R2, 1 st	stream	0.045	0.011	0.002	0.017	0.008	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
R2, 2 nd	stream	0.046	0.012	0.002	0.017	0.008	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
R3, 1 st	stream	0.048	0.012	0.003	0.018	0.009	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
R3, 2 nd	stream	0.048	0.012	0.003	0.018	0.009	0.009		
		Drift	Drift	Drift	Drift	Drift	Drift		
R4, 1 st	stream	0.034	0.009	0.002	0.013	0.006	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		
R4, 2 nd	stream	0.034	0.009	0.002	0.012	0.006	0.007		
		Drift	Drift	Drift	Drift	Drift	Drift		

PEC_{SW,max} of alpha-cypermethrin following single application of 10 g as/ha to vegetables, leafy, early application

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m) D = Drift mitigation by no-spray buffer zones [m] N = Drift mitigation by drift reducing nozzles [%]

 $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

		$PEC_{sw,max}$ [µg L ⁻¹] and main entry route						
		Step 3		Step 4				
Location	Water	Edge-of-	$0mD^{a} +$	$0mD^{a} +$	5mD	5mD +	10mD	
Location	body	Field	75N	95N	51112	50N	TOHID	
D3, 1 st	ditch	0.052	0.013	0.003	0.014	0.007	0.008	
		Drift	Drift	Drift	Drift	Drift	Drift	
D3, 2 nd	ditch	0.052	0.013	0.003	0.014	0.007	0.008	
		Drift	Drift	Drift	Drift	Drift	Drift	
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001	
		Drift	Drift	Drift	Drift	Drift	Drift	
D4	stream	0.037	0.009	0.002	0.014	0.007	0.007	
		Drift	Drift	Drift	Drift	Drift	Drift	
D6	ditch	0.051	0.013	0.003	0.014	0.007	0.007	
		Drift	Drift	Drift	Drift	Drift	Drift	
R1, 1 st	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001	
		Drift	Drift	Run-off	Drift	Drift	Drift	
R1, 1 st	stream	0.034	0.009	0.002	0.013	0.006	0.007	
		Drift	Drift	Drift	Drift	Drift	Drift	
R1, 2 nd	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001	
		Drift	Drift	Drift	Drift	Drift	Drift	
R1, 2 nd	stream	0.034	0.009	0.002	0.013	0.006	0.007	
		Drift	Drift	Drift	Drift	Drift	Drift	
R2, 1 st	stream	0.046	0.012	0.002	0.017	0.008	0.009	
		Drift	Drift	Drift	Drift	Drift	Drift	
R2, 2 nd	stream	0.046	0.011	0.002	0.017	0.008	0.009	
		Drift	Drift	Drift	Drift	Drift	Drift	
R3, 1 st	stream	0.048	0.012	0.003	0.018	0.009	0.009	
		Drift	Drift	Drift	Drift	Drift	Drift	
R3, 2 nd	stream	0.048	0.012	0.003	0.018	0.009	0.009	
		Drift	Drift	Drift	Drift	Drift	Drift	
R4, 1 st	stream	0.034	0.009	0.002	0.013	0.006	0.007	
		Drift	Drift	Drift	Drift	Drift	Drift	
R4, 2^{nd}	stream	0.034	0.009	0.002	0.013	0.006	0.007	
		Drift	Drift	Drift	Drift	Drift	Drift	

PEC _{ow} of alpha-cyperm	ethrin following	single annli	cation of 10 g	as/ha to veg	vetables leafy	late application
I LCSW max of alpha-cypern.	ictin in following	single appli	cation of 10 g	a_{0} ha to ve	zetables, leary,	fate application

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m) D = Drift mitigation by no-spray buffer zones [m] N = Drift mitigation by drift reducing nozzles [%] $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

		PEC _{sw,max} [µg L ⁻¹] and main entry route					
		Step 3 Step 4					
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD
D3, 1 st	ditch	0.046	0.011	0.002	0.012	0.006	0.006
		Drift	Drift	Drift	Drift	Drift	Drift
D3, 2 nd	ditch	0.046	0.011	0.002	0.012	0.006	0.006
		Drift	Drift	Drift	Drift	Drift	Drift
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001
		Drift	Drift	Drift	Drift	Drift	Drift
D4	stream	0.036	0.009	0.002	0.013	0.006	0.007
		Drift	Drift	Drift	Drift	Drift	Drift
D6	ditch	0.044	0.011	0.002	0.012	0.006	0.006
		Drift	Drift	Drift	Drift	Drift	Drift
R1, 1 st	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001
	-	Drift	Drift	Drift	Drift	Drift	Drift
R1, 1 st	stream	0.029	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift
R1, 2 nd	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001
		Drift	Drift	Run-off	Drift	Drift	Drift
R1, 2 nd	stream	0.030	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift
R2, 1 st	stream	0.039	0.010	0.002	0.014	0.007	0.007
		Drift	Drift	Drift	Drift	Drift	Drift
R2, 2 nd	stream	0.040	0.010	0.002	0.014	0.007	0.007
		Drift	Drift	Drift	Drift	Drift	Drift
R3, 1 st	stream	0.041	0.010	0.002	0.015	0.007	0.008
		Drift	Drift	Drift	Drift	Drift	Drift
R3, 2 nd	stream	0.042	0.010	0.002	0.015	0.007	0.008
		Drift	Drift	Drift	Drift	Drift	Drift
R4, 1 st	stream	0.030	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift
R4, 2 nd	stream	0.029	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift

<u>PEC_{SW,max} of alpha-cypermethrin following twofold application of 10 g as/ha to vegetables, leafy, early application</u>

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m)

D = Drift mitigation by no-spray buffer zones [m] N = Drift mitigation by drift reducing nozzles [%] $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

		PEC _{sw,max} [μg L ⁻] and main entry route					
		Step 3			Step 4		
Location	Water body	Edge-of- Field	0mD ^a + 75N	0mD ^a + 95N	5mD	5mD + 50N	10mD
D3, 1 st	ditch	0.046	0.011	0.002	0.012	0.006	0.006
		Drift	Drift	Drift	Drift	Drift	Drift
D3, 2 nd	ditch	0.045	0.011	0.002	0.012	0.006	0.006
		Drift	Drift	Drift	Drift	Drift	Drift
D4	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001
	-	Drift	Drift	Drift	Drift	Drift	Drift
D4	stream	0.035	0.009	0.002	0.012	0.006	0.006
		Drift	Drift	Drift	Drift	Drift	Drift
D6	ditch	0.045	0.011	0.002	0.012	0.006	0.006
		Drift	Drift	Drift	Drift	Drift	Drift
R1, 1 st	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001
	•	Drift	Drift	Drift	Drift	Drift	Drift
R1, 1 st	stream	0.030	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift
R1, 2 nd	pond	0.002	< 0.001	< 0.001	0.002	< 0.001	0.001
	-	Drift	Drift	Run-off	Drift	Drift	Drift
R1, 2 nd	stream	0.030	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift
R2, 1 st	stream	0.040	0.010	0.002	0.014	0.007	0.007
		Drift	Drift	Drift	Drift	Drift	Drift
R2, 2 nd	stream	0.039	0.010	0.002	0.014	0.007	0.007
		Drift	Drift	Drift	Drift	Drift	Drift
R3, 1 st	stream	0.042	0.010	0.002	0.015	0.007	0.008
		Drift	Drift	Drift	Drift	Drift	Drift
R3, 2 nd	stream	0.042	0.010	0.002	0.015	0.007	0.008
		Drift	Drift	Drift	Drift	Drift	Drift
R 4, 1 st	stream	0.030	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift
R4, 2 nd	stream	0.030	0.007	0.001	0.010	0.005	0.005
		Drift	Drift	Drift	Drift	Drift	Drift

<u>PEC_{sw,max} of alpha-cypermethrin following twofold application of 10 g as/ha to vegetables, leafy, late application</u>

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m) D = Drift mitigation by no-spray buffer zones [m] N = Drift mitigation by drift reducing nozzles [%] $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

		PEC _{sw,max} [μg L ⁻¹] and main entry route						
		Step 3		Step 4				
Location	Water body	Edge-of- Field	0mD + 95N ^a	5mD	5mD + 75N	10mD + 50N	15mD	
D3, 1 st	ditch	0.104	0.005	0.028	0.007	0.008	0.010	
		Drift	Drift	Drift	Drift	Drift	Drift	
D3, 2 nd	ditch	0.104	0.005	0.028	0.007	0.008	0.010	
		Drift	Drift	Drift	Drift	Drift	Drift	
D4	pond	0.004	< 0.001	0.003	< 0.001	0.001	0.002	
	-	Drift	Drift	Drift	Drift	Drift	Drift	
D4	stream	0.081	0.004	0.030	0.007	0.008	0.011	
		Drift	Drift	Drift	Drift	Drift	Drift	
D6	ditch	0.101	0.005	0.027	0.007	0.007	0.010	
		Drift	Drift	Drift	Drift	Drift	Drift	
R1, 1 st	pond	0.004	< 0.001	0.003	< 0.001	0.001	0.002	
	_	Drift	Drift	Drift	Drift	Drift	Drift	
R1, 1 st	stream	0.068	0.003	0.025	0.006	0.007	0.009	
		Drift	Drift	Drift	Drift	Drift	Drift	
R1, 2 nd	pond	0.004	< 0.001	0.003	< 0.001	0.001	0.002	
		Drift	Drift	Drift	Drift	Drift	Drift	
R1, 2 nd	stream	0.069	0.003	0.025	0.006	0.007	0.009	
		Drift	Drift	Drift	Drift	Drift	Drift	
R2, 1 st	stream	0.090	0.004	0.033	0.008	0.009	0.012	
		Drift	Drift	Drift	Drift	Drift	Drift	
R2, 2 nd	stream	0.092	0.005	0.033	0.008	0.009	0.012	
		Drift	Drift	Drift	Drift	Drift	Drift	
R3, 1 st	stream	0.096	0.005	0.035	0.009	0.009	0.013	
		Drift	Drift	Drift	Drift	Drift	Drift	
R3, 2 nd	stream	0.096	0.005	0.035	0.009	0.009	0.013	
		Drift	Drift	Drift	Drift	Drift	Drift	
R4, 1 st	stream	0.068	0.003	0.025	0.006	0.007	0.009	
		Drift	Drift	Drift	Drift	Drift	Drift	
R4, 2 nd	stream	0.068	0.003	0.025	0.006	0.007	0.009	
		Drift	Drift	Drift	Drift	Drift	Drift	

PEC_{SW,max} of alpha-cypermethrin following single application of 20 g as/ha to vegetables, leafy, early application

 $^{\rm a}$ Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m)

D = Drift mitigation by no-spray buffer zones [m] N = Drift mitigation by drift reducing nozzles [%] $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

		$PEC_{sw,max}$ [µg L ⁻¹] and main entry route					
		Step 3			Step 4		
Location	Water body	Edge-of- Field	0mD + 95N ^a	5mD	5mD + 75N	10mD + 50N	15mD
D3, 1 st	ditch	0.104	0.005	0.028	0.007	0.008	0.010
		Drift	Drift	Drift	Drift	Drift	Drift
D3, 2 nd	ditch	0.103	0.005	0.028	0.007	0.008	0.010
		Drift	Drift	Drift	Drift	Drift	Drift
D4	pond	0.004	< 0.001	0.003	< 0.001	0.001	0.002
		Drift	Drift	Drift	Drift	Drift	Drift
D4	stream	0.074	0.004	0.027	0.007	0.007	0.010
		Drift	Drift	Drift	Drift	Drift	Drift
D6	ditch	0.103	0.005	0.028	0.007	0.007	0.010
		Drift	Drift	Drift	Drift	Drift	Drift
R1, 1 st	pond	0.004	< 0.001	0.003	< 0.001	0.001	0.002
		Drift	Run-off	Drift	Drift	Drift	Drift
R1, 1 st	stream	0.069	0.003	0.025	0.006	0.007	0.009
		Drift	Drift	Drift	Drift	Drift	Drift
R1, 2 nd	pond	0.004	< 0.001	0.003	< 0.001	0.001	0.002
		Drift	Drift	Drift	Drift	Drift	Drift
R1, 2 nd	stream	0.069	0.003	0.025	0.006	0.007	0.009
		Drift	Drift	Drift	Drift	Drift	Drift
R2, 1 st	stream	0.092	0.005	0.033	0.008	0.009	0.012
		Drift	Drift	Drift	Drift	Drift	Drift
R2, 2 nd	stream	0.091	0.005	0.035	0.008	0.009	0.012
		Drift	Drift	Drift	Drift	Drift	Drift
R3, 1 st	stream	0.097	0.005	0.035	0.009	0.009	0.013
		Drift	Drift	Drift	Drift	Drift	Drift
R3, 2 nd	stream	0.096	0.005	0.035	0.009	0.009	0.013
		Drift	Drift	Drift	Drift	Drift	Drift
R4, 1 st	stream	0.068	0.003	0.025	0.006	0.007	0.009
		Drift	Drift	Drift	Drift	Drift	Drift
R4, 2 nd	stream	0.069	0.003	0.025	0.006	0.007	0.009
		Drift	Drift	Drift	Drift	Drift	Drift

PEC _{sw} may of alm	ha-cypermethrin	following single at	oplication of 20 g	as/ha to yes	etables, leafy.	late application
THOSE MILLAND		Tomo wing bingio a			ethored, real ,	face application

^a Standard Step 3 buffer according to FOCUS (d = 0.5 m, s = 1.0 m) D = Drift mitigation by no-spray buffer zones [m] N = Drift mitigation by drift reducing nozzles [%] $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

FOCUS Step 3-4 PEC's in sediment

		PEC _{sed,max} [µg kg ⁻¹]			
Location	Water body	Spring of	cereals		
		Single	Multiple		
D1	ditch	0.355	0.491		
D1	stream	0.228	0.213		
D3	ditch	0.266	0.355		
D4	pond	0.029	0.048		
D4	stream	0.140	0.148		
D5	pond	0.031	0.048		
D5	stream	0.070	0.153		
R4	stream	0.465	0.518		

PEC_{SED,max} of alpha-cypermethrin after application of 10 g as/ha to spring cereals

PEC_{SED,max} of alpha-cypermethrin after application of 10 g as/ha to winter cereals

		PEC _{sed.max} [µg kg ⁻¹]				
Location	Water body	Winter cereals				
		Single	Multiple			
D1	ditch	0.366	0.630			
D1	stream	0.228	0.270			
D2	ditch	0.358	0.583			
D2	stream	0.319	0.419			
D3	ditch	0.259	0.292			
D4	pond	0.029	0.048			
D4	stream	0.149	0.151			
D5	pond	0.031	0.049			
D5	stream	0.177	0.172			
D6	ditch	0.356	0.569			
R1	pond	0.035	0.058			
R1	stream	0.183	0.331			
R3	stream	0.169	0.154			
R4	stream	0.350	0.412			

- $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	PEC _{SED max}	of alpha-cy	permethrin	after app	lication of	f 10 g	g as/ha to	winter	oilseed	rape
--	------------------------	-------------	------------	-----------	-------------	--------	------------	--------	---------	------

		PEC _{sed.max} [µg kg ⁻¹]				
Location	Water body	Winter oil	seed rape			
		Single	Multiple			
D2	ditch	0.368	0.475			
D2	stream	0.328	0.285			
D3	ditch	0.258	0.292			
D4	pond	0.031	0.050			
D4	stream	0.100	0.117			
D5	pond	0.033	0.052			
D5	stream	0.056	0.080			
R1	pond	0.033	0.057			
R1	stream	0.150	0.338			
R3	stream	0.150	0.227			

PEC_{SED,max} of alpha-cypermethrin after application of 10 g as/ha to vegetables, leafy, early application

		PEC _{sed,max} [µg kg ⁻¹]				
Location	Water body	Vegetables, leafy				
	_	Single	Multiple			
D3, 1 st	ditch	0.251	0.300			
D3, 2 nd	ditch	0.256	0.311			
D4	pond	0.032	0.051			
D4	stream	0.048	0.054			
D6,	ditch	0.153	0.158			
R1, 1 st	pond	0.055	0.105			
R1, 1 st	stream	1.215	2.417			
R1, 2 nd	pond	0.052	0.102			
R1, 2 nd	stream	1.076	2.282			
R2, 1 st	stream	0.305	0.586			
R2, 2^{nd}	stream	1.486	3.050			
R3, 1 st	stream	0.759	1.533			
R3, 2 nd	stream	0.216	0.388			
R4, 1 st	stream	0.974	1.954			
R4, 2 nd	Stream	0.296	0.645			

 $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

PEC_{SED,max} of alpha-cypermethrin after application of 10 g as/ha to vegetables, leafy, late application

		<u>PEC_{sed.max} [µg kg⁻¹]</u> Vegetables, leafy		
Location	Water body			
		Single	Multiple	
D3, 1 st	ditch	0.253	0.295	
D3, 2^{nd}	ditch	0.221	0.264	
D4	pond	0.030	0.049	
D4	stream	0.026	0.045	
D6,	ditch	0.200	0.174	
R1, 1 st	pond	0.054	0.082	
R1, 1 st	stream	0.720	1.455	
$R1, 2^{nd}$	pond	0.060	0.136	
R1, 2 nd	stream	1.155	2.839	
R2, 1 st	stream	0.142	0.339	
R2, 2^{nd}	stream	2.663	5.388	
R3, 1 st	stream	0.764	2.318	
R3, 2 nd	stream	1.276	1.681	
R4, 1 st	stream	1.132	2.412	
R4, 2 nd	Stream	1.167	2.620	

 $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

PEC_{SED,max} of alpha-cypermethrin after application of 20 g as/ha to vegetables, leafy, early application

		PEC _{sed,max} [µg kg ⁻¹]
Location	Water body	Vegetables, leafy
		Single
D3, 1 st	ditch	0.500
D3, 2 nd	ditch	0.511
D4	pond	0.063
D4	stream	0.096
D6	ditch	0.304
R1, 1 st	pond	0.109
R 1, 1 st	stream	2.430
R1, 2 nd	pond	0.104
$R1, 2^{nd}$	stream	2.152
R2, 1 st	stream	0.611
R2, 2^{nd}	stream	2.973
R3, 1 st	stream	1.519
R3, 2^{nd}	stream	0.431
$\mathbf{R4}, 1^{\mathrm{st}}$	stream	1.949
$R4, 2^{nd}$	stream	0.592

 $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

PEC_{SED,max} of alpha-cypermethrin after application of 20 g as/ha to vegetables, leafy, late application

		PEC _{sed,max} [µg kg ⁻¹]
Location	Water body	Vegetables, leafy
		Single
D3, 1 st	ditch	0.504
D3, 2 nd	ditch	0.441
D4	pond	0.060
D4	stream	0.053
D6	ditch	0.400
R1, 1 st	pond	0.107
R 1, 1 st	stream	1.439
$R1, 2^{nd}$	pond	0.121
R1, 2 nd	stream	2.309
R2, 1 st	stream	0.283
R2, 2 nd	stream	5.326
R3, 1 st	stream	1.528
R3, 2 nd	stream	2.552
R4, 1 st	stream	2.265
R4, 2 nd	stream	2.335

 $1^{st} = 1^{st}$ season vegetables leafy $2^{nd} = 2^{nd}$ season vegetables leafy

Metabolite M310I017	Molecular weight: 432.3	
Parameters used in FOCUSsw step 1 and 2	Soil or water metabolite: soil metabolite	
	Koc: 234901 mL/g (geometric mean)	
	DT ₅₀ soil : 11.8 days (geomean lab DT ₅₀ 's)	
	DT_{50} water/sediment system : 1000 days (conservative assumption)	
	DT ₅₀ water : 1000 days (conservative assumption)	
	DT ₅₀ sediment : 1000 days (conservative assumption)	
	Crop interception (%): minimal crop cover	
	Maximum occurrence observed (% molar basis with respect to the parent)	
	Total Water and Sediment: 10 ⁻⁰⁵ %	
	Soil: 8.4%	
Parameters used in FOCUSsw step 3 (if performed)	/	
	Vegetables, leafy (FOCUS Step 1-2)	
Application rate	Vegetables, leafy (FOCUS Step 1-2)	
Application rate	Vegetables, leafy (FOCUS Step 1-2) Crop and growth stage: minimal crop cover	
Application rate	Vegetables, leafy (FOCUS Step 1-2) Crop and growth stage: minimal crop cover Number of applications: 2	
Application rate	<u>Vegetables, leafy (FOCUS Step 1-2)</u> Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days	
Application rate	Vegetables, leafy (FOCUS Step 1-2) Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days Application rate(s): 10 g a.s./ha	
Application rate	<u>Vegetables, leafy (FOCUS Step 1-2)</u> Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days Application rate(s): 10 g a.s./ha Application window: March-May, North and South Europe	
Application rate	<u>Vegetables, leafy (FOCUS Step 1-2)</u> Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days Application rate(s): 10 g a.s./ha Application window: March-May, North and South Europe	
Application rate	Vegetables, leafy (FOCUS Step 1-2) Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days Application rate(s): 10 g a.s./ha Application window: March-May, North and South Europe Crop and growth stage: minimal crop cover	
Application rate	Vegetables, leafy (FOCUS Step 1-2) Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days Application rate(s): 10 g a.s./ha Application window: March-May, North and South Europe Crop and growth stage: minimal crop cover Number of applications: 1	
Application rate	Vegetables, leafy (FOCUS Step 1-2) Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days Application rate(s): 10 g a.s./ha Application window: March-May, North and South Europe Crop and growth stage: minimal crop cover Number of applications: 1 Interval : -	
Application rate	Vegetables, leafy (FOCUS Step 1-2) Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days Application rate(s): 10 g a.s./ha Application window: March-May, North and South Europe Crop and growth stage: minimal crop cover Number of applications: 1 Interval : - Application rate(s): 20 g a.s./ha	
Application rate	Vegetables, leafy (FOCUS Step 1-2) Crop and growth stage: minimal crop cover Number of applications: 2 Interval : 7 days Application rate(s): 10 g a.s./ha Application window: March-May, North and South Europe Crop and growth stage: minimal crop cover Number of applications: 1 Interval : - Application rate(s): 20 g a.s./ha Application window: March-May, North and South Europe	

FOCUS STEP 1	Day after	M310I017 PEC _{sw} (µg/L)		M310I017 PEC _{SED} (µg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.002		4.348	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.002		4.348	

FOCUS STEP 2	Day after	M310I017 P	M310I017 PEC _{SW} (µg/L)		M310I017 PEC _{SED} (µg/kg)	
Scenario North Europe	overall maximum	Actual	TWA	Actual	TWA	
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	<0.001		0.258		
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	<0.001		0.429		
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	<0.001		0.516		

FOCUS STEP 2	Day after	M310I017 P	M310I017 PEC _{sw} (µg/L)		M310I017 PEC _{SED} (µg/kg)	
Scenario South Europe	overall maximum	Actual	TWA	Actual	TWA	
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	<0.001		0.516		
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	<0.001		0.857		
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	<0.001		1.031		

Metabolite DCVA	Molecular weight: 209.1
Parameters used in FOCUSsw step 1 and 2	Soil or water metabolite: soil and water metabolite
	Water solubility (mg/L): 129 mg/L at 20°C
	Koc: 46.3 mL/g (geometric mean)
	DT_{50} soil: 4.8 days (geomean lab DT_{50} 's) (Note: the correct value is 5.1 d).
	DT ₅₀ water/sediment system : 16.1 days (geomean)
	DT_{50} water : 16.1 days (DT_{50} of whole system)
	DT ₅₀ sediment : 16.1 days (DT ₅₀ of whole system)
	Crop interception (%): minimal crop cover
	Maximum occurrence observed (% molar basis with respect to the parent)
	Total Water and Sediment: 66.6%
	Soil: 13.6%
Parameters used in FOCUSsw step 3 (if performed)	/

Vegetables, leafy (FOCUS Step 1-2)
Crop and growth stage: minimal crop cover
Number of applications: 2
Interval : 7 days
Application rate(s): 10 g a.s./ha
Application window: March-May, North and South Europe
Crop and growth stage: minimal crop cover
Number of applications: 1
Interval : -
Application rate(s): 20 g a.s./ha
Application window: March-May, North and South Europe
Vegetables, fruiting - Greenhouse (FOCUS Step 2) default
drift value of 0.1%
Crop and growth stage: no interception
Number of applications: 2
Interval : 7 days
Application rate(s): 15 g a.s./ha
Application window: March-May, North and South Europe
Crop and growth stage: no interception
Number of applications: 1
Interval : -
Application rate(s): 30 g a.s./ha
Application window: March-May, North and South Europe
/

Main routes of entry

Application rate

FOCUS STEP 1	Day after	DCVA PE	DCVA PEC _{SW} (µg/L)		DCVA PEC _{SED} (µg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	2.591		1.171		
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	2.591		1.171		

FOCUS STEP 2	Day after	DCVA PE	C _{SW} (µg/L)	DCVA PEC _{SED} (µg/kg)	
Scenario	overall	Actual	TWA	Actual	TWA
North Europe	maximum				
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	0.188		0.083	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.333		0.148	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.376		0.166	

FOCUS STEP 2	Day after	DCVA PEC _{SW} (µg/L)		DCVA PEC _{SED} (µg/kg)	
Scenario South Europe	overall maximum	Actual	TWA	Actual	TWA
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	0.351		0.159	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.628		0.285	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.702		0.317	

FOCUS STEP 2	Day after	DCVA PEC _{SW} (µg/L)		DCVA PEC _{SED} (µg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
Greenhouse	maximum				
Vegetables, fruiting; 2 x 15 g a.s. ha ⁻¹	0 h	0.003		0.001	
Vegetables, fruiting; 1 x 30 g a.s. ha ⁻¹	0 h	0.003		0.001	

Metabolite 3-PBA	Molecular weight: 214.2
Parameters used in FOCUSsw step 1 and 2	Soil or water metabolite: soil and water metabolite
	Water solubility (mg/L): 24.68 mg/L at 20°C
	Koc: 78.5 mL/g (geometric mean) (Note: the correct value is 72.7 mL/g (geometric mean),)
	DT_{50} soil : 1.1 days (geomean lab DT50's) (Note: the correct value is 1.7 d).
	DT50 water/sediment system : 20.2 days (geomean)
	DT_{50} water : 20.2 days (DT_{50} of whole system)
	DT_{50} sediment : 20.2 days (DT_{50} of whole system)
	Crop interception (%): minimal crop cover
	Maximum occurrence observed (% molar basis with respect to the parent)
	Total Water and Sediment: 23.1%
	Soil: 28.6%
Parameters used in FOCUSsw step 3 (if performed)	/
Application rate	Vegetables, leafy (FOCUS Step 1-2)
	Crop and growth stage: minimal crop cover
	Number of applications: 2
	Interval : 7 days
	Application rate(s): 10 g a.s./ha
	Application window: March-May, North and South Europe
	Crop and growth stage: minimal crop cover
	Number of applications: 1
	Interval : -
	Application rate(s): 20 g a.s./ha
	Application window: March-May, North and South Europe
	<u>Vegetables, fruiting – Greenhouse (FOCUS Step 2) default</u> <u>drift value of 0.1%</u>
	Crop and growth stage: no interception
	Number of applications: 2
	Interval : 7 days
	Application rate(s): 15 g a.s./ha
	Application window: March-May, North and South Europe
	Crop and growth stage: no interception
	Number of applications: 1
	Interval : -
	Application rate(s): 30 g a.s./ha
	Application window: March-May, North and South Europe
Main routes of entry	/

FOCUS STEP 1 Scenario	Day after overall maximum	3-PBA PEC _{SW} (µg/L)		3-PBA PEC _{SED} (µg/kg)	
		Actual	TWA	Actual	TWA
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	1.627		1.260	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	1.627		1.260	

FOCUS STEP 2	Day after	3-PBA PEC _{SW} (µg/L)		3-PBA PEC _{SED} (µg/kg)	
Scenario North Europe	overall maximum	Actual	TWA	Actual	TWA
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	0.064		0.048	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.108		0.084	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.128		0.096	

FOCUS STEP 2	Day after	3-PBA $PEC_{SW}(\mu g/L)$		3-PBA PEC _{sed} (µg/kg)	
Scenario South Europe	overall maximum	Actual	TWA	Actual	TWA
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	0.119		0.091	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.209		0.161	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.237		0.182	

FOCUS STEP 2	Day after	3-PBA PEC _{SW} (µg/L)		3-PBA PEC _{sed} (µg/kg)	
Scenario Greenhouse	overall maximum	Actual	TWA	Actual	TWA
Vegetables, fruiting; 2 x 15 g a.s. ha ⁻¹	0 h	0.001		<0.001	
Vegetables, fruiting; 1 x 30 g a.s. ha ⁻¹	0 h	0.001		<0.001	

Metabolite 3-PBAldehyde	Molecular weight: 198.2
Parameters used in FOCUSsw step 1 and 2	Soil or water metabolite: water metabolite
	Water solubility (mg/L): 51.49 mg/L at 20°C
	Koc: 1 mL/g (worst-case assumption)
	DT ₅₀ soil : -
	DT ₅₀ water/sediment system : 1000 days (conservative assumption)
	DT ₅₀ water : 1000 days (conservative assumption)
	DT ₅₀ sediment : 1000 days (conservative assumption)
	Crop interception (%): minimal crop cover
	Maximum occurrence observed (% molar basis with respect to the parent)
	Total Water and Sediment: 15.9%
	Soil: -%
Parameters used in FOCUSsw step 3 (if performed)	/
Application rate	Vegetables, leafy (FOCUS Step 1-2)
	Crop and growth stage: minimal crop cover
	Number of applications: 2
	Interval : 7 days
	Application rate(s): 10 g a.s./ha
	Application window: March-May, North and South Europe
	Crop and growth stage: minimal crop cover
	Number of applications: 1
	Interval : -
	Application rate(s): 20 g a.s./ha
	Application window: March-May, North and South Europe
	<u>Vegetables, fruiting – Greenhouse (FOCUS Step 2) default</u> <u>drift value of 0.1%</u>
	Crop and growth stage: no interception
	Number of applications: 2
	Interval : 7 days
	Application rate(s): 15 g a.s./ha
	Application window: March-May, North and South Europe
	Crop and growth stage: no interception
	Number of applications: 1
	Interval : -
	Application rate(s): 30 g a.s./ha
	Application window: March-May, North and South Europe
Main routes of entry	/

FOCUS STEP 1	Day after	3-PBAldehyde PEC _{sw} (µg/L)		3-PBAldehyde PEC _{SED} (µg/kg)	
Scenario	overall maximum	Actual	TWA	Actual	TWA
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.518		-	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.518		_	

FOCUS STEP 2	Day after	3-PBAldehyde PEC _{SW} (µg/L)		3-PBAldehyde PEC _{SED} (µg/kg)	
Scenario North Europe	overall maximum	Actual	TWA	Actual	TWA
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	0.042		-	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.077		-	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.083		-	

FOCUS STEP 2	Day after	3-PBAldehyde PEC _{sw} (µg/L)		3-PBAldehyde PEC _{SED} (µg/kg)	
Scenario South Europe	overall maximum	Actual	TWA	Actual	TWA
Vegetables, leafy; 1 x 10 g a.s. ha ⁻¹	0 h	0.044		-	
Vegetables, leafy; 2 x 10 g a.s. ha ⁻¹	0 h	0.142		-	
Vegetables, leafy; 1 x 20 g a.s. ha ⁻¹	0 h	0.153		-	

FOCUS STEP 2	Day after	3-PBAldehyde PEC _{SW} (µg/L)		3-PBAldehyde PEC _{SED} (µg/kg)	
Scenario Greenhouse	overall maximum	Actual	TWA	Actual	TWA
Vegetables, fruiting; 2 x 15 g a.s. ha ⁻¹	0 h	<0.001		-	
Vegetables, fruiting; 1 x 30 g a.s. ha ⁻¹	0 h	<0.001		_	

Estimation of concentrations from other routes of exposure (Regulation (EU) N $^{\circ}$ 284/2013, Annex Part A, point 9.4)

Method of calculation

Not applicable

PEC

Maximum concentration

Not relevant

Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds			•	
Bobwhite quail Colinus virginianus	a.s.	Acute	LD ₅₀	> 2025 mg a.s./kg bw ^a
Zebra finch Taeniopygia guttata	a.s.	Acute	LD ₅₀	1360 mg a.s./kg bw
Bobwhite quail Colinus virginianus	Preparation (BAS 310 51 I)	Acute	LD ₅₀	> 2000 mg prep./kg bw (> 100 mg a.s./kg bw)
Bobwhite quail Colinus virginianus	a.s.	Long-term	NOEL	16 mg a.s./kg bw/day
Mammals				
Rat	a.s.	Acute	LD ₅₀	57 mg a.s./kg bw
Rat	a.s.	Acute	LD ₅₀	310 mg a.s./kg bw
Rat	a.s.	Acute	LD ₅₀	40-80 mg a.s./kg bw
Mouse	a.s.	Acute	LD ₅₀	35 mg a.s./kg bw
Mouse	a.s.	Acute	LD ₅₀	50 mg a.s./kg bw
Rat	Preparation (BAS 310 55 I)	Acute	LD ₅₀	> 300 mg prep./kg bw (> 15.15 mg a.s./kg bw)
Rat	a.s.	Long-term	NOAEL	9 mg a.s./kg bw/day

Endocrine disrupting properties (Annex Part A, points 8.1.5)

Based on reproductive studies with birds and mammals, there are no indications that alpha-cypermethrin has endocrine disruptive potential. However, as there are currently no defined criteria for identifying endocrine disruptors, it is difficult to draw a firm conclusion

At Pesticides Peer Review Meeting 175 on mammalian toxicology, a data gap for a male pubertal assay was set. At Pesticides Peer Review Meeting 177 on ecotoxicology, the majority of the experts agreed that, pending on the outcome of the data gap in the mammalian toxicology section, further consideration may be needed on potential endocrine effects in non-target organisms.

Additional higher tier studies (Annex Part A, points 10.1.1.2): No additional higher tier studies have been provided.

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):

A study with the African clawed frog (*Xenopus laevis*) has been submitted, in which only the aquatic stages were tested. From this study, an LC_{50} for embryos of 30.6 µg a.s./L and an LC_{50} for larvae of 6.9 µg a.s./L were derived.

^aAlpha-cypermethrin was administered either in a gelatine capsule without first being dissolved in a carrier, or by dissolving the test item in 0.5 aqueous carboxy methyl cellulose as a carrier. From the acute toxicity studies performed with mammals, it is however clear that the carrier used affects the toxicity of alpha-cypermethrin, with a higher toxicity in oil-based carriers compared to aqueous carriers. This endpoint is thus derived from a study that may not have been worst case in terms of the method of administration or the carrier used

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Cereals at BBCH 51-83, 2 x 10 g a.s./ha

Growth stage	Indicat	or or focal species	T	ime so	cale	(m	DDD g/kg bw per day)	TER	Trigger
Screening Step (Birds)									
All	Small	omnivorous bird	-	Acut	e		2.22	747 1	10
All	Small	omnivorous bird	L	.ong-te	erm		0.55	29.1	5
Screening Step	(Mammal	s)					1.44	2502	10
All	Small he	erbivorous mammal		Acut	e		1.66	36.8 2	10
All	Small he	erbivorous mammal	L	ong-te	erm		0.41	21.97	5
1 a geomean LD ₅₀	of 1660 m	g a.s./kg bw, calculated	from	the LL	\mathcal{D}_{50} for \mathcal{B}	obwhite TED	e quail (Colinus v	virginianus) an	d Zebra finch
(1 a entopygia gut)	ata), was i 0 value of 1	isea in the risk assessmi 51 ma a s Aa bw. calcu	ent to lated l	caicui basad i	ate this . on the av	IEK VA vailable	iue. and relevant act	ute toricity stur	lias on mica
(2) and rats (3) y	o value oj (vas used in	the risk assessment to a	alculi	ate thi	s TER va	anavie nlue	e una relevant act	ne ioxicity stud	ues on mice
(2) and ruis (3), r	in the sea of the	ine risk assessment to e		are min	5 ILIC VG				
Risk from bioa	ccumulat	ion and food chain]	behav	viour	(indicat	e wher	n not relevant i	e if Log kow<	37
				1041	linanean		DDD		
Indi	cator or fo	ocal species		Tir	ne scale		(mg/kg bw	TER	Trigger
							per day)		22
Earthworm-eati	ng birds			Long-term		ı	0.028	581	5
Earthworm-eating mammals			Lo	ng-term	1	0.0029	4492	5	
Fish-eating bird	S			Lo	ng-term	1	0.029	549	5
Fish-eating man	nmals			Lo	ng-term	1	0.026	345	5
Risk from cons	umption	of contaminated wa	ter						
Scenarios		Indicator or focal	specie	es	Time	scale	PEC _{dw} xDWI	R TER	Trigger
Leaf scenario		Birds			acute		Not re	elevant	5
Puddle scenari	o, Screen	ing step							
1)Application ra	ate (g a s /	ha)/relevant endpoint	t <50	(koc<	500 L/I	kg) TI	ER calculation r	not needed	
			200	00 (1 -	500 1	1. 1. /1			
2)Application ra	ate (g a.s./	na)/relevant endpoint	1<300	00 (KC)c≥500 .	L/Kg),	TER calculatio	n not needed	
							T		-1
Puddle scenario		Birds			acute		Not needed	Case 2 (<	10
		21100			acate		1100 1100000	0.011)	
Puddle scenario		Mammals			acute		Not needed	Case 2 (<	10
								0.306)	
Puddle scenario		Birds			Long-	term	Not needed	Case 2 (<	5
D 111					8			1.17)	
Puddle scenario		Mammals			Long-	term	Not needed	Case 2 (<	5
					0			2.07)	

Oilseed rape at BBCH 51-59, 2 x 10 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger			
Screening Step ((Birds)							
All	Small omnivorous bird	Acute	2.22	747 ¹	10			
All	Small omnivorous bird	Long-term	0.55	29.1	5			
Screening Step (Screening Step (Mammals)							
All	Small herbivorous mammal	Acute	1.66	36.8 ²	10			
All	Small herbivorous mammal	Long-term	0.41	21.97	5			

¹ a geomean LD_{50} of 1660 mg a.s./kg bw, calculated from the LD_{50} for Bobwhite quail (Colinus virginianus) and Zebra finch (Taeniopygia guttata), was used in the risk assessment to calculate this TER value.

 2 a geomean LD50 value of 61 mg a.s./kg bw, calculated based on the available and relevant acute toxicity studies on mice (2) and rats (3), was used in the risk assessment to calculate this TER value.

Risk from bioaccumulation and food chain behaviour[*indicate when not relevant* i.e *if Log kow*≤3]

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	0.028	581	5
Earthworm-eating mammals	Long-term	0.0029	4492	5
Fish-eating birds	Long-term	0.029	549	5
Fish-eating mammals	Long-term	0.026	345	5

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC _{dw} xDWR	TER	Trigger
Leaf scenario	Birds	acute	Not relev	ant	5
Puddle scenario, Screen	ing step				

1)Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed

2)Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed

Puddle scenario	Dirda	Not pooled		Case 2 (<	10
	Bilds	acute	Not needed	0.011)	
Puddle scenario	Mammala	acuta	Not pooded		10
	Wallmars	acute	Not needed	0.306)	
Puddle scenario	iddle scenario		Not pooded	Case 2 (<	5
	Bilds	Long-term Not needed		1.17)	
Puddle scenario	scenario Managala Lang tarra		Not pooded	Case 2 (<	5
	wianninais	Long-term	Not needed	2.07)	

Leafy vegetables (lettuce and leafy cabbage) at BBCH 10-49, 2 x 10 g a.s./ha or 1 x 20 g a.s./ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger			
Screening Step								
All	Small omnivorous bird	Acute	3.18	523 ¹	10			
All	Small omnivorous bird	Long-term	0.69	23.3	5			
Screening Step	Screening Step (Mammals)							
All	Small herbivorous mammal	Acute	2.73	22.4 ²	10			
All	Small herbivorous mammal	Long-term	0.77	11.74	5			
¹ a geomean ID.	of 1660 mg as kg by calculated t	rom the ID., for	Robwhite quail (Colinus vi	irainianus) an	d Zebra finch			

⁴ a geomean LD_{50} of 1660 mg a.s./kg bw, calculated from the LD_{50} for Bobwhite quail (Colinus virginianus) and Zebra finch (Taeniopygia guttata), was used in the risk assessment to calculate this TER value.

 2 a geomean LD50 value of 61 mg a.s./kg bw, calculated based on the available and relevant acute toxicity studies on mice (2) and rats (3), was used in the risk assessment to calculate this TER value.

Risk from bioaccumulation and food chain behaviour[*indicate when not relevant* i.e *if Log kow*≤3]

Indicator or focal species		Time scale		DDD (mg/kg bw per day)	TER	Trigger		
Earthworm-eating birds		Lo	ong-term	0.028	581	5		
Earthworm-eating mamn	nals	Lo	ong-term	0.0029	4492	5		
Fish-eating birds		Lo	ong-term	0.018	878	5		
Fish-eating mammals		Lo	ong-term	0.017	553	5		
Risk from consumption of contaminated water					_			
Scenarios	Indicator or focal spe	ecies	Time scale	PEC _{dw} xDWR	TER	Trigger		
Leaf scenario	Birds		acute	9.2	180	5		
Puddle scenario, Screen	ning step							
1)Application rate (g a.s.	/ha)/relevant endpoint <	50 (ko	c<500 L/kg),	TER calculation	not needed			
2)Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed								
Puddle scenario	Birds		acute	Not needed	Case 2 (< 0.012)	10		
Puddle scenario	Mammals		acute	Not needed	Case 2 (< 0.327)	10		
Puddle scenario	Birds		Long-term	Not needed	Case 2 (< 1.25)	5		
Puddle scenario	Mammals		Long-term	Not needed	Case 2 (< 2.22)	5		

Cucumber/courgette at BBCH 10-89, 2 x 15 g a.s./ha or 1 x 30 g a.s./ha (glasshouse use only, restricted to permanent structures)

No risk assessment required, as no exposure to birds and mammals is expected from the use in permanent greenhouses.

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)*

Group	Test substance	Time-scale	End point	Toxicity ¹					
		(Test type)							
Laboratory tests	Laboratory tests								
Fish									
Rainbow trout (Oncorhynchus mykiss)	BAS 310 51 I	Acute 96 hr (static)	Mortality, LC ₅₀	46 μg prep./L (2.3 μg a.s./L) (mm)					
Fathead minnow (<i>Pimephales promelas</i>)	Alpha- cypermethrin	Acute 96 hr (flow- through)	Mortality, LC ₅₀	0.93 µg a.s/L (mm)					
Fathead minnow (<i>Pimephales promelas</i>)	Alpha- cypermethrin	Chronic, 34 day (flow- through)	Larval survival, NOEC	0.03 µg a.s./L					
Bluegill sunfish (Lepomis macrochirus)	cis-DCVA	Acute 96 hr (static)	Mortality, LC ₅₀	> 102800 µg/L (mm)					

		-		
Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Bluegill sunfish	3-PBA	Acute 96 hr (static)	Mortality, LC ₅₀	> 103200 µg/L
Amphibians				
African clawed frog (Xenopus laevis)	Alpha- cypermethrin	Acute, 96 hr (semi-static)	Mortality, LC ₅₀ (embryos) Mortality, LC ₅₀ (larvae)	30.6 μg a.s./L (mm) 6.9 μg a.s./L (mm)
Aquatic invertebrates	I			
Water flea (Daphnia magna)	BAS 310 51 I	Acute, 48 h (static)	Mortality, EC ₅₀	2.19 μg prep/L (0.109 μg a.s./L)
Phantom midge (Chaoborus crystallinus)	Alpha- cypermethrin	Acute, 48 h (static)	Mortality, EC ₅₀	$\begin{array}{c} 0.04454 \ \mu g \\ a.s./L \ _{(mm)} \end{array}$
Water flea (Daphnia magna)	Alpha- cypermethrin	Chronic, 21 d (semi- static)	Development and reproduction, NOEC	0.0177 μg a.s./L (mm)
Water flea (Daphnia magna)	cis-DCVA	Acute, 48 h (static)	Mortality, EC ₅₀	61900 $\mu g/L$ $_{(nom)}$
Water flea (Daphnia magna)	3-PBA	Acute, 48 h (static)	Mortality, EC ₅₀	39000 $\mu g/L$ $_{(nom)}$
Sediment-dwelling organisms				
Midge (Chironomus riparius)	Alpha- cypermethrin	Acute 48 h (static)	Mortality, EC ₅₀	0.0126 µg a.s./L (mm)
Midge (Chironomus riparius)	Alpha- cypermethrin	Chronic, 28 d, spiked	NOEC	0.024 µg a.s./L
		water (static)	EC ₅₀	0.227 µg a.s./L
			EC ₂₀	(nom) 0.057 μg a.s./L
			EC ₁₀	(nom) 0.028 µg a.s./L (nom)
Midge (Chironomus riparius)	Alpha- cypermethrin	Chronic, 28 d, spiked	NOEC	45.0 μg a.s./kg dry sediment _(mm)
		sediment (static)	EC ₅₀	101.4 µg a.s./kg dry sediment _(mm)
			EC ₂₀	58.5 μg a.s./kg dry sediment _(mm)
			EC_{10}	51.4 µg a.s./kg dry sediment _(mm)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Blackworm (<i>Lumbriculus</i> variegatus)	Alpha- cypermethrin	Chronic, 28 d, spiked	NOEC	71.3 μg a.s./kg dry sediment _(im)
		sediment (static)	EC ₅₀	155 μg a.s./kg dry sediment _(im)
			EC ₂₀	75.7 μg a.s./kg dry sediment _(im)
			EC ₁₀	52.0 μg a.s./kg dry sediment _(im)
Nematode (Caenorhabditis elegans)	Alpha- cypermethrin	Chronic, 96 h, spiked sediment (static)	NOEC	28600 µg a.s./kg dry sediment _(mm)
Algae				
Green microalgae	Alpha-	Chronic, 96	Growth rate:	
(Pseudo-kirchneriella subcapitata)	cypermethrin	h (static)	E_rC_{50}	$\geq 83.6~\mu g$ a.s./L
			NOFC	(mm)
			NOECr	85.0 μg a.s./L (mm)
Green microalgae	Alpha-	Chronic, 72	Growth rate:	
(Pseudo-kirchneriella subcapitata)	cypermethrin	h (static)	E_rC_{50}	\geq 898.5 µg a.s./L (mm)
			Biomass:	
			E_bC_{50}	$\geq 898.5~\mu g$ a.s./L $_{(mm)}$
			E_bC_{10}	$<28.4~\mu g$ a.s./L
				(mm)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Green microalgae	BAS 310 51 I	Chronic 72	Growth rate:	
(Pseudo-kirchneriella subcapitata)		h (static)	E_rC_{50}	27560 µg prep./L
			E_rC_{20}	(13 /8 μg a.s./L) (mm) 12300 μg prep./L (614 μg a.s./L)
			E_rC_{10}	(mm) 7670 µg prep./L (383 µg a.s./L)
			Yield:	(min)
			E_yC_{50}	8480 μg prep./L (423 μg a.s./L)
			$E_y C_{20}$	3080 μg prep./L (154 μg a.s./L)
			$E_y C_{10}$	(mm) 1700 μg prep./L (85 μg a.s./L) (mm)
Fresh water diatom	Alpha-	Chronic 96	Growth rate:	()
(Navicula pelliculosa)	cypermethrin	h (static)	E_rC_{50}	\geq 70.3 µg a.s./L
			NOECr	\geq 70.3 µg a.s./L
			Yield:	
			E_yC_{50}	\geq 70.3 µg a.s./L (mm)
			NOEC _y	$\geq 70.3 \ \mu g \ a.s./L \ _{(mm)}$
Blue-green algae	Alpha-	Chronic, 96	Growth rate:	
(Anabaena flos-aquae)	cypermethrin	h (static)	E _r C ₅₀	$\geq 27.0 \ \mu g \ a.s./L$
			NOECr	$\geq 27.0 \ \mu g \ a.s./L$
			Yield:	
			E_yC_{50}	$\geq 27.0 \ \mu g a.s./L$
			NOECy	$\geq 27.0 \ \mu g \ a.s./L$

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Marine diatom (Skeletonema costatum)	Alpha- cypermethrin	Chronic, 96 h (static)	Growth rate: E_rC_{50}	\geq 33.4 µg a.s./L
			NOEC _r	\geq 33.4 µg a.s./L (mm)
			Yield:	> 22 1
			E_yC_{50}	\geq 35.4 µg a.s./L (mm)
			NOECy	$\geq 33.4 \ \mu g \ a.s./L \ _{(mm)}$
Green microalgae (Pseudo-kirchneriella	cis-DCVA	Chronic, 72	Growth rate:	
subcapitata)		h (static)	E_rC_{50}	70000 µg/L (nom)
			E_rC_{20}	32300 µg/L (nom)
			E_rC_{10}	25400 μg/L (nom)
			Biomass:	
			E_bC_{50}	31600 $\mu g/L$ $_{(nom)}$
			E_bC_{20}	17900 µg/L (nom)
			E_bC_{10}	14200 μg/L (nom)
Green microalgae	3-PBA	Chronic, 72	Growth rate:	
subcapitata)		h (static)	E_rC_{50}	$85000 \ \mu g/L \ (nom)$
			E_rC_{20}	44900 µg/L (nom)
			E_rC_{10}	28500 µg/L (nom)
			Biomass:	
			E_bC_{50}	38100 $\mu g/L$ $_{(nom)}$
			E_bC_{20}	11300 $\mu g/L$ $_{(nom)}$
			E_bC_{10}	6880 μg/L _(nom)
Higher plant				
Lemna gibba	Alpha- cypermethrin	Chronic, 7 d (static)	Fronds number and dry weight:	
			E _y C ₅₀	\geq 1.39 µg a.s./L (mm)
			E _r C ₅₀	$\geq 1.39 \ \mu g \ a.s./L$
Water milfoil (myriophyllum elatinoides)	3-PBA	Chronic, 14 d (static)	Growth inhibition, NOEC	3280 µg/L (nom)

Further testing on aquatic organisms

Acute risk to fish: Geomean approach

Based on the available acute toxicity data for two fish species (*Oncorhynchus mykiss*, $LC_{50} = 2.3 \ \mu g \ a.s./L$, and *Pimephales promelas*, $LC_{50} = 0.93 \ \mu g \ a.s./L$), a geometric mean LC_{50} of 1.46 $\mu g \ a.s./L$ was calculated. Taking into account the assessment factor of 100 of the Tier 1 assessment, a geomean RAC_{SW,ac} of 0.0146 $\mu g \ a.s./L$ was determined.

Group	Test substance	Time-scale	End point	Toxicity ¹
		(Test type)		

Chronic risk to fish: refined exposure laboratory studies

A refined exposure early-life stage (ELS) study was available, in which *Pimephales promelas* was exposed to two peaks of (nominal) 0.15 and 0.30 µg a.s./L, with an interval of 7 days. As no significant effects on survival or growth could be observed in any of the treatments, a NOEC of 0.30 µg a.s./L was derived from this study. This study was considered acceptable for use in a Tier 2 chronic risk assessment for fish. Based on the available FOCUS Step 2 exposure profile for the proposed permanent glasshouse use in fruiting vegetables (single application of 30 g a.s./ha and twofold application of 15 g a.s./ha), it was demonstrated that the exposure regime in the refined exposure ELS study covered the FOCUS Step 2 exposure profile. Thus, for these uses the Tier 2 RAC of \geq 0.030 µg a.s./L could be considered a valid refinement. A low chronic risk to fish could be demonstrated for these uses.

For the outdoor uses in cereals, oilseed rape and leafy vegetables, however, detailed exposure profiles for the different FOCUS scenarios are not available.

Acute and chronic risk to aquatic invertebrates

An additional acute toxicity study with *Daphnia magna*, investigating the influence of humic acid and green algae on the toxicity of BAS 310 55 I, was available. This study showed a marked reduction in toxicity when organic matter was present, which is the result of a lower bioavailability of alpha-cypermethrin to *Daphnia magna*. As a refinement, the higher EC₅₀ value of 0.52 μ g a.s./L obtained from this study could potentially be used to derive a refined RAC_{SW} for the acute risk assessment. However, based on the available Tier 1 toxicity data, *Daphnia magna* is not the most sensitive species following acute exposure. Therefore, a risk assessment based on the refined endpoint for *Daphnia magna* is not considered to fully cover the acute risk to aquatic invertebrates.

A refined exposure chronic toxicity study was available, in which *Daphnia magna* was exposed to two peaks of up to 0.1060 μ g a.s./L, applied with a 7 day interval. At the highest dose of 0.1060 μ g a.s./L there was a slight but significant reduction in body length (3.2%), which was however not considered biologically relevant. Further, at the highest concentration of 0.1060 μ g a.s./L, a mortality of 30% occurred whereas no mortality occurred in either the control and the solvent control. Although this effect is not statistically significant, it could be considered biologically relevant. Based on these results, a NOEC of 0.0875 μ g a.s./L was derived from this study. This NOEC was considered acceptable for use in a Tier 2 chronic risk assessment. However, as *Daphnia magna* was not considered representative for all aquatic invertebrates (based on acute toxicity data and data from mesocosm studies, insects are shown to be more sensitive), this Tier 2 assessment is considered valid only for *Daphnia magna*.

In total, eight mesocosm studies are available, in which alpha-cypermethrin was applied one, two or three times. In two of these studies, alpha-cypermethrin was applied as the representative formulation (BAS 310 55 I). In the other studies, alpha-cypermethrin was applied as the formulation BAS 310 03 I. As the toxicity of the two formulations is driven by the active ingredient and considered comparable with respect to effects on aquatic organisms, and the results from the mesocosm studies with both formulation are highly comparable, all available mesocosms can be considered together. In five out of the eight mesocosm studies, no analytical measurements were performed to measure the target concentrations in the pond water. The results from these studies were not considered suitable for use in a quantitative risk assessment (i.e. the NOEC and NOEAEC values from these studies cannot be used as a basis to derive a RAC value). However, as the results from these studies are highly similar to those from the fully reliable studies, they can be used as supportive information in a weight of evidence approach. From the available mesocosm data, an overall NOEC of 0.003 μ g a.s./L and NOEAEC of 0.017 μ g a.s./L were derived for two applications of alpha-cypermethrin (for an interval of approximately one week).

In addition to the mesocosm studies, additional higher tier studies have been submitted. For example a number of laboratory toxicity studies with additional aquatic invertebrate species are available, which confirm the finding of the mesocosm studies that *Chaoborus crystallinus* is the most sensitive aquatic invertebrate species.

It was agreed at Pesticides Peer Review Meeting 177 that the overall mesocosm NOEC of 0.004 µg a.s./L could be used in a risk assessment for both 1 and 2 applications. Applying an AF of 2 to this NOEC, an **ETO-RAC of 0.002 µg a.s./L** was obtained. Initially, the RMS proposed a risk assessment based on the ecological recovery option. However, at Pesticides Peer Review Meeteing 177 it was agreed not to consider the recovery

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹			
option as applicable in the risk assessment. This was based on the argument that species with a poor recovery potential are not well represented in the mesocosm studies. Furthermore, the exposure pattern of some of the most vulnerable species (i.e. <i>Gammarus, Cloeon dipterum</i> , identified on the basis of their life cycle and on the basis of the available laboratory studies) might differ from the one relevant for <i>Chaoborus</i> . While <i>Chaoborus</i> lives predominantly in the water column, where alpha-cypermethrin is likely to quickly disappear from, these other species are living more on the bottom/sediment surface, where alpha-cypermethrin is likely to be present for longer periods.							
Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹			
Fathead minnow (<i>Pimephales promelas</i>)	Alpha- cypermethrin	Chronic, 32 d (flow- through) Pulse exposure	NOEC	0.30 µg a.s./L (nom)			
Water flea (Daphnia magna)	BAS 310 55 I	Acute, 48h (static) Bioavailabili ty study	EC_{50} , in M4 medium EC_{50} , in presence of humic acid EC_{50} , in presence of algae	0.18 μg a.s./L (mm) 0.52 μg a.s./L (mm) 0.69 μg a.s./L (mm)			
Water flea (Daphnia magna)	Alpha- cypermethrin	Chronic, 21 d (semi- static) Pulse exposure	NOEC	0.0875 µg a.s./L (mm)			
Aquatic community in outdoor mesocosms; single treatment. Endpoints: impact on macroinvertebrates, zooplankton and planktonic algae	BAS 310 03 I	145 d, Outdoor mesocosm	NOEC NOEAEC	0.003 μg a.s./L (nom) ³ 0.012 μg a.s./L (nom) ³			
Aquatic community in outdoor mesocosms; single treatment. Endpoints: impact on macroinvertebrates, zooplankton and planktonic algae	BAS 310 03 I	126 d, Outdoor mesocosm	NOEC NOEAEC	0.003 μg a.s./L ^(nom) 0.015 μg a.s./L ^(nom)			
Aquatic community in outdoor mesocosms; three applications. Endpoints: impact on macroinvertebrates, zooplankton and planktonic algae	BAS 310 03 I	119 d, Outdoor mesocosm	NOEC	0.0006 µg a.s./L			

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Aquatic community in outdoor mesocosms; single treatment	BAS 310 03 I	139 d, Outdoor mesocosm	NOEAEC	0.015 μg a.s/L (nom)
Endpoints: impact on macroinvertebrates, zooplankton and planktonic algae				
Aquatic community in outdoor mesocosms; one or three applications	BAS 310 03 I	162 d, Outdoor mesocosm	NOEC NOEAEC	$0.0006 \ \mu g \ a.s./L$ (nom) ³ $0.015 \ \mu g \ a.s./L$
Endpoints: impact on macroinvertebrates, zooplankton and planktonic algae				(nom) ⁵
<i>Chaoborus crystallinus</i> in outdoor mesocosms; two applications	BAS 310 03 I	8 weeks, Outdoor mesocosm	NOEC	0.020 µg a.s./L (nom) ³
Aquatic community in outdoor mesocosms; two applications	BAS 310 55 I	62 d, Outdoor mesocosm	NOEC	0.0006 μg a.s./L (nom) ³ 0.0135 μg a.s./L
Endpoints: impact on macroinvertebrates and zooplankton				(nom)
Aquatic community in outdoor mesocosms; one or two applications	BAS 310 55 I	12 weeks, Outdoor mesocosm	NOEC NOEAEC, 1 appl.	0.00403 µg a.s./L _(im) 0.017 µg a.s./L
Endpoints: impact on macroinvertebrates, zooplankton and planktonic algae			NOEAEC, 2 appl.	(im) 0.0385 µg a.s./L (im)
Several species of aquatic invertebrates	BAS 310 03 I	Acute, 24 h (static) Laboratory toxicity test	NOEC / EC ₅₀	0.000011 - 4.7 μg a.s./L
Several species of aquatic macroinvertebrates	BAS 310 03 I	Acute, 48 and 96 h (static) Laboratory toxicity test	NOEC / EC ₅₀	0.53 - 48.01 μg a.s./L
Cloeon dipterum & Gammarus roeseli	BAS 310 03 I	Acute, 1 to 28 d (static) Laboratory toxicity test (microcosm)	NOEC / EC ₅₀	0.003 - 7.3 μg a.s./L

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Chaoborus crystalinus	-	Chaoborus population development in mesocosms	Analysis of raw data of 19 mesocosm studies provides information on <i>Cha</i> populations and their influence on th zooplankton community structure	
Chironomid midge larvae	Dominex 100 EC	Field efficacy trial	After application of 10 to 30 g a.s./ha 1) or 6 to 20 g a.s./ha (trial 2): A clear effect on chironomid larvae after application of the test item, followed recovery. No complete recovery by th of the study (29 days in trial 1; 24 day trial 2)	

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

Based on the specific long-term *in vivo* studies reported in the DRAR there are no indications that alphacypermethrin has endocrine-specific effects on fish. Further, the results from the mammalian assays also do not indicate specific endocrine-disruptive activity of alpha-cypermethrin. However, as there are currently no defined criteria for identifying endocrine disruptors, it is difficult to draw a firm conclusion.

At Pesticides Peer Review Meeting 175 on mammalian toxicology, a data gap for a male pubertal assay was set. At Pesticides Peer Review Meeting 177 on ecotoxicology, the majority of the experts agreed that, pending on the outcome of the data gap in the mammalian toxicology section, further consideration may be needed on potential endocrine effects in non-target organisms.

 $(_{nom})$ nominal concentration; $(_{mm})$ mean measured concentration; $(_{im})$ initial measured concentrations; prep.: preparation; a.s.: active substance

² As two of the validity criteria of the relevant test guideline (OECD 210) were not fulfilled, this study is formally not valid. However, given the fact that there was a clear dose-response relationship, and the endpoint was in the range that would be expected based on data for related substances, it was agreed at Pesticides Peer Review Expert Meeting 177 that this study can be used with care in the risk assessment, but only because there are no suitable alternatives.

³ Endpoint obtained from a mesocosm study where the concentration of the test item in the ponds was not analytically verified. This endpoint is not acceptable for use in a quantitative risk assessment (i.e. cannot be used as a basis to derive a RAC values). However, it can be used as additional information in the risk assessment for aquatic invertebrates.

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Alpha- cypermethrin	DCVA	3-PBA	3-PBAld	M310I017	Carboxamide
logP _{O/W}	5.8	3.15	2.48 ²⁾	3.5 ²⁾	unknown	5.5 ²⁾
Steady-state bioconcentration factor (BCF) (total wet weight)	910 ¹⁾	-	-	-	-	-
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	-	-	-	-	-	-
Annex VI Trigger for the bioconcentration factor	-	-	-	-	-	-
Clearance time (days) (CT_{50})	6.9-8.6 days	-	-	-	-	-
(CT ₉₀)	-	-	-	-	-	-

Level and nature of residues (%)	-	-	-	-	-	-
in organisms after the 14 day						
depuration phase						
Higher tier study						
Not needed						
$\frac{1}{1}$ based on total $\frac{14}{C}$. As the study from which this bioconcentration factor was derived was performed in accordance with a						

based on total ¹⁴C. As the study from which this bioconcentration factor was derived was performed in accordance with a previous version of OECD Test Guideline 305, the lipid content of the fish tissue was not measured. It was therefore not possible to normalize the bioconcentration factor to 5% lipid content.

Additional uncertainties regarding this BCF value were identified at Pesticides Peer Review Expert Meeting 177, which are related tot the exposure route in the study (exposure through the water phase). According to OECD Test Guideline 305, testing via aqueous exposure becomes difficult for substances with a low $P_{OW} > 5$ and a low water solubility (such as alpha-cypermethrin). Testing via dietary exposure might result in a different BCF value.

²⁾ no data was available within the alpha-cypermethrin renewal dossier to determine a log P_{OW} for these metabolites. These log P_{OW} values were obtained from the DRAR for renewal of the active substance cypermethrin (Belgium 2017).

Regulatory acceptable concentrations used in the risk assessment

Alpha- cypermethrin								
	Species	Level of	Most sensitive	Endpoint	AF	RAC		
	group	assessment	species	_				
Acute effect	Fish	Tier 1	Pimephales	$LC_{50} = 0.93 \ \mu g$	100	0.0093 µg		
assessment			promelas	a.s./L		a.s./L		
		Tier 2	Data for 2 fish	Geomean LC ₅₀	100	0.0146 µg		
		(geomean-	species	$= 1.46 \ \mu g \ a.s./L$		a.s./L		
		approach)						
	Aquatic	Tier 1	Chironomus	$EC_{50} = 0.0126$	100	0.000126 µg		
	invertebrates		riparius	μg a.s./L		a.s./L		
		Tier 3	Natural populations	NOEC = 0.004	2	0.002 µg		
		(mesocosms)	in ponds	μg a.s./L		a.s./L ¹		
Chronic	Fish	Tier 1	Pimephales	NOEC = 0.03	10	0.003 µg		
effect			promelas	μg a.s./L		a.s./L		
assessment		Tier 2	Pimephales	NOEC = 0.30	10	0.030 µg		
		(refined	promelas	μg a.s./L		a.s./L ²		
		exposure						
		approach)						
	Aquatic	Tier 1	Daphnia magna	NOEC = 0.0177	10	0.00177 µg		
	invertebrates			μg a.s./L		a.s./L		
		Tier 3	Natural populations	NOEC = 0.004	2	0.002 µg		
		(mesocosms)	in ponds	μg a.s./L		a.s./L ¹		
		Tier 1	Chironomus	NOEC = 45.0	10	4.5 µg a.s./kg		
			riparius	µg a.s./kg dry		dry sediment		
				sediment				
	Algae	Tier 1	Anabaena flos-	$E_r C_{50} \ge 27.0 \ \mu g$	10	\geq 2.70 µg		
			aquae	a.s./L		a.s./L		
	Aquatic	Tier 1	Lemna gibba	$E_r C_{50} \ge 1.39 \ \mu g$	10	\geq 0.139 µg		
	plants			a.s./L		a.s./L		
Metabolite DO	CVA	•	1		T			
Acute effect	Fish	Tier 1	Lepomis	$LC_{50} > 102800$	100	1028 µg/L		
assessment			macrochirus	μg a.s./L				
	Aquatic	Tier 1	Daphnia magna	$EC_{50} = 61900$	100	619 µg/L		
	invertebrates			μg a.s./L				
Chronic	Algae	Tier 1	Pseudokirchneriella	$E_r C_{50} = 70000$	10	7000 µg/L		
effect			subcapitata	μg a.s./L				
assessment								
Metabolite 3-1	PBA	-	•	-		•		
Acute effect	Fish	Tier 1	Lepomis	$LC_{50} > 103200$	100	1032 µg/L		

assessment			macrochirus	μg a.s./L		
	Aquatic	Tier 1	Daphnia magna	$EC_{50} = 39000$	100	390 µg/L
	invertebrates			µg a.s./L		
Chronic	Algae	Tier 1	Pseudokirchneriella	$E_r C_{50} = 85000$	10	8500 μg/L
effect			subcapitata	μg a.s./L		
assessment	Aquatic	Tier 1	Myriophyllum	NOEC = 3280	10	328 µg a.s./L
	plants		elatinoides	μg a.s./L		

Notes: AF: Assessment Factor; ¹ETO-RAC (ecological threshold option); ²Endpoint currently only used for the proposed permanent glasshouse use of BAS 310 55 I in cucumber/courgette, as no detailed FOCUS exposure profiles are available for the proposed outdoor uses.

109

Comparison of the RAC and endpoint for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

Note that below only the comparison of the respective endpoints and the RAC from the highest available Tier is included

FOCUS _{sw} step 1-3 – Comparison of RACs and global maximum PE	EC _{SW/SED} for alpha-cypermethrin	- Cereals at 1-2 x 10 g a.s./ha	(the worst-case
PEC _{SW} and PEC _{SED} for either spring or winter cereals are used).			

Scenario	fish acute	fish chronic	Aquatic invertebrates (acute and chronic)	Algae	Higher plant	Sed. Dwelling organisms prolonged
	Geomean approach	Pimephales promelas	Natural populations in ponds	Anabaena flos-aquae	Lemna gibba	Chironomus riparius
Level of assessment	Tier 2	Tier 1	Tier 3	Tier 1	Tier 1	Tier 1
RAC	0.0146 µg/L	0.003 µg/L	$0.002 \ \mu\text{g/L}^1$	$\geq 2.70~\mu\text{g/L}$	0.139 µg/L	4.5 µg/kg dry sediment
FOCUS Step 1 PEC values	0.201	0.201	0.201	0.201	0.201	49.869
FOCUS Step 2 PEC values						
North Europe	0.184	0.184	0.184	0.184	0.184	14987
South Europe	0.184	0.184	0.184	0.184	0.184	8.108
FOCUS Step 3 PEC values						
D1 / ditch	0.056	0.056	0.056	-	0.056	0.630
D1 / stream	0.046	0.046	0.046	-	0.046	0.270
D2 / ditch	0.056	0.056	0.056	-	0.056	0.583
D2 / stream	0.047	0.047	0.047	-	0.047	0.419
D3 / ditch	0.052	0.052	0.052	-	0.052	0.292
D4 / pond	0.002	0.002	0.002	-	0.002	0.048
D4 / stream	0.045	0.045	0.045	-	0.045	0.151
D5 / pond	0.002	0.002	0.002	-	0.002	0.049
D5 / stream	0.048	0.048	0.048	-	0.048	0.177
D6 / ditch	0.052	0.052	0.052	-	0.052	0.569
R1 / pond	0.002	0.002	0.002	-	0.002	0.058
R1 / stream	0.034	0.034	0.034	-	0.034	0.331
R3 / stream	0.048	0.048	0.048	-	0.048	0.169
R4 / stream	0.034	0.034	0.034	-	0.034	0.412

Note: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary; ¹ETO-RAC (ecological threshold option)

Scenario		fish a	icute			fish ch	ronic		Aquatic	nvertebrates (acute and chronic) atural populations in ponds Tier 3 0.002 μg/L ¹ 95% N 5 m D 5 m D 5 m D + 50% N 0.003 0.014 0.007 0.002 0.017 0.008 0.003 0.014 0.007 0.002 0.017 0.008 0.003 0.014 0.007 0.002 0.017 0.008 0.003 0.014 0.007 0.001 0.002 <0.01 0.002 0.016 0.008		
		Geomean	approach			Pimephale.	s promelas		Ν	atural popula	tions in pon	nds
Level of		Tie	r 2			Tie	r 1			Tie	er 3	
assessment												
RAC		0.0146	óμg/L			0.003	µg/L			0.002	$\mu g/L^1$	
Mitigation options	75% N	95% N	5 m D	5 m D + 50% N	75% N	95% N	5 m D	5 m D + 50% N	75% N	95% N	5 m D	5 m D + 50% N
FOCUS Step	• 4 PEC valu	ues										
D1 / ditch	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007
D1 / stream	0.011	0.002	0.017	0.008	0.011	0.002	0.017	0.008	0.011	0.002	0.017	0.008
D2 / ditch	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007
D2 / stream	0.012	0.002	0.017	0.008	0.012	0.002	0.017	0.008	0.012	0.002	0.017	0.008
D3 / ditch	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007
D4 / pond	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001
D4 / stream	0.011	0.002	0.016	0.008	0.011	0.002	0.016	0.008	0.011	0.002	0.016	0.008
D5 / pond	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001
D5 / stream	0.012	0.003	0.018	0.009	0.012	0.003	0.018	0.009	0.012	0.003	0.018	0.009
D6 / ditch	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007
R1 / pond	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001
R1 / stream	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006
R3 / stream	0.012	0.003	0.018	0.009	0.012	0.003	0.018	0.009	0.012	0.003	0.018	0.009
R4 / stream	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006

 $FOCUS_{sw}$ step 4 – Comparison of RACs and global maximum PEC_{sw} for alpha-cypermethrin – Cereals at 1-2 x 10 g a.s./ha (the worst-case PEC_{sw} and PEC_{seD} for either spring or winter cereals are used).

Notes: D = Drift mitigation by no-spray buffer zones; N = Drift mitigation by drift reducing nozzles; values in bold exceed the relevant RAC, indicating an unacceptable risk; ¹ETO-RAC (ecological threshold option)

Scenario	fish acute	fish chronic	Aquatic invertebrates (acute and chronic)	Algae	Higher plant	Sed. Dwelling organisms prolonged
	Geomean approach	Pimephales promelas	Natural populations in ponds	Anabaena flos-aquae	Lemna gibba	Chironomus riparius
Level of assessment	Tier 2	Tier 1	Tier 3	Tier 1	Tier 1	Tier 1
RAC	0.0146 µg/L	0.003 µg/L	$0.002 \ \mu g/L^1$	\geq 2.70 µg/L	0.139 µg/L	4.5 μg/kg dry sediment
FOCUS Step 1 PEC values	0.201	0.201	0.201	0.201	0.201	49.869
FOCUS Step 2 PEC values						
North Europe	0.184	0.184	0.184	0.184	0.184	14987
South Europe	0.184	0.184	0.184	0.184	0.184	8.108
FOCUS Step 3 PEC values						
D2 / ditch	0.053	0.053	0.053	-	0.053	0.475
D2 / stream	0.047	0.047	0.047	-	0.047	0.328
D3 / ditch	0.052	0.052	0.052	-	0.052	0.292
D4 / pond	0.002	0.002	0.002	-	0.002	0.050
D4 / stream	0.044	0.044	0.044	-	0.044	0.117
D5 / pond	0.002	0.002	0.002	-	0.002	0.052
D5 / stream	0.044	0.044	0.044	-	0.044	0.080
R1 / pond	0.002	0.002	0.002	-	0.002	0.057
R1 / stream	0.034	0.034	0.034	-	0.034	0.338
R3 / stream	0.048	0.048	0.048	-	0.048	0.227

FOCUS_{sw} step 1-3 – Comparison of RACs and global maximum PEC_{SW/SED} for alpha-cypermethrin – Winter oilseed rape at 1-2 x 10 g a.s./ha

Note: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary; ¹ETO-RAC (ecological threshold option)

Scenario		fish a	ncute			fish cl	nronic		Aquatic	ic invertebrates (acute and chronic) Natural populations in ponds Tier 3 0.002 µg/L ¹		
		Geomean	approach			Pimephale	s promelas		Ν	atural popula	itions in pon	uds
Level of		Tie	er 2			Tie	er 1			Tie	er 3	
assessment												
RAC		0.0146 μg/L				0.003	µg/L		D + 75% N 95% 007 0.013 0.0 008 0.012 0.0 001 <0.001		0.002 µg/L ¹	
Mitigation options	75% N	95% N	5 m D	5 m D + 50% N	75% N	95% N	5 m D	5 m D + 50% N	75% N	95% N	5 m D	5 m D + 50% N
FOCUS Step	• 4 PEC val	ues										
D2 / ditch	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007
D2 / stream	0.012	0.002	0.017	0.008	0.012	0.002	0.017	0.008	0.012	0.002	0.017	0.008
D3 / ditch	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007
D4 / pond	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001
D4 / stream	0.011	0.002	0.016	0.008	0.011	0.002	0.016	0.008	0.011	0.002	0.016	0.008
D5 / pond	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001
D5 / stream	0.011	0.002	0.016	0.008	0.011	0.002	0.016	0.008	0.011	0.002	0.016	0.008
R1 / pond	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001
R1 / stream	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006
R3 / stream	0.012	0.003	0.018	0.009	0.012	0.003	0.018	0.009	0.012	0.003	0.018	0.009

FOCUS_{sw} step 4 – Comparison of RACs and global maximum PEC_{SW} for alpha-cypermethrin – Winter oilseed rape at 1-2 x 10 g a.s./ha

Notes: D = Drift mitigation by no-spray buffer zones; N = Drift mitigation by drift reducing nozzles; values in bold exceed the relevant RAC, indicating an unacceptable risk; ¹ETO-RAC (ecological threshold option)

FOCUS _{sw} step 1-3 -	- Comparison of RACs and glob	al maximum PEC _{SW/SEI}	, for alpha-cypermethrin	 Leafy vegetables (lettue 	ce and leafy cabbage) at
1-2 x 10 g a.s./ha					

Scenario	fish acute	fish chronic	Aquatic invertebrates (acute and chronic)	Algae	Higher plant	Sed. Dwelling organisms prolonged
	Geomean approach	Pimephales promelas	Natural populations in ponds	Anabaena flos-aquae	Lemna gibba	Chironomus riparius
Level of assessment	Tier 2	Tier 1	Tier 3	Tier 1	Tier 1	Tier 1
RAC	0.0146 µg/L	0.003 µg/L	$0.002 \ \mu g/L^1$	$\geq 2.70~\mu g/L$	0.139 µg/L	4.5 µg/kg dry sediment
FOCUS Step 1 PEC values	0.201	0.201	0.201	0.201	0.201	49.869
FOCUS Step 2 PEC values						
North Europe	0.184	0.184	0.184	0.184	0.184	14987
South Europe	0.184	0.184	0.184	0.184	0.184	8.108
FOCUS Step 3 PEC values						
D3 / ditch	0.052	0.052	0.052	-	0.052	0.311
D4 / pond	0.002	0.002	0.002	-	0.002	0.051
D4 / stream	0.041	0.041	0.041	-	0.041	0.054
D6 / ditch	0.051	0.051	0.051	-	0.051	0.200
R1 / pond	0.002	0.002	0.002	-	0.002	0.136
R1 / stream	0.034	0.034	0.034	-	0.034	2.839
R2 / stream	0.046	0.046	0.046	-	0.046	5.388
R3 / stream	0.048	0.048	0.048	-	0.048	2.318
R4 / stream	0.034	0.034	0.034	-	0.034	2.620

Note: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary; ¹ETO-RAC (ecological threshold option)

Scenario		fish a	ncute		fish chronic				Aquatic i	invertebrate	s (acute and	l chronic)
		Geomean	approach			Pimephale	s promelas		N_{i}	atural popula	tions in pon	nds
Level of		Tie	er 2			Tie	er 1			Tie	er 3	
assessment								Natural populations in ponds Tier 3 5 m D + 75% N 95% N 5 m D 5 m D 50% N 75% N 95% N 5 m D 50% 0.007 0.013 0.003 0.014 0.007 <0.001				
RAC		0.0146	5μg/L			0.003	µg/L			0.002	$\mu g/L^1$	
Mitigation options	75% N	95% N	5 m D	5 m D + 50% N	75% N	95% N	5 m D	5 m D + 50% N	75% N	95% N	5 m D	5 m D + 50% N
FOCUS Step	o 4 PEC valu	ues										
D3 / ditch	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007
D4 / pond	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001
D4 / stream	0.010	0.002	0.015	0.007	0.010	0.002	0.015	0.007	0.010	0.002	0.015	0.007
D6 / ditch	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007	0.013	0.003	0.014	0.007
R1 / pond	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.002	< 0.001
R1 / stream	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006
R2 / stream	0.012	0.002	0.017	0.008	0.012	0.002	0.017	0.008	0.012	0.002	0.017	0.008
R3 / stream	0.012	0.003	0.018	0.009	0.012	0.003	0.018	0.009	0.012	0.003	0.018	0.009
R4 / stream	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006	0.009	0.002	0.013	0.006

FOCUS _{sw} step 4 –	Comparison of RACs a	nd global maximum PI	EC _{sw} for alpha-cyperm	ethrin – Leafy vege	tables (lettuce and leafy	y cabbage) at 1-2 x
10 g a.s./ha						

Notes: D = Drift mitigation by no-spray buffer zones; N = Drift mitigation by drift reducing nozzles; values in bold exceed the relevant RAC, indicating an unacceptable risk; ¹ETO-RAC (ecological threshold option)

 $FOCUS_{sw}$ step 1-3 – Comparison of RACs and global maximum $PEC_{SW/SED}$ for alpha-cypermethrin – Leafy vegetables (lettuce and leafy cabbage) at 1 x 20 g a.s./ha

Scenario	fish acute	fish chronic	Aquatic invertebrates (acute and chronic)	Algae	Higher plant	Sed. Dwelling organisms prolonged
	Geomean approach	Pimephales promelas	Natural populations in ponds	Anabaena flos-aquae	Lemna gibba	Chironomus riparius
Level of assessment	Tier 2	Tier 1	Tier 3	Tier 1	Tier 1	Tier 1
RAC	0.0146 µg/L	0.003 µg/L	$0.002 \ \mu g/L^1$	\geq 2.70 µg/L	0.139 µg/L	4.5 µg/kg dry sediment
FOCUS Step 1 PEC values	0.201	0.201	0.201	0.201	0.201	49.869
FOCUS Step 2 PEC values						
North Europe	0.184	0.184	0.184	0.184	0.184	14987
South Europe	0.184	0.184	0.184	0.184	0.184	8.108
FOCUS Step 3 PEC values						
D3 / ditch	0.104	0.104	0.104	-	0.104	0.511
D4 / pond	0.004	0.004	0.004	-	0.004	0.063
D4 / stream	0.081	0.081	0.081	-	0.081	0.096
D6 / ditch	0.103	0.103	0.103	-	0.103	0.400
R1 / pond	0.004	0.004	0.004	-	0.004	0.121
R1 / stream	0.069	0.069	0.069	-	0.069	2.430
R2 / stream	0.092	0.092	0.092	-	0.092	5.326
R3 / stream	0.097	0.097	0.097	-	0.097	2.552
R4 / stream	0.069	0.069	0.069	-	0.069	2.335

Note: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary; ¹ETO-RAC (ecological threshold option)

Scenario		fish a	acute		fish chronic				Aquatic invertebrates (acute and chronic)			
		Geomean	approach			Pimephale	s promelas		Ν	atural popula	tions in por	nds
Level of		Tie	er 2			Tie	er 1			Tie	er 3	
assessment												
RAC		0.0146	5 μg/L			0.003	µg/L			0.002	$\mu g/L^1$	
Mitigation options	75% N	95% N	5 m D	5 m D + 50% N	75% N	95% N	5 m D	5 m D + 50% N	75% N	95% N	5 m D	5 m D + 50% N
FOCUS Step 4 PEC values												
D3 / ditch	0.005	0.028	0.007	0.008	0.005	0.028	0.007	0.008	0.005	0.028	0.007	0.008
D4 / pond	< 0.001	0.003	< 0.001	0.001	< 0.001	0.003	< 0.001	0.001	< 0.001	0.003	< 0.001	0.001
D4 / stream	0.004	0.030	0.007	0.008	0.004	0.030	0.007	0.008	0.004	0.030	0.007	0.008
D6 / ditch	0.005	0.028	0.007	0.007	0.005	0.028	0.007	0.007	0.005	0.028	0.007	0.007
R1 / pond	< 0.001	0.003	< 0.001	0.001	< 0.001	0.003	< 0.001	0.001	< 0.001	0.003	< 0.001	0.001
R1 / stream	0.003	0.025	0.006	0.007	0.003	0.025	0.006	0.007	0.003	0.025	0.006	0.007
R2 / stream	0.005	0.033	0.008	0.009	0.005	0.033	0.008	0.009	0.005	0.033	0.008	0.009
R3 / stream	0.005	0.035	0.009	0.009	0.005	0.035	0.009	0.009	0.005	0.035	0.009	0.009
R4 / stream	0.003	0.025	0.006	0.007	0.003	0.025	0.006	0.007	0.003	0.025	0.006	0.007

FOCUS _{sw} step	4 - Comparison	of RACs and global	l maximum PEC _{sv}	for alpha-cypermet	hrin – Leafy veg	getables (lettuce and l	leafy cabbage) at 1	1 x 20
g a.s./ha								

Notes: D = Drift mitigation by no-spray buffer zones; N = Drift mitigation by drift reducing nozzles; values in bold exceed the relevant RAC, indicating an unacceptable risk; ¹ETO-RAC (ecological threshold option)

 $FOCUS_{sw}$ step 2 – Comparison of RACs and worst-case $PEC_{SW/SED}$ for alpha-cypermethrin – Fruiting vegetables (cucumber and courgette) at 1 x 30 g a.s./ha (permanent glasshouse use)

Scenario	fish acute	fish chronic	Aquatic invertebrates (acute and chronic)	Algae	Higher plant	Sed. Dwelling organisms prolonged
	Geomean approach	Pimephales promelas	Natural populations in ponds	Anabaena flos-aquae	Lemna gibba	Chironomus riparius
Level of assessment	Tier 2	Tier 2	Tier 3	Tier 1	Tier 1	Tier 1
RAC	0.0146 µg/L	0.030 µg/L	$0.002 \ \mu g/L^1$	$\geq 2.70 \ \mu g/L$	0.139 µg/L	4.5 μg/kg dry sediment
FOCUS Step 2 PEC values						
Europe – drift only	0.010	0.010	0.010	0.010	0.010	0.067

Note: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary; ¹ETO-RAC (ecological threshold option)

 $FOCUS_{sw}$ step 1 – Comparison of RACs and global maximum $PEC_{SW/SED}$ for the metabolite DCVA – All proposed outdoor uses in cereals and oilseed rape (at 1-2 x 10 g a.s./ha), leafy vegetables (at 1-2 x 10 g a.s./ha and 1 x 20 g a.s./ha) and the proposed permanent glasshouse use in fruiting vegetables

Scenario	fish acute	Aquatic invertebrates (acute and chronic)	Algae
	Lepomis macrochirus	Daphnia magna	Pseudokirchneriella subcapitata
Level of assessment	Tier 1	Tier 1	Tier 1
RAC	1028 µg/L	619 μg/L	7000 μg/L
FOCUS Step 1 PEC values			
Europe – outdoor uses	2.591	2.591	2.591
Europe –permanent glasshouse uses	0.003	0.003	0.003

Note: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary

 $FOCUS_{sw}$ step 1 – Comparison of RACs and global maximum $PEC_{SW/SED}$ for the metabolite 3-PBA – All proposed outdoor uses in cereals and oilseed rape (at 1-2 x 10 g a.s./ha), leafy vegetables (at 1-2 x 10 g a.s./ha and 1 x 20 g a.s./ha) and the proposed permanent glasshouse use in fruiting vegetables

Scenario	fish acute	e Aquatic invertebrates (acute Algae		Higher Plant
	Lepomis macrochirus	Daphnia magna	Pseudokirchneriella subcapitata	Myriophyllum elatinoides
Level of assessment	Tier 1	Tier 1	Tier 1	Tier 1
RAC	1032 µg/L	390 µg/L	8500 μg/L	328 µg a.s./L
FOCUS Step 1 PEC values				
Europe – outdoor uses	1.627	1.627	1.627	1.627
Europe – permanent glasshouse uses	0.001	0.001	0.001	0.001

Note: PEC values in bold indicate that the PEC_{SW/SED} exceeds the RAC, and thus that further consideration is necessary

Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Honeybee (Apis mellifera)	Alpha- cypermethrin	Acute, adult toxicity	Oral toxicity (LD ₅₀)	$0.059 \ \mu g \ a.s./bee^{-1}$
Honeybee (Apis mellifera)	Alpha- cypermethrin	Acute, adult toxicity	Contact toxicity (LD ₅₀)	$0.033 \ \mu g \ a.s./bee^{-1}$
Honeybee (Apis mellifera)	Alpha- cypermethrin	Acute, adult toxicity	Oral toxicity (LD ₅₀)	0.246 µg a.s./bee
Honeybee (Apis mellifera)	Alpha- cypermethrin	Acute, adult toxicity	Contact toxicity (LD ₅₀)	0.030 µg a.s./bee
Honeybee (Apis mellifera)	BAS 310 51 I	Acute, adult toxicity	Oral toxicity (LD ₅₀)	2.99 μg prep./bee (0.15 μg a.s./bee)
Honeybee (Apis mellifera)	BAS 310 51 I	Acute, adult toxicity	Contact toxicity (LD ₅₀)	1.68 μg prep./bee (0.08 μg a.s./bee)
Honeybee (Apis mellifera)	BAS 310 55 I	Acute, adult toxicity	Oral toxicity (LD ₅₀)	3.26 μg prep./bee (0.17 μg a.s./bee)
Honeybee (Apis mellifera)	BAS 310 55 I	Acute, adult toxicity	Contact toxicity (LD ₅₀)	1.58 µg prep./bee (0.08 µg a.s./bee)
Honeybee (Apis mellifera)	BAS 310 51 I	Acute, adult toxicity	Oral toxicity (LD ₅₀)	0.359 μg prep./bee (0.018 μg a.s./bee)
Honeybee (Apis mellifera)	BAS 310 51 I	Acute, adult toxicity	Contact toxicity (LD ₅₀)	0.319 μg prep./bee (0.016 μg a.s./bee)
Honeybee (Apis mellifera)	Alpha- cypermethrin	Chronic (10d), adult toxicity	LDD ₅₀	0.11 µg a.s./bee/day
Honeybee (Apis mellifera)	Alpha- cypermethrin	Chronic (7d), larval toxicity ²	NOED	\geq 0.008 µg a.s./larva
Bumblebee (Bombus terrestris)	Alpha- cypermethrin	Acute, adult toxicity	Oral toxicity (LD ₅₀)	0.54 μg a.s./bee
Bumblebee (Bombus terrestris)	Alpha- cypermethrin	Acute, adult toxicity	Contact toxicity (LD ₅₀)	0.29 µg a.s./bee
Bumblebee (Bombus terrestris)	BAS 310 55 I	Acute, adult toxicity	Oral toxicity (LD ₅₀)	> 26.4 μg prep./bee (> 1.325 μg a.s./bee)
Bumblebee (Bombus terrestris)	BAS 310 55 I	Acute, adult toxicity	Contact toxicity (LD ₅₀)	> 17.9 μg prep./bee (> 0.9 μg a.s./bee)

¹⁾ study not fully in line with the currently accepted test guidelines

Potential for accumulative toxicity: not assessed.

Semi-field test (Cage and tunnel test)

In total, three cage studies and five tunnel tests are available, in which the representative formulation BAS 310 55 I or the minor change formulation BAS 310 51 I were applied at a rate of 15 and 30 g a.s./ha, either during

or after bee flight. All available studies showed consistent results, which are summarized below.					
Species	Test substance	Type of test	Results		
Honeybee (Apis mellifera)	BAS 310 55 I	Tunnel test in Phacelia tanacetifolia	Clear but short-lasting effects on adult bee mortality and flight density after application during bee flight at 0.3 and 0.6 L product/ha (equivalent to 15 and 30 g a.s./ha). No notable effects on mortality of pupae. No notable effects on brood and colony.		
Honeybee (<i>Apis mellifera</i>)	BAS 310 55 I	Tunnel test in Phacelia tanacetifolia	Only limited, non-statistically significant and temporary effects on mortality and flight density after application after bee flight at 0.6 L product/ha (30 g a.s./ha). Moderate statistically significant effects on mortality and foraging activity, which were also temporary, following application during bee flight at 0.3 L product/ha (15 g a.s./ha). No notable effects on brood and colony.		
Honeybee (Apis mellifera)	BAS 310 51 I	Tunnel test in Phacelia tanacetifolia ³	Clear but temporary effects on adult bee mortality, flight density and behaviour after application during bee flight at 0.6 L product/ha (equivalent to 30 g a.s./ha). No notable effects on mortality of pupae. No notable effects on brood and colony.		
Honeybee (Apis mellifera)	BAS 310 51 I	Cage test in Phacelia tanacetifolia	Temporary, short lasting and slight effects on mortality, flight density and behaviour after application during bee flight at 0.6 L product/ha (30 g a.s./ha). No conclusion can be drawn from the brood data. No notable effects on the colony.		
Honeybee (Apis mellifera)	BAS 310 51 I	Cage test in Phacelia tanacetifolia	Clear but temporary effects on mortality and flight density after application during bee flight at 0.6 L product/ha (30 g a.s./ha). No notable effects on brood and colony.		
Honeybee (Apis mellifera)	BAS 310 51 I	Cage test in Phacelia tanacetifolia	Slight and temporary effects on mortality and flight density after application during bee flight at 0.6 L product/ha (30 g a.s./ha). No notable effects on brood and colony. No unacceptable effects on mortality and flight density following application after bee flight at 06 L product/ha (30 g a.s./ha). No		
Honeybee (Apis mellifera)	BAS 3101 55 I	Tunnel test in Phacelia tanacetifolia	unacceptable effects on brood and colony. Clear but temporary effects on mortality, flight density and behaviour after application during bee flight at 0.6 L product/ha (30 g a.s./ha). Slight and temporary effects on mortality and flight density after application after bee flight at 0.6 L product/ha (30 g a.s./ha). In the absence of a pollen source in the crop the amount of pollen in the combs decreased during the test period, thereby reducing the bee brood. Taking this into consideration, no unacceptable effects on brood and colony were observed.		

Honeybee (Apis mellifera)	BAS 3101 55 I	Tunnel test in Phacelia tanacetifolia	Clear but temporary effects on mortality and flight density after application during bee flight at 0.6 L product/ha (30 g a.s./ha). No unacceptable effects on brood and colony.
			No significant effects following application after bee flight at 0.6 L product/ha (30 g a.s./ha). No notable effects on brood and colony.

Field tests

In total, five field effect studies are available, in which the representative formulation BAS 310 55 I or the minor change formulation BAS 310 51 I were applied at a rate of 15 and 30 g a.s./ha, either during or after bee flight. All available studies showed consistent results, which are summarized below.

In addition, five field exposure studies are available, in which residues of alpha-cypermethrin in pollen, nectar and/or flowers were measured. Note that some of the field exposure studies were done at the same time, and were reported in the same study report, as the field effect studies.

Species	Test substance	Type of test	Results
Honeybee (Apis mellifera)	BAS 310 55 I	Field test in Phacelia tanacetifolia	Clear but temporary effects on mortality and flight density after application during bee flight at 0.3 L product/ha (15 g a.s./ha). No notable effects on brood and colony observed, but the results for the colony strength assessment were considered unreliable. Slight and temporary effects on mortality following application after bee flight at 0.6 L (30 g a.s./ha). No notable effects on brood and colony observed, but the results for the colony strength assessment were considered unreliable.
Honeybee (Apis mellifera)	BAS 310 51 I	Field test in Phacelia tanacetifolia	No significant effects after application after bee flight at 0.6 L product/ha (30 g a.s./ha). No notable effects on brood and colony.
			Clear but temporary effects on bee mortality, flight density and behaviour after application during bee flight at 0.6 L product/ha (30 g a.s./ha). The size of the colonies did not increase, while the control did. The results from this study can therefore not be considered to exclude effects on colony strength.
Honeybee (Apis mellifera)	BAS 310 51 I	Field test in Phacelia tanacetifolia	Clear but temporary effects on flight density and behaviour after application during bee flight at 0.6 L product/ha (30 g a.s./ha). No significant effects on bee mortality. No notable effects on brood and colony.
Honeybee (Apis mellifera)	BAS 310 55 I	Field test in Phacelia tanacetifolia	Clear but temporary effects on mortality, flight density and behaviour after application during bee flight at 0.6 L product/ha (30 g a.s./ha). No notable effects on brood and colony.
Honeybee (Apis mellifera)	BAS 310 55 I	Field test in Phacelia tanacetifolia	Clear but temporary effects on mortality and behaviour after application during bee flight at 0.6 L product/ha (30 g a.s./ha). No significant effects on foraging activity. No notable effects on brood and colony observed, but the results for the colony strength assessment were

			considered unreliable.
			After application of 2 x 0.3 L/ha (2 x 15 g a.s./ha): moderate effects on mortality and foraging activity after the 1 st application, no unacceptable effects on mortality and foraging activity after the 2^{nd} application. No notable effects on brood and colony observed, but the results for the colony strength assessment were considered unreliable.
Honeybee (Apis mellifera)	Several alpha- cypermethrin containing formulations ¹	Residue analysis in honey/nectar and pollen from treated <i>Phacelia</i> <i>tanacetifolia</i> fields	Residues derived from in-hive samples (7 DAA and 14 DAA) from honeybee effect studies : Treated pollen showed residues of alpha- cypermethrin ranging from 0.003 to 0.012 mg/kg 7 DAA, and from < 0.003 to 0.026 mg/kg 14 DAA, depending on the study site. No alpha-cypermethrin was detected (LOD 0.003 mg/kg) in any honey/nectar specimens
Honeybee (Apis mellifera)	BAS 310 55 I	Residue analysis in honey/nectar and pollen from treated <i>Phacelia</i> <i>tanacetifolia</i> fields	Residues derived through bee sampling (1DAA) and from in-hive samples (7DAA) from honeybee field effect study: Treated pollen showed residues of alpha- cypermethrin ranging from 0.06 to 0.38 mg/kg at 1DAA (bee sampling) and from <loq to<br="">0.03 mg/kg at 7DAA (in-hive sampling). No measurable alpha-cypermethrin residues (LOQ = 0.01 mg/kg) were detected in any of the honey/nectar specimens at 1 DAA and 7DAA.</loq>
Honeybee (Apis mellifera)	BAS 310 55 I	Residue analysis in honey/nectar and pollen from treated <i>Phacelia</i> <i>tanacetifolia</i> fields	Residues derived from in-hive samples (7DAA and 14DAA) from honeybee effect study: Treated pollen showed residues of alpha- cypermethrin ranging from <loq 0.03<br="" to="">mg/kg at 7DAA, and <loq 14="" at="" daa.<br="">No measurable alpha-cypermethrin residues (LOQ = 0.01 mg/kg) were detected in any of the honey/nectar specimens at 7DAA and 14 DAA.</loq></loq>
Honeybee (Apis mellifera)	BAS 310 55 I	Residue analysis in flowers, nectar and pollen from treated oilseed rape	Applied rate: 30 g alpha-cypermethrin/ha; highest residues were found in pollen (hand sampling) with 90 th percentile 9.37 mg a.s./kg and an average of 6.52 mg a.s./kg
Honeybee (Apis mellifera)	BAS 310 55 I	Residue analysis in flowers, nectar and pollen from treated oilseed rape	Applied rate: 30 g alpha-cypermethrin /ha; highest residues were found in pollen. For pollen obtained through hand sampling: 90 th percentile 9.088 mg a.s./kg and an average of 7.90 mg a.s./kg. For pollen obtained through bee sampling: 90 th percentile 0.978 mg a.s./kg and an average of 0.632 mg a.s./kg

¹ BAS 310 40 I (100 g/L EC formulation), BAS 310 06 I (50 g/L EC formulation), BAS 310 08 I (15% WG formulation) and BAS 310 41 I (100 g/L SC formulation)

² Bee larvae were fed contaminated food for 4 days (day 3 to 6), in line with the OECD Test Guideline 239 (honeybee larval toxicity, repeated exposure). The EFSA Guidance Document for bees (2013) however recommends a 5 day feeding/exposure period.

³ Because of a relatively high mortality in the control, and a higher pre-treatment mortality in the reference item treatment compared to the control, the reliability of the results from this study could be questioned. Therefore, this study is only considered as supportive information.

Tier 1 Risk assessment according to SANCO/10329/2002 and EPPO (2010)

Species	Test substance	Risk quotient	HQ	Trigger		
Honeybee (Apis mellifera)	Alpha-cypermethrin	HQ _{oral}	169	50		
Honeybee (Apis mellifera)	Alpha-cypermethrin	HQ _{contact}	333	50		
Honeybee (Apis mellifera)	BAS 310 55 I	HQ _{oral}	552	50		
Honeybee (Apis mellifera)	BAS 310 55 I	HQ _{contact}	612	50		
Honeybee (Apis mellifera)	Alpha-cypermethrin	TER _{CH,adult}	< 0.354	1		
Honeybee (Apis mellifera)	Alpha-cypermethrin	TER _{CH,larvae}	≥ 0.409	1		

Risk assessment for Cereals at 1-2 x 10 g a.s./ha and oilseed rape at 1-2 x 10 g a.s./ha

Note: HQ and TER values in bold exceed, respectively are below, the trigger, indicating that further consideration is required.

Risk assessment for Lettuce and leafy cabbage at 1-2 x 10 g a.s./ha or 1 x 20 g a.s./ha

Species	Test substance	Risk quotient	HQ	Trigger
Honeybee (Apis mellifera)	Alpha-cypermethrin	HQ _{oral}	339	50
Honeybee (Apis mellifera)	Alpha-cypermethrin	HQ _{contact}	667	50
Honeybee (Apis mellifera)	BAS 310 55 I	HQ _{oral}	1104	50
Honeybee (Apis mellifera)	BAS 310 55 I	HQ _{contact}	1243	50
Honeybee (Apis mellifera)	Alpha-cypermethrin	TER _{CH,adult}	< 0.354	1
Honeybee (Apis mellifera)	Alpha-cypermethrin	TER _{CH,larvae}	≥ 0.409	1

Note: HQ and TER values in bold exceed, respectively are below, the trigger, indicating that further consideration is required.

Risk assessment for Cucumber and courgette at 1-2 x 15 g a.s./ha or 1 x 30 g a.s./ha (indoor use – restricted to permanent greenhouses)

No risk assessment required as no exposure to bees is expected from the use in permanent greenhouses.

Tier 1 Risk assessment according to EFSA (2013)

Risk assessment for Cereals at 1-2 x 10 g a.s./ha, oilseed rape at 1-2 x 10 g a.s./ha, and lettuce and leafy cabbage at 1-2 x 10 g a.s./ha or 1 x 20 g a.s./ha.

For the use in cucumber and courgette at $1-2 \ge 15 \ge a.s./ha$ or $1 \ge 30 \ge a.s./ha$, which is restricted to permanent greenhouses, no exposure to bees is expected. Therefore, no risk assessment is required for this use.

Test substance	Сгор	Application rate (g/ha)	LD ₅₀ (µg/bee)	HQ	Trigger value
Alpha	Cereals	10	0.030	333	42
cypermethrin	Oilseed rape	10	0.030	333	42
	Leafy vegetables ¹⁾	20	0.030	667	42
DAG 210 55 I	Cereals	198.2 ²⁾	0.319	621	42
DAS 310 33 I	Oilseed rape	198.2 ²⁾	0.319	621	42

Acute contact exposure for adult honeybees – screening step

	Leafy vegetables ¹⁾	396.4 ²⁾	0.319	1243	42
1) .		11 2) 1		× a 1 + 1 +	

¹⁾ the proposed use in lettuce and leafy cabbage ²⁾ maximum application rate in mL/ha multiplied by the product density of 0.991 g/cm³; TER values shown in bold are below the trigger.

Test substance	: alpha-cypermet	hrin					
Сгор	Scenario	BBCH	Appl. Rate (g/ha)	f _{dep}	LD ₅₀ (µg/bee)	HQ	Trigger
	treated crop	\geq 40	10	1		333	
Cereals	weeds	\geq 40	10	0.3		100	
	field margin	\geq 40	10	0.028		9.33	
	treated crop	\geq 40	10	1	0.020	333	40
Oilseed rape	weeds	\geq 40	10	0.25	0.050	83.3	42
	field margin	\geq 40	10	0.028		9.33	
Leafy	weeds	< 50	20	1		667	
vegetables 1)	field margin	< 50	20	0.028		18.67	
Test substance	: BAS 310 55 I						
Сгор	Scenario	BBCH	Appl. Rate (g/ha) ²⁾	f _{dep}	LD ₅₀ (µg/bee)	HQ	Trigger
	treated crop	\geq 40	198.2	1		621	
Cereals	weeds	\geq 40	198.2	0.3		186	
	field margin	\geq 40	198.2	0.028		17.4	
	treated crop	\geq 40	198.2	1	0.210	621	40
Oilseed rape	weeds	\geq 40	198.2	0.25	0.519	155	42
	field margin	\geq 40	198.2	0.028		17.4	
Leafy	weeds	< 50	396.4	1		1243	
vegetables ¹⁾	field margin	< 50	396.4	0.028		34.8]

Acute contact exposure of adult honeybees – Tier 1

¹⁾ the proposed use in lettuce and leafy cabbage; ²⁾ maximum application rate in mL/ha multiplied by the product density of 0.991 g/cm³; TER values shown in bold are below the trigger.

Acute and chronic oral exposure of adult honeybees and honeybee larvae – screening step

Type of assessment	Test substance	Сгор	Application rate (kg a.s./ha)	sv	Endpoint	ETR	Trigger value
Acute oral	Alpha-	Cereals	0.010	7.6		1.29	0.2
exposure adult bees	cypermethrin	Oilseed rape	0.010	7.6	0.059 µg	1.29	0.2
		Lettuce	0.020	7.6	a.s./bee	2.58	0.2
		Leafy cabbage		7.6		2.58	0.2
	BAS 310 55 I	Cereals	0.198 1)	7.6		4.19	0.2
		Oilseed rape	0.198 1)	7.6	0.359 µg	4.19	0.2
		Lettuce	0.396 ¹⁾	7.6	product/bee	8.38	0.2
		Leafy cabbage	0.396 1)	7.6		8.38	0.2
Chronic oral	Alpha-	Cereals	0.010	7.6		0.69	0.03
exposure adult bees	cypermethrin	Oilseed rape	0.010	7.6	0.11 µg	0.69	0.03
		Lettuce	0.020	7.6	a.s./bee/day	1.38	0.03
		Leafy cabbage	0.020	7.6		1.38	0.03
Chronic oral	Alpha-	Cereals	0.010	4.4		5.5	0.2
exposure larvae	cypermethrin	Oilseed rape	0.010	4.4	\geq 0.008 µg a.s./ larvae per	5.5	0.2
		Lettuce	0.020	4.4	developmental	11.0	0.2
		Leafy cabbage	0.020	4.4	period	11.0	0.2

¹⁾ maximum application rate in L/ha multiplied by the product density of 0.991 g/cm³; SV: Shortcut value; **bold** values exceed the trigger, indicating a potential risk.

Сгор	Scenario	BBCH	Appl. rate (kg a.s./ha)	$\mathbf{E_{f}}$	SV	Endpoint (µg a.s./bee)	ETR	Trigger value
	Treated crop	40-69		1	0.92		0.16	
	Treated crop	≥ 70		1	0		0	
	Weeds	40-69		0.3	3.7		0.19	
		≥ 70		0.3	3.7		0.19	
	Field margin	40-69		0.0092	3.7		0.006	
Coroals		≥ 70	0.01	0.0092	3.7	0.059	0.006	0.2
Cerears	Adjacent crop	40-69	0.01	0.0033	7.6	0.059	0.004	0.2
		≥ 70		0.0033	7.6		0.004	
	Succeeding crop	40-69		1	0.7		0.12	
		≥ 70		1	0.7		0.12	
	Treated crop	40-69	_	1	7.6		1.29	
	Weeds	40-69		0.25	3.7		0.16	0.2
Oilsond	Field margin	40-69		0.0092	3.7		0.006	
rape	Adjacent crop	40-69	0.01	0.0033	7.6	0.059	0.004	
	Succeeding crop	40-69		1	0.7		0.12	
	Treated crop	10-49		1	0		0	
	Weeds	10-49		1	3.7		1.25	
Lettuce /	Field margin	10-49		0.0092	3.7		0.012	
Leafy cabbage	Adjacent crop	10-49	0.02	0.0033	7.6	0.059	0.009	0.2
	Succeeding crop	10-49		1	0.7		0.24	

Acute oral exposure of adult honeybees –	Tier	1	(ETR	values	calculated	based	on	toxicity	data fo	r the
active substance alpha-cypermethrin)										

SV: Shortcut value; E_f : exposure factor; bold values exceed the trigger, indicating a potential risk

Acute oral exposure of adult honeybees – Tier 1 (ETR values calculated based on toxicity data for the representative formulation BAS 310 55 I)

Сгор	Scenario	BBCH	Appl. rate (kg a.s./ha) ¹⁾	$\mathbf{E_{f}}$	SV	Endpoint (µg a.s./bee)	ETR	Trigger value
	Trastad grop	40-69		1	0.92		0.51	
	Treated crop	≥ 70		1	0		0	
	Woods	40-69		0.3	3.7		0.61	
	weeus	≥ 70		0.3	3.7		0.61	
Caraala	Field margin	40-69	0.108	0.0092	3.7	0.250	0.019	0.2
Cereais	Field margin	≥ 70	0.198	0.0092	3.7	0.339	0.019	0.2
	Adjacent	40-69		0.0033	7.6		0.014	
	crop	≥ 70		0.0033	7.6		0.014	
	Succeeding	40-69		1	0.7		0.39	
	crop	≥ 70		1	0.7		0.39	
	Treated crop	40-69		1	7.6		4.19	
	Weeds	40-69		0.25	3.7		0.51	
Oilsoad	Field margin	40-69		0.0092	3.7		0.018	
Oilseed rape	Adjacent crop	40-69	0.198	0.0033	7.6	0.359	0.014	0.2
	Succeeding crop	40-69		1	0.7		0.39	

	Treated crop	10-49		1	0		0	
Lettuce /	Weeds	10-49		1	3.7		4.08	
Lettuce /	Field margin	10-49		0.0092	3.7		0.038	
Leafy cabbage	Adjacent crop	10-49	0.396	0.0033	7.6	0.359	0.028	0.2
	Succeeding crop	10-49		1	0.7		0.77	

¹⁾ maximum application rate in L/ha multiplied by the product density of 0.991 g/cm³; SV: Shortcut value; E_{f} : exposure factor; bold values exceed the trigger, indicating a potential risk

Сгор	Scenario	BBCH	Appl. rate (kg a.s./ha)	E _f	sv	twa	Endpoint (µg a.s./ bee/day)	ETR	Trigger value
	Treated	40-69		1	0.92			0.060	
	crop	≥ 70		1	0			0	
	Woods	40-69		0.3	2.9			0.057	
	weeus	≥ 70		0.3	2.9			0.057	
	Field	40-69	0.01	0.0092	2.9	0.72	0.11	0.002	0.02
cereals	margin	≥ 70	0.01	0.0092	2.9	0.72	0.11	0.002	0.03
	Adjacent	40-69		0.0033	5.8			0.001	
	crop	≥ 70		0.0033	5.8			0.001	
	Succeeding	40-69		1	0.54			0.035	
	crop	≥ 70		1	0.54			0.035	
oilseed	Treated crop	40-69	0.01	1	5.8			0.035 0.38 0.047 0.002	0.03
	Weeds	40-69		0.25	2.9	0.72			
	Field margin	40-69		0.0092	2.9		0.11	0.002	
Тарс	Adjacent crop	40-69		0.0033	5.8			0.001	
	Succeeding crop	40-69		1	0.54			0.035	
	Treated crop	10-49		1	0			0	
	Weeds	10-49		1	2.9			0.38	
Lettuce / Leafy cabbage	Field margin	10-49	0.02	0.0092	2.9	0.72	0.11	0.003	0.03
	Adjacent crop	10-49		0.0033	5.8	-		0.003	
	Succeeding crop	10-49		1	0.54			0.071	

Chronic oral exposure of adult honeybees – Tier 1.

SV: Shortcut value; E_f : exposure factor; bold values exceed the trigger, indicating a potential risk

Chronic oral exposure of honeybee larvae - Tier 1.

Сгор	Scenario	BBCH	Appl. rate (kg a.s./ha)	Ef	SV	twa	Endpoint (µg a.s./larva)	ETR	Trigger value
	Tracted aron	40-69		1	0.15			≤ 0.16	
	Treated crop	≥ 70		1	0			0	
	Woods	40-69		0.3	2.2			≤ 0.70	
	weeus	≥ 70		0.3	2.2			≤ 0.70	
Caraala	Field margin	40-69	0.01	0.0092	2.2	0.95	> 0.008	≤ 0.022	0.2
Celeals	Field margin	≥ 70	0.01	0.0092	2.2	0.85	≥ 0.008	≤ 0.022	0.2
	Adjacent	40-69		0.0033	4.4			≤ 0.015	
-	crop	≥ 70		0.0033	4.4			≤ 0.015	I
	Succeeding	40-69		1	0.4			≤ 0.43	
	crop	≥ 70		1	0.4			≤ 0.42	

	Treated crop	40-69		1	4.4			≤ 4.68	
	Weeds	40-69		0.25	2.2			≤ 0.58	
Oilsond	Field margin	40-69		0.0092	2.2			≤ 0.022	
rape	Adjacent	40.60	0.01	0.0033	4.4	0.85	\geq 0.008	< 0.015	0.2
Tape	crop	40-09		0.0055	4.4			≤ 0.013	
	Succeeding	40.60		1	0.2			< 0.21	
	crop	40-09		1	0.2			≤ 0.21	
	Treated crop	10-49		1	0			0	
	Weeds	10-49		1	2.2			≤ 4.68	
Lettuce /	Field margin	10-49		0.0092	2.2			≤ 0.043	
Leafy cabbage	Adjacent	10.40	0.02	0.0033	4.4	0.85	≥ 0.008	< 0.031	0.2
	crop	10-49		0.0055	4.4			_ 0.031	
	Succeeding	10-49		1	0.4			< 0.85	
	crop	10-49		1	0.4			- 0.05	

SV: Shortcut value; E_{f} : exposure factor; bold values exceed the trigger, indicating a potential risk

Exposure to contaminated guttation water

Type of assessment	Water consumption (µL)	PEC (µg/µL) ¹	Endpoint	ETR	Trigger
Acute oral exposure adult bees	11.4	0.000003	0.059 µg a.s./bee	0.00058	0.2
Chronic oral exposure adult bees	11.4	0.00000162	0.11 μg a.s./bee/day	0.00017	0.03
Chronic oral exposure larvae	111	0.00000216	≥ 0.008 µg a.s./ larvae per developmental period	\leq 0.030	0.2

¹based on a maximum water solubility of 3 μ g/L for alpha-cypermethrin; **bold** values exceed the trigger, indicating a potential risk

Exposure to contaminated surface water

Type of assessment	Сгор	Water consumption (µL)	PEC (µg/µL)	Endpoint	ETR	Trigger
Acute oral exposure adult bees	All proposed uses	11.4	0.201 x 10 ⁻⁶	0.059 µg a.s./bee	3.884 x 10 ⁻⁵	0.2
Chronic oral exposure adult bees	All proposed uses	11.4	0.201 x 10 ⁻⁶	0.11 μg a.s./bee/day	2.083 x 10 ⁻⁵	0.03
Chronic oral exposure larvae	All proposed uses	111	0.201 x 10 ⁻⁶	≥ 0.008 μg a.s./ larvae per developmental period	≤ 0.00279	0.2

bold values exceed the trigger, indicating a potential risk

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test	End point	Toxicity
	Substance		

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	BAS 310 51 I	Mortality, LR_{50} Reproduction, ER_{50}	0.038 mL prep./ha (1.90 mg a.s./ha) Effects on reproduction were not assessed
Aphidius rhopalosiphi	BAS 310 51 I	Mortality, LR_{50} Reproduction, ER_{50}	0.631 mL prep./ha (31.49 mg a.s./ha) Effects on reproduction were not assessed

First tier risk assessment for – Cereals at $1-2 \ge 10$ g a.s./ha, oilseed rape at $1-2 \ge 10$ g a.s./ha, lettuce and leafy cabbage at $1-2 \ge 10$ g a.s./ha or $1 \ge 20$ g a.s./ha.

For the use in cucumber and courgette at 1-2 x 15 g a.s./ha or 1 x 30 g a.s./ha, which is restricted to permanent greenhouses, no exposure to bees is expected. Therefore, no risk assessment is required for this use.

Test substance	Species	Effect	HQ in-field	HQ off-field ¹	Trigger
		(LR ₅₀ g a.s./ha)			
BAS 310 55 I	Typhlodromus pyri	0.0019	10526	291.6	2
BAS 310 55 I	Aphidius rhopalosiphi	0.03149	635	17.6	2

¹HQ value caclulated for the use in lettuce and leafy cabbage, for which a distance of 1 m was assumed to calculate the drift rate. The off-field exposure for this use covers the off-field exposure for the proposed use in cereals and oilseed rape.

Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)	End point	% effect ¹	ER ₅₀
Typhlodromus pyri	Nymphs	BAS 310 51 I, Natural substrate (bean leaf disks)	7 days of exposure	0.25 – 4 mL prep./ha, Fresh residues	Mortality, reproduction	LR ₅₀ = 0.264 mL product/ha (= 13.7 mg a.s./ha) No effects on reproduction up to 0.25 mL product/ha (12.5 mg a.s./ha). Reproduction at higher doses not assessed	-

Extended laboratory tests, aged residue tests

Typhlodromus pyriNymphsBAS 310 55 I, Leaf discs from treated potted vine plants (either upper leaf surface or lower leaf surface)7 days of exposure9, 17, 30 g a.s./ha ing 2 x. is g a.s./ha (7-day interval),Mortality, reproductionExposure to residues on lower leaf surfacei (<50%) on survival and reproduction on aged as./ha, on DAT 56, 84, 102 x. 15 g a.s./ha on survival and reproduction on aged as./ha, on DAT 112 at 28 at 180 and on DAT 112 at 2 x 300 mL/ha (2 x 15 g a.s./ha)Exposure to residues on as./ha), on DAT as./ha) and on DAT 112 at 2 x 300 mL/ha (2 x 15 g a.s./ha)Exposure to residues on survival and reproduction on aged as./ha), on DAT 156 at 340 and (2 x 15 g a.s./ha)Exposure to tresidues on upper leaf survival and reproduction on DAT 112 at 2 x 300 mL/ha (2 x 15 g a.s./ha)Exposure to tresidues on survival and reproduction on DAT 168 at 340 mL/ha (7 g a.s./ha), the effect on survival and reproduction on DAT 168 at 340 mL/ha (7 g a.s./ha) the effect on survival and reproduction on DAT 168 at 340 mL/ha (7 g a.s./ha) the effect on survival and at 2	Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)	End point	% effect ¹	ER ₅₀
x 300 mL/ha (2 x 15 g a.s./ha) on	<i>Typhlodromus</i> <i>pyri</i>	Nymphs	BAS 310 55 I, Leaf discs from treated potted vine plants (either upper leaf surface or lower leaf surface)	7 days of exposure	9, 17, 30 g a.s./ha and 2 x 15 g a.s./ha (7-day interval), Fresh or aged residues of 7, 28, 56, 84, 112, 140 and 168 days	Mortality, reproduction	Exposure to fresh and aged- residues on lower leafsurface: no unacceptableeffects (< 50%) on survival and reproduction on DAT 28 at 180 mL/ha (9 g a.s./ha), on DAT 56 at 340 and 600 mL/ha (17 and 30 g a.s./ha) and on DAT 112 at 2 x 300 mL/ha (2 x 15 g a.s./ha)Exposure to fresh and aged- residues on upper leaf surface: no unacceptable effects (<50%) on survival and reproduction on DAT 56 at 180 mL/ha (9 g a.s./ha). On DAT 168 at 340 mL/ha (17 g a.s./ha) the effect on reproduction on DAT 56 at 180 mL/ha (17 g a.s./ha) the effect on reproduction of 50.3% was still slightly above the 50% trigger. Effects on survival >50% still occurred at 600 mL/ha (2 x 15 g a.s./ha) on DAT 168	

Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)	End point	% effect ¹	ER ₅₀
Aphidius rhopalosiphi	Adults	BAS 310 51 I, barley seedlings	48 h of exposure	3.76 – 120 mL prep./ha, fresh residues	Mortality, reproduction	LR ₅₀ = 76.1 mL product/ha (3.80 g a.s./ha) 10.7-20.0% effects on reproduction up to 60 mLproduct/ha (2.99 mg) a.s./ha). Reproduction at higher doses not assessed.	-
Coccinella septempunctata	Larvae	BAS 310 51 I, detached bean leaves	11-15 days of exposure	0.125 – 2 mL prep./ha, fresh residues	Mortality, reproduction	$LR_{50} = 1.04 \text{ mL}$ product/ha (= 51.90 mg a.s./ha) Reproduction was comparable to the control for treatments up to 1.0 mL product/ha (=49.90 mg a.s./ha). Reproduction at higher rates was not assessed.	-
Chrysoperla carnea	Larvae	BAS 310 51 I, detached bean leaves	13-19 days of exposure	2 – 160 mL prep./ha, fresh residues	Mortality, reproduction	LR ₅₀ = 58.7 mL product/ha (= 2.88 g a.s./ha) Reproduction was comparable to the control for treatments up to 80 mL product/ha (= 3.99 g a.s./ha). Reproduction at higher rates was not assessed	-

Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)	End point	% effect ¹	ER ₅₀
Orius laevigatus	Nymphs	BAS 310 51 I, detached bean leaves	9 days of exposure	0.5 – 8.0 mL prep./ha, fresh residues	Mortality, reproduction	LR ₅₀ = 2.24 mL product/ha (= 111.78 mg a.s./ha) 11.61 – 18.02 % effects on reproduction up to 2 mL product/ha (= 99.8 mg a.s./ha). Reproduction at higher rates was not assessed.	-
Aleochara bilineata	Adults	BAS 310 51 I, on a worst-case natural soil	28 days of exposure	7.6 – 120 mL prep./ha, fresh residues	reproduction	26.3 % effect on reproduction at 120 mL product/ha (5.99 g a.s./ha)	-

¹ A positive value indicates a decrease in reproduction, relative to the control

Risk assessment based on extended lab and aged residue tests for – Cereals at $1-2 \ge 10 \ge a.s./ha$, oilseed rape at $1-2 \ge 10 \ge a.s./ha$, lettuce and leafy cabbage at $1-2 \ge 10 \ge a.s./ha$ or $1 \ge 20 \ge a.s./ha$. For the use in cucumber and courgette at $1-2 \ge 15 \ge a.s./ha$ or $1 \ge 30 \ge a.s./ha$, which is restricted to permanent greenhouses, no exposure to bees is expected. Therefore, no risk assessment is required for this use.

Species	Endpoints	In-field rate	Off-field rate ¹
Typhlodromus pyri	$LR_{50} = 0.0137$ g a.s./ha No effects > 50% on reproduction up to 0.0125 g a.s./ha	20 g a.s./ha	0.0554 g a.s./ha ²
Typhlodromus pyri	Exposure to lower leaf surface: no unacceptable effects on survival and reproduction on DAT 28 at 180 mL/ha (9 g a.s./ha), on DAT 56 at 340 and 600 mL/ha (17 and 30 g a.s./ha) and on DAT 112 at 2 x 300 mL/ha (2 x 15 g a.s./ha) Exposure to upper leaf surface: no unacceptable effects on survival and reproduction on DAT 56 at 180 mL/ha (9 g a.s./ha). On DAT 168 at 340 mL/ha (17 g a.s./ha) the effect on reproduction of 50.3% was still slightly above the 50% trigger. Effects on survival >50% still occurred at 600 mL/ha (30 g a.s./ha) and at 2 x 300 mL/ha (2 x 15 g a.s./ha) on DAT 168.	20 g a.s./ha	_ 4

Species	Endpoints	In-field rate	Off-field rate ¹
Aphidius rhopalosiphi	$\label{eq:LR50} \begin{split} LR_{50} &= 3.80 \text{ g a.s./ha} \\ \text{No effects} > 50\% \text{ on} \\ \text{reproduction up to } 2.99 \text{ g a.s./ha} \end{split}$	20 g a.s./ha	0.554 g a.s./ha ³
Coccinella septempunctata	$LR_{50} = 0.0519$ g a.s./ha No effects > 50% on reproduction up to 0.0499 g a.s./ha	20 g a.s./ha	0.0554 g a.s./ha ²
Chrysoperla carnea	$LR_{50} = 2.88 \text{ g a.s./ha}$ No effects > 50% on reproduction up to 3.99 g a.s./ha	20 g a.s./ha	0.0554 g a.s./ha 2
Orius laevigatus	$LR_{50} = 0.112$ g a.s./ha No effects > 50% on reproduction up to 0.0998 g a.s./ha	20 g a.s./ha	0.0554 g a.s./ha ²
Aleochara bilineata	No unacceptable effects on reproduction up to 5.99 g a.s./ha	20 g a.s./ha	0.0554 g a.s./ha ²

¹Off-field rate a calculated for the use in lettuce and leafy cabbage, for which a distance of 1 m was assumed to calculate the drift rate. The off-field exposure for this use covers the off-field exposure for the proposed use in cereals and oilseed rape. ²off-field rate calculated for 2D exposure

³off field rate calculated for 3D exposure

⁴An aged-residue study is not considered appropriate to address the off-field risk. In order to allow re-colonisation of the infield area, which is more realistic than real recovery in case of an insecticide, no effect should be allowed to occur in the offfield area

Semi-field tests

No additional semi-field tests have been submitted

Field studies

Three new field studies with the representative formulation BAS 310 55 I have been submitted, of which two assess the effects on mites in in-crop areas, and one assesses the effects on arthropod communities in off-crop areas. The study in off-crop areas consisted of two assessments, which are reported in two separate study reports. Both assessments were performed at the same time on the same field, and investigated either the complete non-target arthropod community or the non-target mite community. In addition, two in-crop field studies have been carried out with the SC formulation BAS 310 03 I. Although performed with another formulation, these two in-crop field studies are considered to be representative for the risk assessment for BAS 310 55 I

Species	Test substance	Crop	Application rates/ effects		
In-crop field studies					
Predatory mites (Acari: Phytoseiidae), Natural populations	BAS 310 55 I	Vineyard (Northern France)	2 × 0.15 L product/ha (= 2 x 7.6 g a.s./ha) → At the end of the study period (112 days after the 2 nd application), mite populations in the plots treated with BAS 310 55 I were recovering. However, there was still a statistically significant effect of 37.46% compared to the control. As this effect is < 50%, it was considered that there were no unacceptable effects at 2 x 0.15 L BAS 310 55 I/ha.		

Predatory mites (Acari: Phytoseiidae), Natural populations	BAS 310 55 I	Vineyard (Southern France)	2 × 0.15 L product/ha (= 2 x 7.6 g a.s./ha) → At the end of the study period (56 days after the 2 nd application), mite populations in the plots treated with BAS 310 55 I were recovering. However, there was still a statistically significant effect of 38.51% compared to the control. As this effect is < 50%, it was considered that there were no unacceptable effects at 2 x 0.15 L BAS 310 55 I/ha.					
Natural arthropod populations	BAS 310 03 I	Cereals (Germany)	2 × 15 g a.s./ha and 3 × 15 g a.s./ha → short-term effects on a wide range of non-target arthropods; no unacceptable long-term effects beyond one season					
Natural arthropod populations	BAS 310 03 I	Cereals/ fallow (Southern France)	2 × 15 g a.s./ha and 3 × 15 g a.s./ha → short-term effects on a wide range of non-target arthropods; no unacceptable long-term effects beyond one season					
Off-crop field studie	S							
Natural arthropod populations	BAS 310 55 I	Grassland (South-West France)	1, 3, 9, 27 and 52 mL product/ha → slight effects on 2 taxa at 9 mL product/ha, no unacceptable long-term effects. Short-term effects on 2 taxa at 27 mL product/ha and on 6 taxa at 52 mL product/ha. Recovery occurred within 2 months after application community NOER = 52 mL/ha population NOEAER = 9 mL/ha population NOER = 1 mL/ha ¹⁾					
Natural mite populations	BAS 310 55 I	Grassland (South-West France)	1, 3, 9, 27 and 52 mL product/ha → no unacceptable long-term effects on non-target mites community NOER = 52 mL/ha population NOER = 52 mL/ha					
Additional specific	Additional specific test							
NT 1112 1 12								

No additional specific tests have been submitted.

¹⁾ At Pesticides Peer Review Meeting 177, the NOER from this study was set at 1 mL product/ha, based on a visual observation of the results, which indicated effects of more than 50% for some taxa at 3 mL product/ha, even though this is not supported by statistical relevance. There is however uncertainty on the statistical power of this field study. Taking this into account, the endpoints from this study should be used with care. Member States should pay attention on whether to conditions in the study are representative for the conditions in their country

Risk assessment based on field studies for – Cereals at $1-2 \ge 10$ g a.s./ha, oilseed rape at $1-2 \ge 10$ g a.s./ha, lettuce and leafy cabbage at $1-2 \ge 10$ g a.s./ha or $1 \ge 20$ g a.s./ha, and cucumber and courgette at $1-2 \ge 15$ g a.s./ha or $1 \ge 30$ g a.s./ha.

In-field risk assessment:

As the two available field studies which were performed with BAS 310 55 I were performed with an application rate below the maximum intended use pattern, no conclusion can be drawn from these studies in the higher tier assessment. However, based on the results from the studies with the formulation BAS 310 03 I, it can be concluded that an application of up to 3 x 15 g a.s./ha caused no unacceptable effect on the population development of ground- and foliar dwelling arthropods under field conditions in cereals (no long-term effects beyond one season). Therefore, the in-field risk to non-target terrestrial arthropods can be considered acceptable for the proposed uses of BAS 310 55 I in cereals. At Pesticides Peer Review Meeting 177, it was agreed that the results from these studies can be extrapolated to oilseed rape, but not to lettuce and leafy vegetables. Consequently, the in-field risk to non-target terrestrial arthropods can also be considered acceptable for the proposed uses of BAS 310 55 I in oilseed rape. For the proposed uses in lettuce and leafy vegetables, a higher tier in-field risk assessment for non-target terrestrial arthropods could not be performed, and aan acceptable risk

could not be concluded.									
Off-field risk assessment:									
From the available studies in the off-crop area, a NOER of 0.051 g a.s./ha was derived following expert									
consultation	at Pesticides Pe	eer Review Me	eeting 177. Alt	hough there we	ere some uncer	tainties regarding	ng this		
endpoint, wh	ich are mainly	related to the	statistical powe	er of the study,	it was agreed	that this endpoint	nt could be		
used in a high	her-tier off-fiel	ld risk assessm	ent, without an	n additional saf	ety factor. This	s results in a Re	gulatory		
Acceptable C	Concentration (RAC) for the o	off-field area of	f 0.051 g a.s./h	a. Based on thi	is RAC, the risk	could be		
considered ad	cceptable for a	ll proposed use	es, provided that	at no-spray buf	fer zones are a	pplied.			
Crop	Application	MAF	In-field	Distance	Drift factor	3D Off-field	RAC (g		
	rate (g		PER (g	from the	% drift/100	PER (g	a.s./ha)		
	a.s./ha)		a.s./ha)	edge of the		a.s./ha)			
				crop (m)					
				1	0.0238	0.405			
Cereals	10	1.7	17	5	0.0047	0.080			
				10	0.0024	0.041			
Oilsoad				1	0.0238	0.405			
rano	10	1.7	17	5	0.0047	0.080			
Tape				10	0.0024	0.041			
				1	0.0277	0.554	0.051		
Lattuca	20	1	20	5	0.0057	0.114	0.051		
Lettuce	20	1	20	10	0.0029	0.058			
				15	0.0020	0.040			
				1	0.0277	0.554			
Leafy	20	1	20	5	0.0057	0.114			
cabbage	20	1	20	10	0.0029	0.058			
				15	0.0020	0.040			

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Earthworms					
Earthworm (Eisenia fetida)	Alpha- cypermethrin	Mixed with soil after application to quartz sand /10%	Chronic	Mortality, growth, reproduction	NOEC \geq 4 mg a.s./kg d.w. soil NOEC _{CORR} \geq 2 mg a.s./kg d.w. soil

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Earthworm (Eisenia fetida)	BAS 310 51 I	Mixed with soil as a solution / 5%	Chronic	Mortality	$\begin{split} & EC_{50} > 22.50 \text{ mg} \\ & \text{prep./kg d.w. soil} \\ & (> 1.28 \text{ mg a.s./kg d.w. soil} \\ & EC_{50,CORR} > 11.28 \text{ mg} \\ & \text{prep./kg d.w. soil} \\ & (> 0.64 \text{ mg a.s./kg d.w. soil} \\ & \text{soil}) \end{split}$
				Growth, reproduction	NOEC \geq 22.55 mg prep./kg d.w. soil (\geq 1.28 mg a.s./kg d.w.soil) NOEC _{CORR} \geq 11.28 mg prep./kg d.w. soil (\geq 0.64 mg a.s./kg d.w.soil)
Earthworm (Eisenia fetida)	Alpha- cypermethrin	Mixed with soil as a solution in acetone / natural soil with 2.2% OM	Chronic	Mortality Growth, reproduction	$LC_{50} = 762 \text{ mg a.s./kg}$ d.w. soil $LC_{50,CORR} = 381 \text{ mg}$ a.s./kg d.w. soil $EC_{50} = 31 \text{ mg a.s./kg}$ d.w. soil $EC_{50,CORR} = 15.5 \text{ mg}$ a.s./kg d.w. soil NOEC < 4.65 mg a.s./kg d.w.soil $NOEC_{CORR} < 2.33 \text{ mg}$ a.s./kg d.w.soil
Earthworm (Eisenia fetida)	Alpha- cypermethrin	Mixed with soil as a solution in acetone / natural soil with 2.1% OM	Chronic	Growth, reproduction	$EC_{50} = 23.8 \text{ mg a.s./kg}$ d.w. soil ² $EC_{50,CORR} = 11.9 \text{ mg}$ a.s./kg d.w. soil ² $EC_{10} = 4.8 \text{ mg a.s./kg}$ d.w. soil ² $EC_{10,CORR} = 2.4 \text{ mg}$ a.s./kg d.w. soil ²

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Potworm (Enchytraeus crypticus)	Alpha- cypermethrin	Mixed with soil as a solution in acetone / natural soil with 2.2% OM	Chronic	Mortality Growth, reproduction	$\label{eq:LC_50} \begin{split} & LC_{50} = 31.4 \text{ mg a.s./kg} \\ & d.w. \ soil \\ & LC_{50,CORR} = 15.7 \text{ mg} \\ & a.s./kg \ d.w. \ soil \\ & EC_{50} = 4.91 \text{ mg a.s./kg} \\ & d.w. \ soil \\ & EC_{50,CORR} = 2.46 \text{ mg} \\ & a.s./kg \ d.w. \ soil \\ & EC_{10} = 0.99 \text{ mg a.s./kg} \\ & d.w. \ soil \\ & EC_{10,CORR} = 0.495 \text{ mg} \\ & a.s./kg \ d.w. \ soil \\ & NOEC = 2.51 \text{ mg} \\ & a.s./kg \ d.w. soil \\ & NOEC_{CORR} = 1.26 \text{ mg} \\ & a.s./kg \ d.w. soil \\ \end{split}$
Potworm (Enchytraeus crypticus)	Alpha- cypermethrin	Mixed with soil as a solution in acetone / natural soil with 2.1% OM	Chronic	Growth, reproduction	$\begin{split} & EC_{50} = 0.76 \text{ mg a.s./kg} \\ & d.w. \text{ soil }^2 \\ & EC_{50,CORR} = 0.38 \text{ mg} \\ & a.s./kg \ d.w. \text{ soil }^2 \\ & EC_{10} = 0.12 \text{ mg a.s./kg} \\ & d.w. \text{ soil }^2 \\ & EC_{10,CORR} = 0.06 \text{ mg} \\ & a.s./kg \ d.w. \text{ soil }^2 \end{split}$
Earthworm (Eisenia fetida)	cis-DCVA	Mixed with soil after application to quartz sand /10%	Chronic	Reproduction	NOEC = 6.25 mg/kg d.w. soil NOEC _{CORR} = 3.13 mg/ kg d.w. soil
Earthworm (Eisenia fetida)	3-PBA	Mixed with soil after application to quartz sand /10%	Chronic	Reproduction	NOEC = 4.8 mg/kg d.w. soil NOEC _{CORR} = 2.4 mg/kg d.w. soil
Other soil mac	roorganisms				

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Folsomia candida	Alpha- cypermethrin	Mixed with soil as a	Chronic	Mortality	LC ₅₀ > 258 mg a.s./kg d.w. soil
		solution in acetone /		Reproduction	$LC_{50,CORR} > 129 mg$ a.s./kg d.w. soil
		with 2.2%			$EC_{50} = 60.3 \text{ mg a.s./kg}$ d.w. soil
					$EC_{50,CORR} = 30.15 \text{ mg}$ a.s./kg d.w. soil
					$EC_{10} = 3.69 \text{ mg a.s./kg}$ d.w. soil
					$EC_{10,CORR} = 1.845 \text{ mg}$ a.s./kg d.w. soil
					NOEC = 8.43 mg a.s./kg d.w. soil
					NOEC _{CORR} = 4.215 mg a.s./kg d.w. soil
Folsomia candida	BAS 310 51 I	Mixed with soil as a solution / 5%	Chronic	Mortality	$\label{eq:loss} \begin{split} LC_{50} &> 100 \text{ mg prep./kg} \\ d.w. \ soil \\ (5.0 \ mg \ a.s./kg \ d.w. \ soil) \\ LC_{50,CORR} &> 2.5 \ mg \\ a.s./kg \ d.w. \ soil \\ NOEC &= 50 \ mg \\ prep./kg \ d.w. \ soil \\ (2.5 \ mg \ a.s./kg \ d.w. \ soil) \\ NOEC_{CORR} &= 1.25 \ mg \\ a.s./kg \ d.w. \ soil \\ \end{split}$
				Reproduction	EC ₅₀ = 82.1 mg prep./kg d.w. soil (4.11 mg a.s./kg d.w. soil) EC _{50,CORR} = 2.055 mg a.s./kg d.w. soil EC ₂₀ = 39.5 mg prep./kg d.w. soil (1.98 mg a.s./kg d.w. soil) EC _{20CORR} = 0.99 mg a.s./kg d.w. soil EC ₁₀ = 26.9 mg prep./kg d.w. soil (1.35 mg a.s./kg d.w. soil) EC _{10,CORR} = 0.675 mg a.s./kg d.w. soil NOEC = 25 mg prep./kg d.w. soil (1.25 mg a.s./kg d.w. soil) NOEC _{CORR} = 0.625 mg a.s./kg d.w. soil

m .	T 1	A 10 0		T	
Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Folsomia candida	cis-DCVA	Mixed with soil after application to quartz sand / 5%	Chronic	Mortality	$\begin{split} LC_{50} &> 8 \text{ mg /kg d.w.} \\ soil \\ LC_{50,CORR} &> 4 \text{ mg/kg} \\ d.w. \text{ soil} \\ NOEC &\geq 8 \text{ mg/kg d.w.} \\ soil \\ NOEC_{CORR} &\geq 4 \text{ mg/kg} \\ d.w. \text{ soil} \end{split}$
				Reproduction	$\begin{split} & EC_{50} > 8 \text{ mg /kg d.w.} \\ & \text{soil} \\ & EC_{50,CORR} > 4 \text{ mg/kg} \\ & \text{d.w. soil} \\ & \text{NOEC} \geq 8 \text{ mg/kg d.w.} \\ & \text{soil} \\ & \text{NOEC}_{CORR} \geq 4 \text{ mg/kg} \\ & \text{d.w. soil} \end{split}$
Folsomia candida	3-PBA	Mixed with soil after application to quartz sand / 5%	Chronic	Mortality	$LC_{50} = 400 \text{ mg/kg d.w.}$ soil $LC_{50,CORR} = 200 \text{ mg/kg}$ d.w. soil NOEC = 200 mg/kg d.w. soil $NOEC_{CORR} = 100$ mg/kg d.w. soil
				Reproduction	$EC_{50} > 400 \text{ mg /kg d.w.}$ soil $EC_{50,CORR} > 200 \text{ mg/kg}$ d.w. soil NOEC = 200 mg/kg d.w. soil $NOEC_{CORR} = 100$ mg/kg d.w. soil
Hypoaspis aculeifer	Alpha- cypermethrin	Mixed with soil as a solution in acetone / natural soil with 2.1% OM	Chronic	Growth, reproduction	$EC_{50} = 3.2 \text{ mg a.s./kg} d.w. \text{ soil }^{2} EC_{50,CORR} = 1.6 \text{ mg} a.s./kg d.w. \text{ soil }^{2} EC_{10} = 0.5 \text{ mg a.s./kg} d.w. \text{ soil }^{2} EC_{10,CORR} = 0.25 \text{ mg} a.s./kg d.w. \text{ soil }^{2} $

	1	1			,
Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Hypoaspis aculeifer	BAS 310 55 I	Mixed with soil as a solution / 5%	Chronic	Mortality	$\begin{split} LC_{50} &> 100 \text{ mg prep./kg} \\ d.w. \text{ soil} \\ (5.0 \text{ mg a.s./kg d.w.} \\ soil) \\ LC_{50,CORR} &> 2.5 \text{ mg} \\ a.s./kg d.w. \text{ soil} \\ NOEC &\geq 100 \text{ mg} \\ prep./kg d.w. \text{ soil} \\ (5.0 \text{ mg a.s./kg d.w.} \\ soil) \\ NOEC_{CORR} &\geq 2.5 \text{ mg} \\ a.s./kg d.w. \text{ soil} \end{split}$
				Reproduction	$\begin{split} & EC_{50} > 100 \text{ mg prep./kg} \\ & d.w. \text{ soil} \\ & (5.0 \text{ mg a.s./kg d.w. soil} \\ & EC_{50,CORR} = 2.5 \text{ mg} \\ & a.s./kg d.w. \text{ soil} \\ & \text{NOEC} = 25 \text{ mg} \\ & \text{prep./kg d.w. soil} \\ & (1.25 \text{ mg a.s./kg d.w. soil} \\ & \text{NOEC}_{CORR} = 0.625 \text{ mg} \\ & a.s./kg d.w. \text{ soil} \\ \end{split}$
Hypoaspis aculeifer	cis-DCVA	Mixed with soil after application to quartz sand / 5%	Chronic	Mortality	$\begin{split} &LC_{50} > 500 \text{ mg/kg d.w.} \\ &\text{soil} \\ &LC_{50,CORR} > 250 \text{ mg/kg} \\ &d.w. \text{ soil} \\ &\text{NOEC} \ge 500 \text{ mg/kg} \\ &d.w. \text{ soil} \\ &\text{NOEC}_{CORR} \ge 250 \\ &\text{mg/kg d.w. soil} \end{split}$
				Reproduction	$EC_{50} > 500 \text{ mg /kg d.w.}$ soil $EC_{50,CORR} > 250 \text{ mg/kg}$ d.w. soil NOEC = 125 mg/kg d.w. soil $NOEC_{CORR} = 62.5$ mg/kg d.w. soil

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Hypoaspis aculeifer	3-PBA	Mixed with soil after application to quartz sand / 5%	Chronic	Mortality Reproduction	$\label{eq:loss} \begin{split} & LC_{50} > 1000 \text{ mg/kg d.w.} \\ & \text{soil} \\ & LC_{50,CORR} > 500 \text{ mg/kg} \\ & d.w. \text{ soil} \\ & \text{NOEC} \ge 1000 \text{ mg/kg} \\ & d.w. \text{ soil} \\ & \text{NOEC}_{CORR} \ge 500 \\ & \text{mg/kg d.w. soil} \\ & EC_{50} > 1000 \text{ mg/kg} \\ & d.w. \text{ soil} \\ & EC_{50,CORR} > 500 \text{ mg/kg} \\ & d.w. \text{ soil} \\ & \text{NOEC} \ge 1000 \text{ mg/kg} \\ & d.w. \text{ soil} \\ & \text{NOEC} \ge 1000 \text{ mg/kg} \\ & d.w. \text{ soil} \\ & \text{NOEC} \ge 500 \\ & \text{mg/kg d.w. soil} \\ \end{split}$

¹To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %); ²Endpoint derived from a study investigating the effects of alpha-cypermethrin on soil organisms communities. As SANCO/10329/2002 rev. 2 does not foresee testing of soil organisms communities, these endpoints are considered as supportive information only.

Higher tier testing (e.g. modelling or field studies)

A field study to test the potential effects and potential recovery of field populations of earthworms after application of BAS 310 55 I at a rate of 0.3 L and 0.6 L/ha (equivalent to 15.3 and 30.7 g a.s./ha). Application of 0.3 L BAS 310 55 I/ha had no adverse effects on the field populations of eathrworms. The application of 0.6 L BAS 310 55 I also had no adverse effects on total earthworm abundance and biomass but caused a statistically significant reduction in adult biomass of *A. caliginosa* about 11 months after application. However, this reduction was ecologically not relevant (reduction < 30%).

Nitrogen transformation	Alpha-cypermethrin	Maximum tested rate of 100 mg a.s./kg d.w. soil; silty sand soil	4.47 % effect at day 28 at 100 mg a.s./kg d.w.soil.
	BAS 310 51 I	Maximum tested rate of 7.97 mg prep./kg d.w. soil; loamy sand soil	3.9% effect at day 28 at 7.97 mg prep./kg d.w. soil (= 0.4 mg a.s./kg d.w. soil)
	cis-DCVA	Maximum tested rate of 0.0114 mg/kg d.w. soil; loamy sand soil	7.09 % effect at day 28 at 0.0114 mg/kg d.w. soil
	3-PBA	Maximum tested rate of 0.02 mg/ kg d.w. soil; loamy sand soil	10.42 % effect at day 28 at 0.02 mg/kg d.w. soil.

Toxicity/exposure ratios for soil organisms

Cereals at 1-2 x 10 g a.s./ha, oilseed rape at 1-2 x 10 g a.s./ha, lettuce and leafy cabbage at 1-2 x 10 g a.s./ha or 1 x 20 g a.s./ha, and cucumber and courgette at 1-2 x 15 g a.s./ha or 1 x 30 g a.s./ha.

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger
Earthworms					
Eisenia fetida	Alpha- cypermethrin	Chronic	0.0200	≥ 100	5
	BAS 310 55 I	Chronic	0.0200	≥ 32	5
	3-PBA	Chronic	0.0029	828	5
	DCVA	Chronic	0.0014	2232	5
Other soil macroorganism	ns				
Folsomia candida	Alpha- cypermethrin	Chronic	0.0200	92.25	5
	BAS 310 55 I	Chronic	0.0200	31.25	5
	3-PBA	Chronic	0.0029	34483	5
	DCVA	Chronic	0.0014	\geq 2857	5
Hypoaspis aculeifer	BAS 310 55 I	Chronic	0.0200	31.25	5
	3-PBA	Chronic	0.0029	≥172414	5
	DCVA	Chronic	0.0014	44643	5

¹Maximim PEC soil values were used

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data						
Not provided as ER5	0 test are availab	le				
Laboratory dose resp	onse tests					
Species	Test substance	ER ₅₀ (g/ha) vegetative vigour	ER ₅₀ (g/ha) emergence	Exposure ¹ (g/ha)	TER	Trigger
onion (Allium cepa L.), oats (Avena sativa L.), pea (Pisum sativum L.), rapeseed (Brassica napus L.), carrot (Daucus carota L.), sunflower (Helianthus annuus L.)	BAS 310 51 I	> 2.0 L prep./ha (> 100 g a.s./ha)	> 2.0 L prep./ha (> 100 g a.s./ha)	1) 0.277 g a.s./ha 2) 0.554 g a.s./ha	1) 361 2) 181	5
Extended laboratory	Extended laboratory studies : None					

Note: 1) For the use in cereals and oilseed rape; 2) for the use in lettuce and leafy cabbage;

¹ Exposure has been estimated based on Ganzelmeier drift data with a standard drift distance of 1 m for the use in cereals, oilseed rape, lettuce and leafy cabbage.

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	EC ₅₀ > 1000 mg a.s./L
Pseudomonas sp	No data available

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

No data available

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds¹

Compartment	
soil	alpha-cypermethrin
water	alpha-cypermethrin
sediment	alpha-cypermethrin
groundwater	alpha-cypermethrin

¹ metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance	Alpha-cypermethrin
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ⁷ :	H400 H410 M-factor = 1000
Peer review proposal ⁸ for harmonised classification according to Regulation (EC) No 1272/2008:	Category Acute 1 Endpoint: 0.0126 µg a.s./L [48h EC50 <i>Chironomus riparius</i>] H400 (M-factor = 10000) Category Chronic 1 Endpoint: 0.0177 µg a.s./L
	H410 (M-factor = 1000)

⁷ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

 ⁸ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.
