

Appendix to:

EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance mepanipyrim. EFSA Journal 2017;15(6):4852, 80 pp. doi:10.2903/j.efsa.2017.4852

© European Food Safety Authority, 2017

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Mepanipyrim
Function (e.g. fungicide)	Fungicide
Rapporteur Member State	Belgium
Co-rapporteur Member State	Greece

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	<i>N</i> -(4-methyl-6-prop-1-ynylpyrimidin-2-yl)aniline
Chemical name (CA)	4-methyl-N-phenyl-6-(1-propynyl)-2-pyrimidinamine
CIPAC No	611
CAS No	110235-47-7
EC No (EINECS or ELINCS)	600-951-7
FAO Specification (including year of publication)	No FAO specifications exist for mepanipyrim
Minimum purity of the active substance as manufactured	970 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	Toluene (max. 5 g/kg). Open for two impurities.
Molecular formula	$C_{14}H_{13}N_3$
Molar mass	223.3 g/mol
Structural formula	

Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Melting point (state purity)	132.8 °C (99.7%)
Boiling point (state purity)	Boiling point not determined because of decomposition
Temperature of decomposition (state purity)	Decomposition at 288°C (99.99%)
Appearance (state purity)	Pure grade (99.7%): powder; off-white/pale yellow; odourless
	Technical grade (97.7%): powder; cream coloured; odourless
Vapour pressure (state temperature, state purity)	2.32×10^{-5} Pa at 25°C (99.7%)
Henry's law constant (state temperature)	$1.67\times 10^{\text{-3}}\text{Pa}\text{m}^3\text{mol}^{\text{-1}}$ (20 to 25°C)
Solubility in water (state temperature, state purity and pH)	Distilled water: 3.10×10^{-3} g/L at 20°C (99.7%) 4.6 × 10 ⁻³ g/L at 20°C (pH 4) (99.7%) 2.08 × 10 ⁻³ g/L at 20°C (pH 7) (99.7%) 1.94 × 10 ⁻³ g/L at 20°C (pH 9) (99.7%)
Solubility in organic solvents (state temperature, state purity)	acetone: 139 g/L at 20°C (99.7%) methanol: 15.4 g/L at 20°C (99.7%) ethyl acetate: 102 g/L at 20°C (99.7%) toluene: 55.4 g/L at 20°C (99.7%) dichloromethane: 277 g/L at 20°C (99.7%) hexane: 2.06 g/L at 20°C (99.7%) acetonitrile: 38.5 g/L at 20°C (98.7%)
Surface tension (state concentration and temperature, state purity)	72.0 mN/m at 24°C (90 % saturated solution) (99.7%)
Partition coefficient (state temperature, pH and purity)	log P _{OW} = 3.28 at 20°C (pH range: $6.5 - 6.8$) (99.7%)
Dissociation constant (state purity)	log Pow = 3.18 (pH 4) (99.8%) log Pow = 3.20 (pH 7) (99.8%) log Pow = 3.19 (pH 9) (99.8%) pKa = 2.7 at 18°C (99.5%)
	Dissociation product is the protonated aniline nitrogen product

UV/VIS absorption (max.) incl. ϵ (state purity, pH)

(99.7%)	
Acidic solution:	
λ_{max} (nm)	ϵ (L mol ⁻¹ cm ⁻¹)
358	$5.02 imes 10^3$
278	$2.83 imes 10^4$
Neutral solution :	
λ_{max} (nm)	ε (L mol ⁻¹ cm ⁻¹)
344	3.17×10^3
287	$2.94 imes 10^4$
Basic solution :	
λ_{max} (nm)	ϵ (L mol ⁻¹ cm ⁻¹)
344	3.22×10^{3}
287	$2.98 imes 10^4$
Not flammable	
Not explosive	
Not oxidising	

Flammability (state purity)

Explosive properties (state purity)

Oxidising properties (state purity)

Summary of representative uses evaluated, for which all risk assessments needed to be completed (*mepanipyrim*)

(Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

					Prepa	ration		Applicatio	n		Applica	tion rate pe	er treatment		
Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Type (d-f)	Conc a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min- max (k)	Interval between application (min)	kg a.s /hL min-max (l)	Water L/ha min-max	kg a.s./ha min-max (l) a) max. rate per appl. b) max. total rate per crop/season	PHI (days) (m)	Remarks
Table and wine grapes	CY, ES, FR, GR, IT, PT (S-EU zone)	Frupica	F	grey mould Botryotinia fuckeliana (BOTRCI)	WP	500 g/kg	foliar spray applications, upward spraying tractor-mounted broadcast air- assisted sprayers hand-held knapsack sprayers, including motorized knapsack mist- blowers	BBCH 77-89 summer- autumn (01- Jun/15- Nov)	1	n.a.	0.05 - 0.6	100-1000	a) 0.5-0.6 b) 0.5-0.6	21	None
Strawberries	CY, ES, FR, GR, IT, PT (S-EU zone)	Frupica	F	grey mould Botryotinia fuckeliana (BOTRCI)	WP	500 g/kg	foliar spray applications, downward spraying tractor-mounted ground boom sprayers hand-held knapsack sprayers	BBCH 60-89 spring- summer (15- Apr/15- Aug)	1-2	7 days	0.015 - 0.2	200- 2000	a) 0.3-0.4 b) 0.6-0.8	1	None

					Prepa	ration		Applicatio	n		Applica	tion rate po	er treatment		
Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Type (d-f)	Conc a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min- max (k)	Interval between application (min)	kg a.s /hL min-max (l)	Water L/ha min-max	kg a.s./ha min-max (l) a) max. rate per appl. b) max. total rate per crop/season	PHI (days) (m)	Remarks
Strawberries	CY, ES, FR, IT, PT (S-EU zone)	Frupica	G	grey mould Botryotinia fuckeliana (BOTRCI)	WP	500 g/kg	foliar spray applications, downward/up- ward spraying hand-held knapsack sprayers	BBCH 60-89 spring- summer (01- Mar/01- Oct)	1-2	7 days	0.015 – 0.2	200- 2000	a) 0.3-0.4 b) 0.6-0.8	1	None
Tomatoes	CY, ES, GR, IT (S-EU zone)	Frupica	F	grey mould Botryotinia fuckeliana (BOTRCI)	WP	500 g/kg	foliar spray applications, downward spraying tractor-mounted ground boom sprayers hand-held knapsack sprayers	BBCH 61-89 summer (01- Jun/15- Sep)	1-2	7 days	0.05 – 0.2	200-800	a) 0.4 b) 0.8	1	None
Tomatoes	CY, ES, GR, IT (S-EU zone)	Frupica	G	grey mould Botryotinia fuckeliana (BOTRCI)	WP	500 g/kg	foliar spray applications, upward spraying hand-held knapsack sprayers	BBCH 61-89 at any season (15- Feb/31- Dec)	1-2	7 days	0.04 – 0.2	200- 1000	a) 0.4 b) 0.8	1	None

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use	(i)	g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for
situation should be described (e.g. fumigation of a structure)		the variant in order to compare the rate for same active substances used in different variants (e.g.
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)		fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to
(c) <i>e.g.</i> biting and sucking insects, soil born insects, foliar fungi, weeds		give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(d) <i>e.g.</i> wettable powder (WP), emulsifiable concentrate (EC), granule (GR)	(j)	Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997,
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of		Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of
pesticide		application
(f) All abbreviations used must be explained	(k)	Indicate the minimum and maximum number of applications possible under practical conditions of use

(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench	(1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha
(h) Kind, <i>e.g.</i> overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment	instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
used must be indicated	(m) PHI - minimum pre-harvest interval

<u>Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (name of active substance or the respective variant)</u>

Regulation (EC) N° 1107/2009 Article 8.1(g))

Not applicable

Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

Mepanipyrim containing products are used in agriculture as a fungicide in strawberry, grapes and tomato and are applied by foliar sprays. The original authorizations of Frupica have been granted on the basis of a detailed biological dossier (1997). It has been concluded that the formulation Frupica gave control of *Botryotinia fuckeliana* (BOTRCI) which was equivalent to the reference standards. More detailed assessment will be performed for products authorization applications.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

The original authorizations of Frupica have been granted on the basis of a detailed biological dossier (1997). It has been concluded that the formulation Frupica had no detrimental adverse effects, nor adverse effects on the quality or on the transformation processes (wine-making) of the following crops: strawberry, grapevine, tomato. More detailed assessment will be performed for products authorization applications.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

The original authorizations of Frupica have been granted on the basis of a detailed biological dossier (1997). It has been concluded that the formulation Frupica had no detrimental adverse effects on beneficial arthropods (*Typhlodromus, Amblyseius*). More detailed assessment will be performed for products authorization applications.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

Metl	Met2	Met3	Met4	Met5	Met6
no	no	no	no	no	no

Assessment not triggered since there are no relevant metabolisms in groundwater for mepanipyrim.

Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	HPLC-UV
Impurities in technical a.s. (analytical technique)	HPLC-UV
	GC-HSS for determination of toluene in the technical material (LOQ = $0.03 \% \text{ w/w}$)
Plant protection product (analytical technique)	HPLC-UV for the determination of mepanipyrim in the plant protection product
	Toluene: GC headspace

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Food of plant origin	Mepanipyrim (fruit crops only)			
Food of animal origin	Not necessary			
Soil	Mepanipyrim			
Sediment	Mepanipyrim			
Water surface	Mepanipyrim			
drinking/ground	Mepanipyrim			
Air	Mepanipyrim			
Body fluids and tissues	Mepanipyrim			

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	QuECHERS citrate multi-residue method (LC-MS/MS) LOQ = 0.01 mg/kg (high water, acidic, dry)
	(GC) LOQ = 0.01 mg/kg (oily)
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	No method submitted: not necessary
Soil (analytical technique and LOQ)	GC-MS (LOQ = 0.01 mg/kg, mepanipyrim)
	LC-MS/MS (LOQ = 0.01 mg/kg) (mepanipyrim)
Water (analytical technique and LOQ)	Surface water: GC-MS (DB-5) (LOQ = $0.1 \mu g/L$ for mepanipyrim) Confirmatory technique: GC-MS (using another stationary phase (DB-1701))
	Drinking water: LC-MS/MS (LOQ = 0.05 µg/L for mepanipyrim) Independently validated.

Air (analytical technique and LOQ)

GC-MS (LOQ = $0.75 \ \mu g/m^3$ for mepanipyrim) Confirmatory technique not required since sufficient confirmatory methods are available for soil and water

Body fluids and tissues (analytical technique and LOQ)

Data gap

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance	Mepanipyrim
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ¹ :	None
Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:	None

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	Rapidly and extensively absorbed in rat (approximately 80% of the administered dose at 5 mg/kg, via faeces (55%) and urine (25%)). In bile duct cannulated rats 48 - 72 % of the dose in bile.
Toxicokinetics	$\begin{split} T_{max} &= 6 \ h \\ C_{max} &= 6.63 \ \mu g/mL \\ AUC &= 256.4 \ \mu g \times h \ / \ mL \\ T_{1/2} (6 \ h - 24 \ h) &= 9.95 \ hours; \\ T_{1/2} (48 \ h - 168 \ h) &= 89.5 \ hours \end{split}$
Distribution	Widely distributed (mainly in fat, liver, skin, kidney, adrenals, thyroid at 24 h, mainly in liver until 168 h)
Potential for bioaccumulation	No evidence for bioaccumulation
Rate and extent of excretion	Rapid, representing >90% of the dose within 48 h (18-28% in urine and 65-73% in faeces, in major part via bile (21-78% in Study 4)). Complete at 168 h.
	Distribution and excretion are similar between 5 mg/kg and 500 mg/kg.
	Excretion through urine slightly delayed at high dose in relation to the low dose.
	Patterns of distribution and excretion are similar for unique and repeated doses.
Metabolism in animals	Investigated in bile, urine, faeces extracts and plasma. Extensive in rats by hydroxylation of the phenyl ring and on the lateral chains of the pyrimidine ring. Further conjugation reactions lead to numerous sulphate, glucuronide and cysteine-glycine conjugates. Metabolite identification was considered sufficient. No sex- differences.
	Unchanged parent is a major compound in faeces (20- 35%) after high dose administration
In vitro metabolism	Not performed – In vitro metabolism study is missing
Toxicologically relevant compounds (animals and plants)	Mepanipyrim
Toxicologically relevant compounds (environment)	Mepanipyrim

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat, mouse LD ₅₀ oral	> 5000 mg/kg bw	
Rat LD ₅₀ dermal	> 2000 mg/kg bw	

Rat LC ₅₀ inhalation	> 0.59 mg/L air /4h (<i>nose only</i>)	
Skin irritation	Non-irritant	
Eye irritation	Non-irritant	
Skin sensitisation	Non-sensitising (Magnusson-Kligman)	
Phototoxicity	Phototoxic <i>in vitro</i> – No phototoxicity data <i>in vivo</i> available	

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	<u>Rat:</u> hematology (\downarrow MCHC, \uparrow neutrophils and \downarrow lymphocytes in \Diamond), and clinical chemistry findings (\uparrow T. cholesterol, \downarrow triglyceride and \downarrow non-esterified fatty acid) <u>Mouse:</u> liver (hypertrophy)	
	Dog: liver (hypertrophy), prostate (atrophy)	
Relevant oral NOAEL	90-day rat: 6.95 mg/kg bw per day 90-day, dog: 7.5 mg/kg bw per day 13-week, mouse: 19 mg/kg bw-per day 52-week dog: 2.5 mg/kg bw per day	
Relevant dermal NOAEL	28-day, rabbit: 300 mg/kg bw per day	
Relevant inhalation NOAEL	No data - not required	

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies	Ames reverse gene mutation assay: negative	
	Gene mutation test: negative	
	DNA damage and repair: negative	
	In-vitro chromosome aberration assay:	
	-Main test : positive w/o S9 mix; negative with S9	
	-Confirmatory test: negative w/o S9 mix	
	Unscheduled DNA synthesis assay: negative	
In vivo studies	Micronucleus test, mouse bone marrow: negative	
	Chromosome aberration, rat bone marrow: negative	
Photomutagenicity	Open considering the phototoxic potential	
Potential for genotoxicity	Mepanipyrim is unlikely to be genotoxic	

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)	Rat:	
	-Target organs: liver (main), kidneys, parathyroid, pancreas.	
	-Critical effect: pancreas atrophy	
	Mouse:	
	-Target organ: Liver (hypertrophy)	
	-Critical effects: ↓MCV, ↑Plt, ↑liver weight, ↑hyperplastic foci, ↑hepatocyte swelling.	
Relevant long-term NOAEL	<u>Rat (</u> 2-year): <2.45 mg/kg bw per day <u>Mouse</u> (18-month): 56.0 mg/kg b.w per day	
Carcinogenicity (target organ, tumour type)	<u>Rat:</u> benign liver tumours (adenomas, cystadenoma) and uterine adenocarcinoma (in the limits of HCV)	Cat. 2 H351
	Mouse: liver adenomas and carcinomas	
Relevant NOAEL for carcinogenicity	Rat (2-year): 7.3 mg/kg bw per day; Mouse (18-month): 56.0 mg/kg bw per day	

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect	<u>Parental toxicity:</u> liver; increased incidence of hepatocytic fatty vacuolation.
	<u>Reproductive toxicity:</u> ↓implantation sites, ↓litter size (study 1), fertility index decrease in rat (study 2).
	<u>Offspring's toxicity:</u> Liver, increased incidence of hepatocytic fatty vacuolation.
Relevant parental NOAEL	<2.45 mg/kg bw per day
Relevant reproductive NOAEL	46 mg/kg bw per day
Relevant offspring NOAEL	<2.45 mg/kg bw per day

Developmental toxicity

Developmental target / critical effect	<u>Rat:</u> Maternal toxicity: ↓ body weight Developmental toxicity: ↑ hind-limb intramuscular haemorrhage	
	<u>Rabbit:</u> Maternal toxicity: few faeces in under-tray Developmental toxicity: <i>resorptions</i> , <i>post-</i> implantation loss	
Relevant maternal NOAEL	Rat: 150 mg/kg bw per day Rabbit: 10 mg/kg bw per day	
Relevant developmental NOAEL	Rat: 150 mg/kg bw per day Rabbit: 10 mg/kg bw per day	

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity	Neurotoxicity NOAEL: 80 mg/kg	
	Neurotoxicity LOAEL: 400 mg/kg, based on lower rearing / activity counts	1
	Systemic NOAEL: 2000 mg/kg	
Repeated neurotoxicity	Repeated neurotoxicity studies and additional studies were not submitted as not considered necessary	
Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)	Developmental neurotoxicity studies were not submitted as not considered necessary	

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active	MoA studies regarding carcinogenicity
substance	Six investigative toxicology studies were conducted on Mepanipyrim to elucidate the mode of action (MoA) of liver tumour formation in rats and mice.
	The potential of Mepanipyrim to induce <u>hepatic microsomal</u> <u>metabolising enzymes and hepatocellular proliferation</u> was investigated. The hepatic PCNA (proliferating cell nuclear antigen) index was raised and there was immuno-histochemical evidence of induction of cytochrome P450 isoforms (\mathcal{J} only), and proliferation of SER following single doses (5000 mg/kg bw) and repeated doses for seven days (2000 mg/kg bw) when administered to rats by gavage. Similar effects were seen in \mathcal{J} mice given single (5000 mg/kg bw) or seven daily (3000 mg/kg bw) oral doses by gavage.
	Two short-term tests carried out to investigate the <u>initiating and</u> <u>promoting activity</u> in relation to the inciduction of liver cell tumours in rodents. An increase of liver weight and an increase of γ -GTP ⁺ foci in rodents receiving diet containing Mepanipyrim at the highest doses (5000 ppm in \bigcirc rats and 7000 ppm in \bigcirc mice). A weak increase of P- 450 content was recorded in mice after dietary administration of Mepanipyrim at 350 and 7000 ppm for 13 weeks.
	Two studies examined the effect of Mepanipyrim on hepatic enzyme parameters after dietary administration to Fischer 344 rats and on $B_6C_3F_1$ mice for 4 weeks. These studies indicated that Mepanipyrim was not acting as a typical phenobarbital-type enzyme inducer, since it also showed some characteristics of a peroxisome proliferator. These effects were only observed at the high dose (highest tumourigenic dose level in the 2-year study). There was very limited hepatic enzyme induction at a dose level lower than the NOAEL for tumours.
	MoA studies regarding effects on lipid metabolism
	In publications of the open literature, notifier suggested that Mepanipyrim inhibits intracellular transport process of VLDL from the Golgi to the cell surface. Since the trans-Golgi apparatus regulates important general post-translational modifications of proteins, thereby directing its final destination, the finding is considered toxicologically relevant. A final MoA for the induction of fatty vacuolation in rat hepatocytes was not demonstrated. There was also no evidence that the effect would be of no concern for human health. Therefore, it should remain of potential toxicological relevance, and animal-derived
	NOALL'S are considered adequate for further risk assessment.

Endocrine disrupting properties	Prostate atrophy in the dogs (90d, 1 yr), uterine carcinoma in rats (2years), and decrease of the fertility index on the two generation study in rats, were noted.
	A clear mechanism for the vague effects on prostate and uterus was absent, and the toxicological profile of mepanipyrim is indicative for RMS and co-RMS to consider the a.s. not an overt endocrine perturbator.
	On the other hand, uterus was a target organ in the 2-year rat carcinogenicity study, including limited increase of uterus adenocarcinoma at 2000 ppm (1 case) and at 4000 ppm (2 cases).
	As several effects are observed in the available studies, as sensitive endpoints like sexual maturation and sperm parameters have not been investigated, and the mechanistic information in the RAR is not sufficient, further clarification of the ED potential is needed using mechanistic data.
Studies performed on metabolites or impurities	$\frac{\text{Impurity I3}}{\text{Acute, oral, rat; I,D}} = \frac{836}{26} \frac{\text{mg/kg}}{\text{hy}}$
1	Acute, oral, fat. $ED_{50} = 650 \text{ mg/kg bw}$
	<u>M11</u>
	• Acute, oral, rat: LD50>5000 mg/kg b.w.
	• Ames-test: positive in TA98 (+S9)
	• Clastogenicity: positive in-vitro (CHL) ±S9; (equivocal ↑polyploid cells)
	• UDS in-vivo (rat liver): negative
	Micronucleus in-vivo (mouse BM): negative
	Comet-assay in-vivo (hepatocytes): negative
	<u>M31 (identified in plant residues)</u>
	Acute, oral, rat: LD ₅₀ >5000 mg/kg bw
	Ames-test: negative
	Genotoxicity_covered by M11 due to structural similarity
	QSAR data and repeated dose toxicity study are missing
	M33 (identified in plant residues)
	No studies available
	Genotoxicity_covered by M11 due to structural similarity
	QSAR data and repeated dose toxicity study will be covered by M31
	<u>M36 (identified in plant residues)</u>
	Acute, oral, rat: $LD_{50} > 5000 \text{ mg/kg bw}$
	Ames-test: negative
	Genotoxicity_covered by M11 due to structural similarity
	QSAR data and repeated dose toxicity study will be covered by M31

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

Based on information from the manufacturing plants, as well as a review of published literature, it is concluded that there have been no reported incidents of mepanipyrim poisoning in humans.

Summary ¹ (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)	Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	0.012 ⁽¹⁾	LOAEL from the 2yr rat-study, and the 2G- study	200 (4)
Acute Reference Dose (ARfD)	0.10 (2)	rabbit, developmental	100
Acceptable Operator Exposure Level (AOEL)	0.012 (3)	LOAEL from the 2yr rat-study and the 2G- study	200 (4)
Acute Acceptable Operator Exposure Level (AAOEL)	0.10	rabbit, developmental	100
	¹ Previously set ADI was 0.024 mg/kg ² Previously set ARfD was 0.30 mg/k	g bw per day g bw	

³ Previously set AOEL was 0.07 mg/kg bw per day (European Commission, 2004) ⁴ An additional UF of 2 was used (further than the standard UF of 100) due to the use of LOAEL instead of the NOAEL

* No correction for limited oral absorption/bioavailability (100 %).

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (50% WP formulation in water-soluble bags)

Concentrate: 0.4% Dilutions: 6% for low volume applications and 13% for high volume applications

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

German model (70 kg bw default)	Level of PPE	% AOEL
strawberry or tomato; Tractor-mounted trailed boom	No gloves	127%
 sprayer outdoor 20 ha/day Low spray volume¹ 	No gloves, coverall and sturdy footwear	40%
	Gloves, coverall and sturdy footwear	18%
strawberry or tomato; Tractor-mounted trailed boom	No gloves	263%
 sprayer outdoor 20 ha/day High spray volume² 	No gloves, coverall and sturdy footwear	74%
	Gloves, coverall and sturdy footwear	28%
strawberry or tomato; Hand-held knapsack outdoors	No PPE	134%
 Low spray volume¹ 	No additional PPE, coverall and sturdy footwear	67%
	PPE (gloves), coverall and sturdy footwear	37%
Vines; Tractor-mounted broadcast air-assisted sprayer	No PPE	410%
 outdoors 8 ha/day Low spray volume¹ 	No additional PPE, coverall and sturdy footwear	98 %
	PPE (gloves), coverall and sturdy footwear	73%
Vines; Tractor-mounted broadcast air-assisted sprayer	No PPE	870%
 outdoors 8 ha/day High spray volume² 	No additional PPE, coverall and sturdy footwear	193%
	PPE (gloves), coverall and sturdy footwear	141%
Vines; Hand-held knapsack application outdoors	No PPE	202%
 I ha/day Low spray volume¹ 	No additional PPE, coverall and sturdy footwear	100%
	PPE (gloves), coverall and sturdy footwear	55%

¹:Low spray volume, DA=6%; ²:high spray volume, DA=13%

UK I OLIVI IIIOUCI (00 Kg D+W+ uclauit)		Level o	of PPE	% AOEL
strawberry or tomato; Tractor-mounted traile	d boom	No gl	oves	709%
 sprayer outdoor 50 ha/day³, 6 h/day³ 200 L/ha 		Gloves applic	during ation	124%
strawberry or tomato; Tractor-mounted traile	d boom	No F	PPE	303%
 sprayer outdoor 50 ha/day³, 6 h/day³ 1000 L/ha10 		Gloves applic	during ation	50%
strawberry or tomato; Hand-held knapsack outdoors		No F	PPE	1733%
 I ha/day*, 6 h/day* 2008 L/ha 		Gloves applic	during ation	858%
Vines; Tractor-mounted broadcast air-assisted sprayer			PPE	3813%
 outdoors 15 ha/day³, 6 h/day³ 100 L/ha8 	Gloves during application		2463%	
Vines; Tractor-mounted broadcast air-assisted sprayer		No PPE		1338%
outdoors • 15 ha/day ⁵ , 6 h/day ⁵ • 1000 L/ha11		Gloves applic	during ation	948%
Vines; Hand-held knapsack application outdoo	ors	No PPE		3763%
 1 ha/day⁴, 6 h/day⁴ 1008 L/ha 			s and neable during ation	875%
UK POEM default values for field crops tractor-mounted boon UK POEM default value for field crops hand-held knapsack sp Lower spray concentration using worst case 13% dermal absor	n sprayer prayer rption			
Dutch Model ¹				
Hand-held knapsack application indoors to fruit and Application rate: 0.4 kg a.s./ha (using WP-SB) ² with re	d fruiting vege calistic low volu	table crops me applicati	(strawber	ry or tomato)
• 70 kg operator ⁴		PPE	618%	
• Low spray volume ⁵	Addition	nal PPE g Gloves		105%

² Water-Soluble Bags (WP-SB) cannot be considered during mixing and loading in the Dutch glasshouse model, therefore the actual exposures will be lower than estimated

³ Dutch model default value for indoor application

⁴ Dutch model default body weight

⁵ 6% dermal absorption applied

Workers German model of worker re-entry

Re-entry Scenario		% AOEL
Vine crops (grapes) – harvesting, 13% DA	No PPE	576%
	With PPE	115%
Vine crops (grapes) – crop-inspection, 13%	No PPE	650%
DA	With PPE	130%
Tomate arong homeosting 120/ DA	No PPE	117%
Tomato crops – narvesting, 15% DA	With PPE	6%
Starthann and harvesting 120/ DA	No PPE	468%
Strawberry crops – narvesting, 13% DA	With PPE	23%

Bystanders BYSTANDERS AND RESIDENTS

and residents

BfR model for estimation of bystander and resident exposure to mepanipyrim

Crop scenario	Bystander resident, ac children	or dults or	% AOEL (10m-drift)	%AOEL (3m-drift)
Tractor-mounted broadcast air-	Bystander	adults	6.32%	40.27%
assisted sprayer application outdoors to vine crops (low		children	5.15%	31.64%
volume)	Resident	adults	2.75%	5.23%
		children	5.83%	14.37%
Tractor-mounted broadcast air-	Bystander	adults	13.49%	87.05%
assisted sprayer application outdoors to vine crops (high		children	10.75%	68.14%
volume)	Resident	adults	3.28%	8.64%
		children	6.53%	18.89%
Hand-held knapsack sprayer	Bystander	adults	6.50%	40.45%
(low volume)		children	5.54%	32.03%
	Resident	adults	2.75%	5.23%
		children	5.83%	14.37%
Tractor-mounted trailed boom	Bystander	adults	0.98%	
field crops (strawberry or tomato,		children	0.78%	
low volume)	Resident	adults	2.42%	
		children	4.69%	
Tractor-mounted trailed boom	Bystander	adults	2.11%	
field crops (strawberry or tomato,		children	1.67%	
high volume)	Resident	adults	2.56%	
		children	4.87%	
Hand-held knapsack sprayer	Bystander	adults	1.20%	
crops (strawberry or tomato, low		children	1.25%	
volume)	Resident	adults	2.42%	
		children	4.69%	

The UK CRD model was also used giving in overall higher values

Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance :	Mepanipyrim
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ⁴ :	Carc. Cat. 2; H351
Peer review proposal ⁵ for harmonised classification according to Regulation (EC) No 1272/2008:	Carc. Cat. 2; H351

⁴ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

 ⁵ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.

Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) No	283/2013, Annex Part A,	points 6.2.1, 6.5.1, 6.6.1 and
6.7.1)		

Primary crops	Crop groups	Crop(s)	Application(s)DAT (data		DAT (days)
(Plant groups covered)		Grapes	Foliar, 3x500	g a.s./ha	30-32 DALA
OECD Guideline 501	Fruit crops	Tomatoes	Foliar, 3x500	g a.s./ha	26 & 62 DALA
		Apples	Foliar, 3x500	g a.s./ha	15 & 31 DALA
	Root crops	-	-		-
	Leafy crops	-	-		-
	Cereals/grass crops	-	-		-
	Pulses/Oilseeds	-	-		-
	Miscellaneous	-	-		-
	Investigation conducted Pyrimidine]-mepanipyr Major residue compone grapes; 23-38% TRR ton Significant proportions	using radiolab im; nt in fruits at fi matoes; 56-70%	elled [¹⁴ C-Anilin nal harvest: mep 5TRR apples);	ne]-mepani panipyrim (ipyrim or [¹⁴ C- (39-44%TRR
Rotational crops	Crop groups	Crop(s)	PRI (days)	20-30% IK	N).
(metabolic pattern)	Root/tuber crops	Carrot	30 120 365	0.8 kg a	s /ha on hare soil
OECD Guideline 502	Leafy crops	Lettuce	30,120,365	(1N cons	sidering
	Cereal (small grain)	Wheat	30,120,365	- representative use on tomatoes)	
	Other	-			
Rotational crop and primary crop metabolism similar?	Yes; Major residue componer Acidic metabolite (B-11 mg/kg)	nt in rotational o) observed in w	crops (and soil): heat hay and str	mepanipy aw (max. 1	rim; 13%TRR/0.083
Processed commodities	Conditions	Mepa	nipyrim (% ap	plied radi	oactivity)
(standard hydrolysis	20 min, 90°C, pH 4		102.0 +	-/- 2.5	
OFCD Guideline 507	60 min, 100°C, pH 5		105.3 +	-/- 4.7	
OLOD Guideline 307	20 min, 120°C, pH 6	99.7 +/- 1.2			
Residue pattern in processed commodities similar to residue pattern in raw commodities?Yes; Mepanipyrim is hydrolytically stable under processing cor of pasteurisation, boiling and sterilisation.For metabolite M31, stability under standard hydrolysis co of processing have to be demonstrated. For the time being for processed commodities remains open				conditions s conditior ing the res	s representative ns representative idue definition
Plant residue definition for	monitoring (RD-Mo)	Mepanipyrim	(fruit crops onl	y)	
OECD Guidance, series of	n pesticides No 31				
Plant residue definition for RA)	risk assessment (RD-	Mepanipyrim and M-31 (free and conjugated) (provisional: the way the residue definition will be expressed is pending the toxicity profile of M-31)			
Conversion factor (monitoring to risk assessment)		-Table and wine grapes: 1.6 -Strawberries: 1.1 -Tomato: none			

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment			
Animals covered	Laying hen	-	-	-			
	Goat/Cow	-	-	-			
	Pig	-	-	-			
	Fish	mg/kg DM	-	-			
	No data avail	able, no data required.					
Time needed to reach a plateau concentration in milk and eggs (days)		Not applicable					
Animal residue definition for monitoring (RD-Mo)		Not applicable					
OECD Guidance, series on pesticides	s No 31						
Animal residue definition for risk assessment (RD-RA)		Not applicable					
Conversion factor (monitoring to risk assessment)		Not applicable					
Metabolism in rat and ruminant similar (Yes/No)		Not applicable					
Fat soluble residues (Yes/No) (FAO, 2009)		Not applicable					

Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study (Quantitative aspect) OECD Guideline 502	Confined rotational crop study conducted on carrot, lettuce and wheat (0.8 kg a.s./ha on bare soil): Mepanipyrim residues >0.01 mg/kg in wheat straw (30 DAT) and carrot (root and foliage – 30 & 120 DAT).		
Field rotational crop study OECD Guideline 504	Limited field rotational crop study conducted on cabbage, parsnip/turnip and spinach (representative use tomatoes, i.e. 2x 400 g a.s./ha): Minimal uptake of residues mepanipyrim observed (mepanipyrim <0.01 mg/kg in rotational crops)		

Plant products		Т		Stability (Months)			
(Category)	Commodity	(°C)	me	panipyrim	Ma	31
High water content	Tomatoes,	-20)		≥18	≥ 1	8
	Spinach,	-18	3		≥ 9	-	
	Cabbage head	-18	3		≥ 9	-	
High oil content	-	-			-	-	
High protein content	-	-			-	-	
High starch content	Parsnip root	-18	3		≥9		
High acid content	Grapes	-20)		≥16	≥ 1	6
	Strawberries				≥19	≥ 1	8
Processed products	Tomato juice/puree, canned tomatoes	-20)		≥18	≥ 1	8
	Strawberry jam	-20			≥18	≥ 18	
	Grape juice, raisins	-20)		≥ 18	≥ 1	8
	Wine	-20)		≥15	≥ 1	.5
Other	-	-			-	-	
Overall, residues of me acid content) and their of mepanipyrim for at 1	panipyrim are stable processed products east 9 months was c	e in toma for at lea lemonstr	atoes (1st 18 1 ated in	high wat months w n a high :	er content), stra when stored froz starch commodi	wberries and gra en. Frozen stora ty (parsnip root)	apes (high ge stability).
Animal	Animal	Т			Stability (M	Ionth/Year)	
Alimar	commodity	(°C)					
-	Muscle			-	-	-	-
-	Liver			-	-	-	-
-	Kidney			-	-	-	-
-	Milk			-	-	-	-
-	Egg			-	-	-	-
No data available, no a	lata required.						

Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1) OECD Guideline 506

Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop (cGAP)	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
RD Monitoring (RD Risk Assessm toxicological prot	Mo): mepanipyr nent (RA) (<i>provis</i> file of M31)	im <i>ional</i>): mepanipyrim and M31 (free and conjugated),-e:	xpressed as mepanipyrim, combined or sepa	rately (pendi	ng the outco	ome on
Grapes (1 x 0.6 kg a.s./ha, PHI 21 days)	NEU	Mo: 0.15, 0.16, 0.31, 0.40, 0.46, 0.53, 0.87, 0.92 ^(f) , 1.05, 1.16; RA: 0.15, 0.16, 0.31, 0.40, 0.46, 0.53, 0.87, 0.92 ^(f) , 1.05, 1.16	NEU (n=10) and SEU (n=17) datasets were merged because statistically similar (Mann-Whitney U-test; α=0.05); The MRL of 2 mg/kg is derived from merged datasets.	2	Mo: 1.16 RA: 1.16	Mo: 0.50 RA: 0.50
	SEU	Mo: 0.06 ^(e) , 0.07, 0.10, 0.15, 0.18, 0.19, 0.21, 0.28, 0.54, 0.71, 0.85, 1.04, 1.11, 0.05, 0.18, 0.41, 0.67 RA: 0.09 ^(e) , 0.07, 0.11, 0.26, 0.19, 0.19, 0.23, 0.43, 0.55, 0.73, 0.86, 1.09, 1.25 ^(e) , 0.07, 0.18, 0.49, 0.73		2	Mo: 1.11 RA:1.25	Mo: 0.21 RA: 0.26
	NEU+SEU (merged datasets)	Mo: $0.05, 0.06^{(e)}, 0.07, 0.10, 0.15, 0.15, 0.16, 0.18, 0.18, 0.19, 0.21, 0.28, 0.31, 0.40, 0.41, 0.46, 0.53, 0.54, 0.67, 0.71, 0.85, 0.87, 0.92^{(f)}, 1.04, 1.05, 1.11, 1.16$ RA: $0.07, 0.07, 0.09^{(e)}, 0.11, 0.15, 0.16, 0.18, 0.19, 0.19, 0.23, 0.26, 0.31, 0.40, 0.43, 0.48, 0.49, 0.53, 0.55, 0.73, 0.73, 0.86, 0.87, 0.92^{(f)}, 1.05, 1.09, 1.16, 1.25^{(e)}$		2	Mo: 0.16 RA: 1.25	Mo: 0.40 RA: 0.43
Strawberries (1 x 0.8 kg a.s./ha; PHI 1 day; outdoor/ indoor)	NEU	Mo: 0.11, 0.13, 0.27 ^(e) , 0.33 ^(e) , 0.36, 0.47, 0.54 ^(f) , 0.59 RA: 0.17, 0.17, 0.27 ^(e) , 0.35 ^(e) , 0.39, 0.50, 0.57 ^(f) , 0.65	Outdoor datasets (NEU and SEU – merged, because statistically similar according to Mann-Whitney U-test (α =0.05)). The MRL proposal of 3 mg/kg derived from the indoor dataset (n=8).	1.5	Mo: 0.59 RA: 0.65	Mo: 0,35 RA: 0.37

Crop (cGAP)	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
	SEU	Mo: 2 x 0.19, 0.25, 0.51, 0.65, 0.74, 0.86 ^(f) RA: 2 x 0.19, 0.30, 0.62, 0.67, 0.96 ^(e) , 0.94 ^(f)		2 (n=7)	Mo: 0.86 RA: 0.96	Mo: 0.51 RA: 0.62
	NEU+SEU (merged datasets)	Mo: 0.11, 0.13, 2 x 0.19, 0.25, 0.27 ^(e) , 0.33 ^(e) , 0.36, 0.47, 0.51, 0.54 ^(f) , 0.59, 0.65, 0.74, 0.86 ^(f) RA: 0.17, 0.17, 0.19, 0.19, 0.27 ^(e) , 0.30, 0.35 ^(e) , 0.39, 0.50, 0.57 ^(f) , 0.62, 0.65, 0.67, 0.94 ^(f) , 0.96 ^(e)		1.5	Mo: 0.86 RA: 0.96	Mo: 0.36 RA: 0.39
	Indoor	Mo: $0.26^{(e)}, 0.27^{(e)}, 0.31, 0.39, 0.42^{(e)}, 0.95, 1.18, 1.57$ RA: $0.28^{(e)}, 0.30^{(e)}, 0.40^{(e)}, 0.41, 0.46^{(e)}, 0.97, 1.24, 1.63$		3	Mo: 1.57 RA:1.63	Mo: 0.41 RA: 0.44
Tomatoes (1 x 0.8 kg a.s./ha; PHI 1 day; outdoor/ indoor)	SEU	Mo: 0.19 ^(e) , 0.21, 0.23 ^(e) , 0.25 ^(e) , 0.26, 0.37, 0.42, 0.43, 0.49 RA: 0.19 ^(e) , 0.21, 0.23 ^(e) , 0.25 ^(e) , 0.26, 0.37, 0.42, 0.43, 0.49	Outdoor (SEU) dataset and indoor dataset were not merged, even though statistically similar (Mann-Whitney U-test; α =0.05), because of presumed significantly different	1	Mo: 0.49 RA: 0.49	Mo: 0.26 RA: 0.26
	Indoor	Mo: 0.19, 0.22, 0.29, 0.30 (cherry), 0.32, 0.51 ^(f) , 0.86 (cherry) RA: 0.19, 0.22, 0.29, 0.30 (cherry), 0.32, 0.51 ^(f) , 0.86 (cherry)	crop cultivation between outdoor and indoor situation. No full dataset of independent indoor trials is available (n=7); one additional GAP compliant residue trial is required (data gap)	1.5	Mo: 0.86 RA: 0.86	Mo: 0.30 RA: 0.30

Summary of the data on formulation equivalence OECD Guideline 509

Crop (cGAP)	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)		
Сгор	Region	Residue data (mg/kg)	Recommendations/comments					
-	-	No data provided; no data required	-	-	-	-		
Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)								
Product(s)	Region Residue data (mg/kg)		Recommendations/comments					
-	-	No data provided; no data required	-	-	-	-		

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (*e.g.* 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use **Mo/RA** to differentiate data expressed according to the residue definition for **Monitoring** and **Risk** Assessment.

(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{Mo}).

(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{M0}).

(e) Result at higher PHI since it was higher than at shorter PHI

(f) Averaged value from dependent trials

Inputs for animal burden calculations

Food commodity	Medi	ian dietary burden	Maximum dietary burden		
reed commonly	(mg/kg)	Comment	(mg/kg)	Comment	
not applicable	-	-	-	-	

Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations	Ruminant			Pig/Swine		Poultry		Fish		
Highest expected intake	Beef cattle		Ram/Ewe		Breeding		Broiler		Carp	n.a.
(mg/kg bw/d)	Dairy cattle		Lamb		Finishing		Layer		Trout	n.a.
(mg/kg DM for fish)							Turkey		Fish intake >0.	1 mg/kg DM
Intake >0.004 mg/kg bw	N	lo	N	lo]	No	N	0	No)
Feeding study submitted	Ν	lo	1	No]	No	Ň	ю	No)
Representative feeding level (mg/kg bw/d,	Level	Beef: N Dairy: N	Level	Lamb: N Ewe: N	Level	N rate Breed/Finish	Level	B or T: N Laver: N	Level	N rate Carp/Trout
mg/kg DM for fish) and N rates	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals
Muscle										
Fat										
Meat ^(b)										
Liver										
Kidney										
Milk ^(a)										
Eggs										
Method of calculation ^(c)	Not required		Not required		Not required	!	Not required		Not required	

^(a): Estimated HR calculated at 1N level (estimated mean level for milk).

^(b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

^(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

STMR calculations		Rum	inant		Pig/Swine		Poultry		Fish	
Median expected intake	Beef cattle		Ram/Ewe		Breeding		Broiler		Carp	
(mg/kg bw/d)	Dairy cattle		Lamb		Finishing		Layer		Trout	
(mg/kg DM for fish)							Turkey			
Representative feeding level (mg/kg bw/d,	Level	Beef: N Dairy: N	Level	Lamb : N Ewe: N	Level	N rate Breed/Finish	Level	B or T: N Layer: N	Level	N rate Carp/Trout
mg/kg DM for fish) and N rates	Mean level in feeding level	Estimated STMR ^(b) at 1N								
Muscle										
Fat										
Meat ^(a)				•						
Liver										
Kidney										
Milk										
Eggs										
Method of calculation ^(c)	c) Not required		Not required		Not required		Not required		Not required	

(a).

(b)

STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry When the mean level is set at the LOQ, the STMR is set at the LOQ. The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals. (c):

Conversion Factors (CF) for monitoring to risk assessment

Median Conversion Factors (CF) calculated at the different PHIs in the supervised residues trials ^(a) OECD Guidance, series on pesticides No 66								
PHI (days)	1	3	5	7	20-22	28-36	57-63	Comments
Grapes	n.r.	n.r.	n.r.	n.r.	1.05 (n=28)	1.08 (n=19)	1.61 (n=9	Supported GAP (BBCH 77 – BBCH 89; PHI 21 days) allows for treatment around 60 days pre-harvest; n.r.: not relevant
Strawberries	1.06 (n=25)	1.09 (n=25)	1.10 (n=3)	1.17 (n=3)	-	-	-	
Tomatoes	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	not applicable, as M31 residues < LOQ (<0.01 mg/kg)
-Table and wi -Strawberries:	ne grapes: 1.1	1.6						

-Tomato: none

(a): CF calculated at the supported PHI are underlined

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or	Number	Processing Facto	Conversion	
Crop (RAC)/Processed product	or studies ^(a)	Individual values	Median PF	for $\mathbf{RA}^{(b)}$
Strawberries / canned	8	0.15, 0.25, 0.35, 0.50, 0.70, 0.88, 1.00, 1.07	0.60	-
Strawberries / jam	8	0.16, 0.21, 0.32, 0.45, 0.48, 0.50, 0.54, 0.59	0.47	-
Tomatoes / juice	8	0.03, 0.04, 0.08, 0.15, 0.15, 0.21, 0.45, 0.60	0.15	-
Tomatoes / puree	11	0.28, 0.42, 0.52, 0.55, 0.56, 0.62, 0.73, 0.76, 0.90, 1.22, 1.25	0.62	-
Tomatoes/ paste	3	0.71, 0.92, 1.33	0.92	-
Tomatoes / ketchup	4	0.42, 0.62, 0.80, 1.25	0.71	-
Tomatoes / canned	8	0.03, 0.04, 2x 0.05, 0.06, 0.06, 0.08, 0.10	0.05	-
Grapes / raisins	31	0.49 – 4.20; 0.65, 0.81, 1.71, 2.50	1.83	-
Grapes / juice	31	0.03 – 0.23; 0.05, 0.06, 0.20, 0.21	0.08	-
Grapes / must	34	0.09 - 3.00	0.50	-
Grapes / red wine	34	0.01 – 0.5	0.05	_
Grapes / white wine	38	0.01 – 0.3	0.10	-

^(a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)

^(b): Conversion factors for processed commodities cannot be derived for the time being since the residue definition for risk assessment in processed commodities is pending the hydrolysis studies on M31.

^(c): M31 residue levels were <LOQ in RAC and ≤LOQ in processed commodities

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9) Consumer risk assessment limited to the representative uses (provisional)

ADI	0.012 mg/kg bw per day			
TMDI according to EFSA PRIMo (rev.2)	76% ADI (WHO Cluster diet B)			
NTMDI, according to (to be specified)	Not applicable			
IEDI (% ADI), according to EFSA PRIMo (rev.2)	Highest IEDI: 16% ADI (FR, all population)			
NEDI (% ADI), according to (to be specified)	Not applicable			
Factors included in the calculations	MRL (TMDI calculations); STMR (IEDI calculations)			
ARfD	0.1 mg/kg bw			
IESTI (% ARfD), according to EFSA PRIMo	Highest IESTI: 82% ARfD (table grapes)			
NESTI (% ARfD), according to (to be specified)	Not applicable			
Factors included in IESTI and NESTI	HR			

Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite(s) expected to be present above 0.75 $\mu g/L$

Metabolite(s)Not applicableADI (mg/kg bw per day)Not applicableIntake of groundwater metabolites (% ADI)Not applicableWHO Guideline (WHO, 2009)Not applicable

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code ^(a)	Commodity/Group	MRL/Import tolerance ^(b) (mg/kg) and Comments		
Plant comm	odities			
0151010/ 0151020	Table grapes/ Wine grapes	2	-	
0152000	Strawberries	3	NEU, SEU and indoor uses	
0231010	Tomatoes	1.5	SEU and indoor uses. (dataset incomplete, an additional GAP compliant trial is required)	
Animal com	nmodities			
-	Not required			

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005

(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.

Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Mineralisation after 100 days	2.4-14.2 % AR after 120 d, [¹⁴ C- pyrimidine]- mepanipyrim (n ⁶ = 4) 5.4 % AR after 120 d, [¹⁴ C- phenyl]-mepanipyrim (n= 1)
Non-extractable residues after 100 days	18.6-67.7 % AR after 120 d, $[{}^{14}C$ - pyrimidine]- mepanipyrim (n= 4) 26.0 % AR after 120 d, $[{}^{14}C$ - phenyl]-mepanipyrim (n= 1)
Metabolites requiring further consideration - name and/or code, % of applied (range and maximum)	No chromatographically resolved metabolites exceeded 5% AR Sterile conditions: No data available

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Mineralisation after 100 days	0.7 % after 90 d, [¹⁴ C-phenyl]-mepanipyrim (n= 1) 0.8 % after 90 d, [¹⁴ C-pyrimidine]-mepanipyrim (n= 1)
Non-extractable residues after 100 days	22.4-27.8 % after 90 d, [¹⁴ C-phenyl]-mepanipyrim (n= 1) 23.7-26.8 % after 90 d, [¹⁴ C-pyrimidine]- mepanipyrim (n= 1)
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	No chromatographically resolved metabolites exceeded 5% AR Sterile conditions: No data available

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Mineralisation at study end

Non-extractable residues at study end

No chromatographically resolved metabolites exceeded 5% AR
Sterile conditions: No data available
1.8 % after 14 d, [¹⁴ C-pyrimidine]-CO ₂ (n= 1) 3.5 % after 14 d, [¹⁴ C-phenyl]-CO ₂ (n= 1)
7.2-7.4 % after 14 d, [¹⁴ C-pyrimidine]-mepanipyrim (n= 1) 8.4-8.7 % after 14 d, [¹⁴ C-phenyl]-residues (n= 1)

⁶ n corresponds to the number of soils.

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent Mepanipyrim	Dark aerobic conditions										
				Persistence endpoints			Modelling en	8			
Soil type	X ⁷	pH ^{a)}	t. °C / % water content at pF2	DT ₅₀ /DT ₉₀ (d)	St. (χ^2)	Method of calculation	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ^2)	Method of calculation		
Loam (study No. 35TM028)		6.4 (NA)	20°C /19.6	155.0/744.5	4.7	HS	253.92 ^d)	4.7	HS ^{c)} k1: 0.0132, k2: 0.0027		
Sandy loam (study No. OVJ0024)		4.3 (CaCl ₂)	20°C /22.0	152.6/506.9	1.7	SFO	152.6	1.7	SFO		
Clay loam (study No. OVJ0024)		7.1 (CaCl ₂)	20°C /40.0	38.8/128.9	2.4	SFO	38.8	2.4	SFO		
Sandy clay (study No. OVJ0024)		6.1 (CaCl ₂)	20°C / 44.9	155.8/>1000	1.9	FOMC	123.4	4.5	SFO		
Geometric mean (if	not pH	I depender	nt)		116.7						
pH dependence						No					

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

 $^{\rm c)}\,{\rm DT}_{50}$ from slow phase of HS and DFOP models are used for modelling

^{d)} $DT_{50} = \ln 2/k_2$

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

No chromatographically resolved metabolites exceeding 5% AR were identified.

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Parent		Aerol	Aerobic conditions								
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	X^{8}	pH ^{a)}	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ^2)	Method of calculation	DT ₅₀ (d) Norm ^{b)} .	St. (χ^2)	Method of calculation
Loamy sand (Study No. 35TM033) (bare soil)	Netherlands		6.2	20	42.9	142	8.97	SFO	35.7	12.9	SFO

⁷ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.

⁸ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Parent		Aerobic conditions									
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	X^8	pH ^{a)}	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ^2)	Method of calculation	DT ₅₀ (d) Norm ^{b)} .	St. (χ^2)	Method of calculation
Silt loam (Study No. 35TM033) (bare soil)	France		6.9	20	11.9	127	8.74	DFOP (modified)	59.7	10.8	HS k1: 0.060704, k2: 0.01161
Clay loam (Study No. 35TM033) (bare soil)	Spain		8.3	20	82.1	273	15.3	SFO	-	-	-
Clay (Study No. 35TM033) (bare soil)	Italy		7.7	20	11.8	158	11.5	HS (modified)	127	11.5	HS k1: 0.05545, k2: 0.005462
Geometric mean (if not pH dependent)											
pH dependence					No						

^{a)} Measured in 1M KCl
 ^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT₅₀matrix

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)*

Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)	Mepanipyrim 90.6 (d)**					
Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)	Met I No chromatographically resolved metabolites exceeded 5% AR	Met II /				
Kinetic formation fraction (f. f. k_f / k_{dp}) of transformation products, arithmetic mean	Met I from No chromatographically resolved metabolites exceeded 5% AR	Met 2 from /				

* Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.

** Derived by pooling laboratory and field data to be used for future simulations.

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

Not applicable: DT_{90} was < 1 year in each test soil, ranging from 71 to 275 days, based on FOCUS kinetics. No studies on soil accumulation were submitted.

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Da	Dark anaerobic conditions									
Soil type	<u>Х</u> 9	pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) 20 °C ^{b)}	St. (χ^2)	Method of calculation				
UK sandy loam soil (study No. OVJ0025)		5.8 (CaCl ₂)	20°C/pF2	337/1121		0.8	SFO				
Geometric mean (if no	t pH	I depende	nt)	/							

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} Normalised using a Q10 of 2.58

⁹ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Met 1	Dark a <i>xxx</i> .	Dark anaerobic conditions Metabolite dosed or the precursor from which the f.f. was derived was <i>xxx</i> .						
Soil type	X ¹⁰	pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _f / k _{dp}	DT ₅₀ (d) 20°C ^{b)}	$\begin{array}{c} St.\\ (\chi^2) \end{array}$	Method of calculation
No chromatographicall y resolved metabolites exceeded 5% AR								
Geometric mean (if not pH dependent)								
Arithmetic mean								

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} Normalised using a Q10 of 2.58

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3

Parent	Soil pl	oil photolysis									
Soil type	X ¹⁰	pH ^{a)}	t. °C / % MWHC	$DT_{50} / DT_{90} (d)$ calculated at 40°N	St. (χ^2)	Method of calculation					
Clay loam soil (Study report No. 35TM029)		7.2 (NA ^{b)})	20°C/ 45%	138.6/ 460.5	NA	NA					
Clay loam soil (Study report No. OVJ0079)		7.0 (CaCl ₂)	20°C/ NA ^{b)}	479 ^{c)} /1592 ^{c)}	NA	NA					

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} NA = not available

 $^{\rm c)}$ to be treated with caution since these values far exceed the incubation period

¹⁰ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1	
and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)	

Parent							
Soil Type	OC %	$ \begin{array}{c c} Soil & K_d & K_{oc} \\ pH^{a)} & (mL/g) & (mL/g) \end{array} $		K _{oc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
Acidic UK sand soil (Study report No. 35TM004)	0.9	5.2 (H ₂ O)	-	874.4	7.870	874	0.829
Loamy sand soil (Study report No. 35TM004)	2.4	5.8 (H ₂ O)	-	635.0	15.241	635	0.766
Alkaline loam soil (Study report No. 35TM004)	1.6	7.9 (H ₂ O)	-	395.3	6.324	395	0.805
California sandy loam soil (Study report No. 35TM004)	0.6	8.3 (H ₂ O)	-	5859.3	35.156	5859	0.910
Loamy sand soil (Study No. 35TM0031)	9.1	4.1	-	1756	159.8	1756	0.837
Geometric mean (if not pH dependent)	*					1177	0.828
Arithmetic mean (if not pH dependent))				44.88	1903.8	0.829
pH dependence		No					

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

* Only relevant after implementation of the published EFSA guidance.

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Metabolite 1							
Soil Type	OC %	Soil pH ^{a)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
No chromatographically resolved metabolites exceeded 5% AR							
Geometric mean (if not pH dependent	t)*						
Arithmetic mean (if not pH dependen							
pH dependence, Yes or No							

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

* Only relevant after implementation of the published EFSA guidance.

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching	Elution (mm): 300 mm Time period (d): 2 d						
	Leachate: 0.009% - 0.134% total residues/radioactivity in leachate (3 soils) (Study report No. 6177-535/17)						
	Leachate: < 0.1% total residues/radioactivity in leachate (3 soils tested, but in two of the three soils investigated radioactivity was not present in the leachate from the soil columns)						
	(Study report No. 6750)						
	88-94 % total residues/radioactivity retained in top 6 cm after 2 days (Study report No. 6750)						

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching

Elution (mm): x mm Time period (d): x d

No chromatographically resolved metabolites exceeded 5% AR

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies

Acceptable predicted environmental concentrations in groundwater (<0.001 μ g/L) were calculated (vol. 3 CP B8) therefore no field leaching data are provided or are considered necessary.

Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1

Hydrolytic degradation of the active substance and metabolites >10~%

pH 5: <9% after 30 days No degradation of metabolite > 10%

pH 7: <9% after 30 days No degradation of metabolite > 10%

pH 9: 31.80% after 30 days at 70 °C

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %	Artifical light equivalent to natural Florida summer sunlight, 50°N; DT ₅₀ 10.5 days (30 days irradiation)					
	None of the 6 minor metabolites accounted for >3% of applied radioactivity at any time point					
	(Study report No. 6765)					
	Artificial sunlight, $DT_{50} = 846.15$ hours equivalent to 63.41 days with natural sunlight at latitude 30°N					
	No photodegradates representing more than 10 % of the applied radioactivity were detected.					
	(Study report No. 35TM030)					
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	5.87 x 10^{-6} mol \cdot Einstein $^{-1}$					

'Ready biodegradability' (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable	There is a study indicating that the substance is not
(yes/no)	readily biodegradable (Study report No. 35TM027)

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Parent										
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed ^{a)}	t. °C ^{b)}	DT ₅₀ /DT ₉₀ whole sys. (suspended sediment test)		St. (χ^2)	DT ₅₀ /DT ₉₀ Water (pelagic test)		St. (χ^2)	Method of calculation
				At study temp	Normalise d to x °C ^{c)}		At study temp	Norma lised to x °C ^{c)}		
No study available (data requirement)										

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]
 ^{b)} Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

^{c)} Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

Metabolite X	Max in	Max in total system x % after n days									
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed ^{a)}	t. °C ^{b)}	$\begin{array}{c c} DT_{50} / DT_{90} \text{ whole sys.} \\ (suspended sediment test) \\ At study \\ temp \\ d to x \\ ^{\circ}C^{\circ} \end{array}$		St. (χ ²)	$\begin{array}{c c} DT_{50} / DT_{90} \\ Water (pelagic test) \\ At \\ study \\ temp \\ c \\ C^{c)} \end{array}$		St. (χ ²)	Method of calculation	
No chromatographic ally resolved metabolites exceeded 5% AR											

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water]

^{b)} Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

^{c)} Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

Mineralisation and non extractable residues (for parent dosed experiments)											
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation x % after n d. (end of the study).	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)						
No data available											

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Parent			Distrib	ution (max i	n water 1-4%	afte	r 100 days)							
Water / sediment system	pH water phase	pH sed ^{a)}	t. °C	Type data	DT ₅₀ /DT ₉₀ whole sys.	St. (χ^2)	DT ₅₀ /D water	T ₉₀	St. (χ^2)	DT /D sec	ς Γ ₉₀ Ι	St. (χ ²)	Method of calculation	
Millstream Pond (Study report No. 535/26- 1015)	$\begin{array}{c} 6.88 \pm \\ 0.05 \end{array}$	7.7 (H ₂ O)	20	triggers	12.2/40.4	3.9	2.6/8.7		7.1	17. 5	0/56.	2.5	SFO, level P-I	
				modelling	NR ^{c)}	NR	^{c)} 1000		NA ^{d)}	12.	2	NA ^{d)}	SFO, level P-II, 1 st default	
Iron Hatch (Study report No. 535/26- 1015)	7.40 ± 0.05	8.0 (H ₂ O)	20	triggers	21.5/71.4	4.9	9.9/33.0)	6.4	29. 3	6/98.	6.4	SFO, level P-I	
				modelling	NR ^{c)}	NR	^{c)} 1000		NA ^{d)}	21.	5	NA ^{d)}	SFO, level P-II, 1 st default	
Geometric mean	at 20°C	b)		Step 1	·		Step 2				Steps	3 and 4		
				Level P-I			Level P-I	112			DT ₅₀	water m	odelling	
				DegT-	Total System			DT ₅₀ modelling				= 1000 days		
		DegT ₅₀ modelling = 16.2 d (geomean), SFO)	= 10.2 d for both compartments (geomean DegT ₅₀ total system), SFO			$= 16.2 d (geomean DegT_{50})$ total system), SFO						

a) Measured in [medium to be stated, usually calcium chloride solution or water]
 b) Normalised using a Q10 of 2.58
 c) NR = not relevant
 d) NA = not applicable

Metabolite X	Distribution (e.g. max in water x after n d. Max. sed x % after n d). Max in total system x % after n days, kinetic formation fraction (k_f/k_{dp}) : where possible indicate a value for each experiment, clarifying whether fraction was derived for whole system or sediment and or water compartments. The identity of the precursor should also be included (e.g. from parent). Arithmetic mean of kinetic formation fractions to be stated. When calculating arithmetic means, the compartments: whole system, water, sediment should not be mixed.									
Water / sediment system	pH water phase	pH sed ^{a)}	t. °C	DT_{50}/DT_{90} whole sys.	St. (χ ²)	DT ₅₀ /DT ₉₀ water	St. (χ ²)	DT ₅₀ /DT ₉₀ sed	St. (χ ²)	Method of calculation
No chromatographic ally resolved metabolites exceeded 5% AR										
Geometric mean a	Geometric mean at 20°C ^{b)}									

^{a)} Measured in [medium to be stated, usually calcium chloride solution or water] ^{b)} Normalised using a Q10 of 2.58

Mineralisation and non-extractable residues (from parent dosed experiments)								
Water / sediment system	pH water phase	pH sed	Mineralisation x % after 100 d. (end of the study)	Non-extractable residues in sed. max x % after x d	Non-extractable residues in sed. max x % after 100 d (end of the study)			
Millstream Pond (Study report No. 535/26- 1015)	6.88 ± 0.05	7.7 (H ₂ O)	5.55	84.28 (100 d)	84.28			
Iron Hatch (Study report No. 535/26- 1015)	7.40 ± 0.05	8.0 (H ₂ O)	14.61	67.52 (100 d)	67.52			

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air	Not studied		
Photochemical oxidative degradation in air	DT ₅₀ of 0.5 hours derived by the Atkinson model (SANCO/1412/2001/01-Final). The OH radicals concentration and day length values were 1.5×10^6 cm ⁻³ (Flack, 1997, CA 2.8/01)		
Volatilisation	/		
	from soil surfaces (BBA guideline): /		
Metabolites	No metabolite of concern		

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and

Soil: mepanipyrim

ecotoxicology) and or requiring consideration for groundwater exposure

Surface water: mepanipyrim Sediment: mepanipyrim Ground water: mepanipyrim Air: mepanipyrim

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5

Soil (indicate location and type of study)

Surface water (indicate location and type of study)

Ground water (indicate location and type of study)

Air (indicate location and type of study)

/
/
/
Mepanipyrim was detected in all samples but at very low levels (0.18 to 0.44 ng/m^3)
Atmospheric samples, Strasbourg, France, Environmental Pollution 158 (2010) 576-584

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent	DT ₅₀ (d): 82.1 days
Method of calculation	Kinetics: SFO
	Field or Lab: representative worst case trigger value from field studies (Graham, 2016a, Vol. 3 A.S – B.8)
Application data	Crops: grapevines, strawberries, tomatoes
	Depth of soil layer: 5cm
	Soil bulk density: 1.5g/cm ³
	% plant interception: 70% for grapevines (flowering), 60% for strawberries (BBCH 60-89), 80% for tomatoes (BBCH 61-89)
	Number of applications: 1 for grapevines, 1-2 for strawberries and tomatoes
	Interval (d): NA for grapevines, 7 days for strawberries and tomatoes
	Application rate(s): 600 g a.s./ha for grapevines, 400 g a.s./ha for strawberries and tomatoes (corrected application rates: 180 g a.s./ha for grapevines, 160 g a.s./ha for strawberries, 80 g a.s./ha for tomatoes)

		Grapevines		Strawberries		Strawberries		Tomatoes		Tomatoes	
		1 x 600g		1 x 400g		2 x 400g		1 x 400g		2 x 400g	
		a.i/ha		a.i/ha		a.i/ha		a.i/ha		a.i/ha	
PEC _(s)		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA
(mg/kg)											
Initial		0.240		0.213		0.414		0.107		0.207	
Short term	24h	0.238	0.239	0.212	0.212	0.411	0.413	0.106	0.106	0.205	0.206
	2d	0.236	0.238	0.210	0.212	0.407	0.411	0.105	0.106	0.204	0.205
	4d	0.232	0.236	0.206	0.210	0.401	0.408	0.103	0.105	0.200	0.204
Long term	7d	0.226	0.233	0.201	0.207	0.391	0.402	0.101	0.104	0.195	0.201
	28d	0.189	0.214	0.168	0.190	0.327	0.369	0.084	0.095	0.164	0.185
	50d	0.157	0.196	0.140	0.174	0.272	0.338	0.070	0.087	0.136	0.169
	100d	0.103	0.162	0.092	0.144	0.178	0.280	0.046	0.072	0.089	0.140
Plateau concentratio	on	Maximum concentrati 0.252	peak ion:			Maximur concentra 0.434	n peak ttion:			Maximur concentra 0.217	n peak ttion:
		Baseline concentration: 0.0112 mg/kg				Baseline concentration: 0.021 mg/kg				Baseline concentra 0.011 mg	ution: /kg
		After 1 yea	ır			After 1 year				After 1 year	

Metabolite I				Molecular weight relative to the parent:				
Method of a	calculation	on		DT_{50} (d): x days				
			Kinetics: SFO					
				Field or Lab: representative worst case from field studies.				
Application data				Application rate assumed: x g/ha (assumed Met I is formed at a maximum of x % of the applied dose) or formation fraction (if sequential modelling is employed)				
PEC _(s)		Single	Single		Multiple	Multiple		
(mg/kg)		application	applicatio	n	application	application		
		Actual	Time wei average	ghted	Actual	Time weighted average		
Initial		No major metabolites						
Short term	24h							
	2d							
	4d							
Long term	7d							
	28d							
	50d							
	100d							
Plateau concentratio	on	x mg/kg after n yr						

PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (c.g. modelling, field leaching, lysimeter) For FOCUS gw modelling, values used Modelling, field leaching, lysimeter) Modelling using FOCUS model(s), with appropriate FOCUS gw scenarios, according to FOCUS studance. Modelling, field leaching, lysimeter) Modelling, values used Modelling, field leaching, lysimeter, logitary Modelling, values used Modelling, values, logitary Modelling, values, according to FOCUS present according to FOCUS present according to the study of the study		
modelling, field leaching, lysimeter) Modelling using FOCUS model(s), with appropriate FOCUS gav scenarios, according to FOCUS guidance. Modelling using FOCUS PEARL (version 4.4.4), FOCUS PELMO (version 4.4.3), FOCUS MACRO (version 5.5.3) Crops: grapevines, strawberries, tomatoes Crop uptake factor. / Water solubility (mg/L): 3.1 at pH 7 and 20°C Vagour pressure: 2.32 x 10-5 Pa at 25°C Geometric mean parent DT50 field 59.2 4 (normalisation to 10 kPn or pF2, 20 % with Q10 or 2.38 and Walker equation coefficient 0.7 for PELMO and PEARL and 0.49 for MACRO 5.5.39°. KOC: parent, geometric mean 1177 mL/g, arithmetic mean 1/m= 0.83. Metabolites: no major metabolite For field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: Netherlands pH = 6.3, OC= 1.4, MWHC = / France pH = 7.5, OC= 1.1, MWHC = / Spain PH pH = 8.7, OC= 0.8, MWHC = / Italy Dates of application : grapevines: summer, lat summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50), Number of applications per year for strawberries and tomatoes Dataso for applications per year for strawberries and tomatoes Datasion Datay of applications per year for strawberries and tomatoes Datasion per year for strawberries and tom	Method of calculation and type of study (e.g.	For FOCUS gw modelling, values used –
Model(s) used: FOCUS PEARL (version 4.4.4), FOCUS PELMO (version 4.4.3), FOCUS MACRO (version 5.5.3) Crops: grapevines, strawberries, tomatoes Crop uptake factor: / Water solubility (mg/1): 3.1 at pH 7 and 20°C Vapour pressure: 2.32 x 10-5 Pa at 25°C Geometric mean parent DT50 field 59.2 d (normalisation to 10kPa or pF2.20 °C with Q10 of 2.8 and Walker equation coefficient 0.7 for PELMO and PEARL and 0.49 for MACRO 5.5.3)*. KOC: parent, geometric mean 1177 mL/g, arithmetic mean 1/n= 0.83. Metabolites: no major metabolite For field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: Netherlands pH = 6.3, OC= 1.4, MWHC = / France pH = 7.5, OC= 1.1, MWHC = / Spain pH = 9.1, OC= 0.8, MWHC = / laly pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, atumn strawberrics: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberrics: spring/summers, locations: (0.80, 0.50) Number of applications: 1 year, 1 application per yea	modelling, field leaching, lysimeter)	Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.
Crops: grapevines, strawberries, tomatoesCrop uptake factor: /Water solubility (mg/L): 3.1 at pH 7 and 20°CVapour pressure: 2.32 x 10-5 Pa at 25°CGeometric mean parent DT50 field 59.2 d (normalisation to 10 RPa or pP2, 20°C with Q10 of 2.58 and Walker equation coefficient 0.7 for PELMO and PEARL and 0.49 for MACRO 5.5.3)*.KOC: parent, geometric mean 1177 mL/g, arithmetic mean 1/m 0.83.Metabolites: no major metaboliteFor field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: Netherlands pH = 6.3, OC = 1.4, MWHC = / Erance pH = 7.5, OC = 1.1, MWHC = / Spain pH = 9.1, OC = 0.8, MWHC = / Italy pH = 8.7, OC = 1.2, MWHC = /Dates of application : grapevines: spring/summer, summer tromatoes: aerly summer, late summer Crop: Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), Iomatoos (0.80, 0.50)Number of applications : 1 year, 1 application per year for grapevines, 1-2 applications pr year for strawberries and tomatoes: early summer, late summer Crop: Interception estimated: grapevines and tomatoes and tomatoesDuration: one season Duality weather data (arit temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the tria sites.		Model(s) used: FOCUS PEARL (version 4.4.4), FOCUS PELMO (version 4.4.3), FOCUS MACRO (version 5.5.3)
Crop uptake factor: / Water solubility (mg/L): 3.1 at pH 7 and 20°C Vapour pressure: 2.32 x 10-5 Pa at 25°C Geometric mean parent DT50 field 59.2 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7 for PELMO and PFAR1. and 0.49 for MACRO 5.3.9 ^a . KOC: parent, geometric mean 1177 mL/g, arithmetic mean 1/n= 0.83. Metabolites: no major metabolite For field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: Netherlands pH = 6.3, OC= 1.4, MWHC = / France pH = 7.5, OC= 1.1, MWHC = / Spain pH = 9.1, OC= 0.8, MWHC = / Italy pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, autumn strawberries: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications : Jyear, 1 application per year for grapevines. 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown		Crops: grapevines, strawberries, tomatoes
Water solubility (mg/L): 3.1 at pH 7 and 20°CVapour pressure: 2.32 x 10-5 Pa at 25°CGeometric mean parent DT50 field 59.2 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7 for PELMO and PEARL and 0.49 for MACRO 5.5.3)*.KOC: parent, geometric mean 1177 mL/g, arithmetic mean $1/n=0.83$.Metabolites: no major metaboliteFor field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: Netherlands pH = 6.3, OC= 1.4, MWHC = / Erance pH = 7.5, OC= 1.1, MWHC = / Spain pH = 9.1, OC= 0.8, MWHC = / Italy pH = 8.7, OC= 1.2, MWHC = /Dates of application : grapevines: summer, autumn strawberries: carly summer, late summer tomatoes: carly summer, late summer for join strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications i: 1 year, 1 application per year for grapevines, 1-2 application per year for grapevines, 1-2 applications per year for strawberries and tomatoesDuration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites.		Crop uptake factor: /
Vapour pressure: $2.32 \times 10-5$ Pa at 25° CGeometric mean parent DT50 field 59.2 (a (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7 for PELMO and PEARL and 0.49 for MACR0 5.5.3)*.KOC: parent, geometric mean 1177 mL/g, arithmetic mean 1/n= 0.83.Metabolites: no major metaboliteFor field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil propertics:Netherlands pH = 6.3, OC= 1.4, MWHC = / France pH = 7.5, OC= 1.1, MWHC = / Spain pH = 9.1, OC= 0.8, MWHC = / Italy pH = 8.7, OC= 1.2, MWHC = /Dates of application : grapevines: summer, attumn strawberries: ardy summer, late summer tomatoes: early summer, late summer for applications per year for strawberries and tomatoes. Dot, 0.60, 0.60, tomates (0.60, 0.75), strawberries (0.60, 0.60, tomates (0.80, 0.50) Number of applications per year for strawberries and tomatees.Duration: one season Doily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites.		Water solubility (mg/L): 3.1 at pH 7 and 20°C
Geometric mean parent DT50 field 59.2 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7 for PELMO and PEARL and 0.49 for MACRO 5.5.3)*.KCO: parent, geometric mean 1177 mL/g, arithmetic mean 1/m= 0.83.Metabolites: no major metaboliteFor field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: Netherlands pH = 6.3, OC= 1.4, MWHC = / Erance pH = 7.5, OC= 1.1, MWHC = / Spain pH = 9.1, OC= 0.8, MWHC = / Italy pH = 8.7, OC= 1.2, MWHC = /Dates of application : grapevines: summer, attumn strawberries: and papelications : grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomates (0.80, 0.50) Number of applications per year for strawberries and tomatoes: early attack at (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites.		Vapour pressure: 2.32 x 10-5 Pa at 25°C
 KOC: parent, geometric mean 1177 mL/g, arithmetic mean 1/n= 0.83. Metabolites: no major metabolite For field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: <u>Netherlands</u> pH = 6.3, OC= 1.4, MWHC = / <u>France</u> pH = 7.5, OC= 1.1, MWHC = / <u>Spain</u> pH = 9.1, OC= 0.8, MWHC = / <u>Italy</u> pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, autumn strawberries: spring/summer, late summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown 		Geometric mean parent DT50 field 59.2 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7 for PELMO and PEARL and 0.49 for MACRO 5.5.3)*.
Metabolites: no major metabolite For field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: Netherlands pH = 6.3, OC= 1.4, MWHC = / France pH = 7.5, OC= 1.1, MWHC = / Spain pH = 9.1, OC= 0.8, MWHC = / Italy pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, autumn strawberries: spring/summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes: Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown		KOC: parent, geometric mean 1177 mL/g, arithmetic mean $1/n= 0.83$.
For field and lysimeter studies Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: <u>Netherlands</u> pH = 6.3, OC= 1.4, MWHC = / <u>France</u> pH = 7.5, OC= 1.1, MWHC = / <u>Spain</u> pH = 9.1, OC= 0.8, MWHC = / <u>Italy</u> pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, autumn strawberries: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites.		Metabolites: no major metabolite
Location: Europe (Netherlands, France, Spain, Italy) Study type (e.g. lysimeter, field): field Soil properties: <u>Netherlands</u> pH = 6.3, OC= 1.4, MWHC = / <u>France</u> pH = 7.5, OC= 1.1, MWHC = / <u>Spain</u> pH = 9.1, OC= 0.8, MWHC = / <u>Italy</u> pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, autumn strawberries: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown		For field and lysimeter studies
Study type (e.g. lysimeter, field): fieldSoil properties:NetherlandspH = 6.3, OC= 1.4, MWHC = /FrancepH = 7.5, OC= 1.1, MWHC = /SpainpH = 9.1, OC= 0.8, MWHC = /ItalypH = 8.7, OC= 1.2, MWHC = /Dates of application :grapevines: summer, autumnstrawberries: spring/summer, summertomatoes: carly summer, late summerCrop : Interception estimated: grapevines (0.60, 0.75),strawberries (0.60, 0.60, tomatoes (0.80, 0.50)Number of applications: 1 year, 1 application per yearfor grapevines, 1-2 applications per year for strawberriesand tomatoesDuration: one seasonDaily weather data (air temperature range and rainfall)throughout the field phase were collected from regionalweather stations located within a distance of 5 – 20 kmfrom the trial sites.Average annual leachate volume (mm): unknown		Location: Europe (Netherlands, France, Spain, Italy)
Soil properties: Netherlands pH = 6.3, OC= 1.4, MWHC = / France pH = 7.5, OC= 1.1, MWHC = / Spain pH = 9.1, OC= 0.8, MWHC = / Italy pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, autumn strawberries: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites.		Study type (e.g. lysimeter, field): field
NetherlandspH = 6.3, OC= 1.4, MWHC = /FrancepH = 7.5, OC= 1.1, MWHC = /SpainpH = 9.1, OC= 0.8, MWHC = /ItalypH = 8.7, OC= 1.2, MWHC = /Dates of application :grapevines: summer, autumnstrawberries: spring/summer, summertomatoes: early summer, late summerCrop : Interception estimated: grapevines (0.60, 0.75),strawberries (0.60, 0.60), tomatoes (0.80, 0.50)Number of applications: 1 year, 1 application per yearfor grapevines, 1-2 applications per year for strawberriesand tomatoesDuration: one seasonDaily weather data (air temperature range and rainfall)throughout the field phase were collected from regionalweather stations located within a distance of 5 – 20 kmfrom the trial sites.Average annual leachate volume (mm): unknown		Soil properties:
pH = 6.3, OC= 1.4, MWHC = / France pH = 7.5, OC= 1.1, MWHC = / Spain pH = 9.1, OC= 0.8, MWHC = / Italy pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, autumn strawberries: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown		Netherlands
France $pH = 7.5, OC= 1.1, MWHC = /$ Spain $pH = 9.1, OC= 0.8, MWHC = /$ Italy $pH = 9.1, OC= 1.2, MWHC = /$ Dates of application :grapevines: summer, autumnstrawberries: spring/summer, summertomatoes: early summer, late summerCrop : Interception estimated: grapevines (0.60, 0.75),strawberries (0.60, 0.60), tomatoes (0.80, 0.50)Number of applications: 1 year, 1 application per yearfor grapevines, 1-2 applications per year for strawberriesand tomatoesDuration: one seasonDaily weather data (air temperature range and rainfall)throughout the field phase were collected from regionalweather stations located within a distance of $5 - 20$ kmfrom the trial sites.		pH = 6.3, OC= 1.4, MWHC = /
pH = 7.5, OC= 1.1, MWHC = / <u>Spain</u> pH = 9.1, OC= 0.8, MWHC = / <u>Italy</u> pH = 8.7, OC= 1.2, MWHC = / Dates of application : grapevines: summer, autumn strawberries: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown		France
Spain $pH = 9.1, OC= 0.8, MWHC = /$ Italy $pH = 8.7, OC= 1.2, MWHC = /$ Dates of application :grapevines: summer, autumnstrawberries: spring/summer, summertomatoes: early summer, late summerCrop : Interception estimated: grapevines (0.60, 0.75),strawberries (0.60, 0.60), tomatoes (0.80, 0.50)Number of applications: 1 year, 1 application per yearfor grapevines, 1-2 applications per year for strawberriesand tomatoesDuration: one seasonDaily weather data (air temperature range and rainfall)throughout the field phase were collected from regionalweather stations located within a distance of $5 - 20$ kmfrom the trial sites.		pH = 7.5, OC= 1.1, MWHC = /
pH = 9.1, OC= 0.8, MWHC = /ItalypH = 8.7, OC= 1.2, MWHC = /Dates of application :grapevines: summer, autumnstrawberries: spring/summer, summertomatoes: early summer, late summerCrop : Interception estimated: grapevines (0.60, 0.75),strawberries (0.60, 0.60), tomatoes (0.80, 0.50)Number of applications: 1 year, 1 application per yearfor grapevines, 1-2 applications per year for strawberriesand tomatoesDuration: one seasonDaily weather data (air temperature range and rainfall)throughout the field phase were collected from regionalweather stations located within a distance of 5 – 20 kmfrom the trial sites.Average annual leachate volume (mm): unknown		<u>Spain</u>
ItalypH = 8.7, OC= 1.2, MWHC = /Dates of application :grapevines: summer, autumnstrawberries: spring/summer, summertomatoes: early summer, late summerCrop : Interception estimated: grapevines (0.60, 0.75),strawberries (0.60, 0.60), tomatoes (0.80, 0.50)Number of applications: 1 year, 1 application per yearfor grapevines, 1-2 applications per year for strawberriesand tomatoesDuration: one seasonDaily weather data (air temperature range and rainfall)throughout the field phase were collected from regionalweather stations located within a distance of 5 – 20 kmfrom the trial sites.Average annual leachate volume (mm): unknown		pH = 9.1, OC = 0.8, MWHC = /
pH = 8.7, OC= 1.2, MWHC =/ Dates of application : grapevines: summer, autumn strawberries: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown		<u>Italy</u>
Dates of application : grapevines: summer, autumn strawberries: spring/summer, summer tomatoes: early summer, late summerCrop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50)Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoesDuration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites.Average annual leachate volume (mm): unknown		pH = 8.7, OC= 1.2, MWHC = /
grapevines: summer, autumnstrawberries: spring/summer, summertomatoes: early summer, late summerCrop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50)Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoesDuration: one seasonDaily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of $5 - 20$ km from the trial sites.Average annual leachate volume (mm): unknown		Dates of application :
strawberries: spring/summer, summer tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of $5 - 20$ km from the trial sites. Average annual leachate volume (mm): unknown		grapevines: summer, autumn
tomatoes: early summer, late summer Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown		strawberries: spring/summer, summer
 Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50) Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown 		tomatoes: early summer, late summer
 Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown 		Crop : Interception estimated: grapevines (0.60, 0.75), strawberries (0.60, 0.60), tomatoes (0.80, 0.50)
Duration: one season Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown		Number of applications: 1 year, 1 application per year for grapevines, 1-2 applications per year for strawberries and tomatoes
 Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of 5 – 20 km from the trial sites. Average annual leachate volume (mm): unknown 		Duration: one season
Average annual leachate volume (mm): unknown		Daily weather data (air temperature range and rainfall) throughout the field phase were collected from regional weather stations located within a distance of $5 - 20$ km from the trial sites.
		Average annual leachate volume (mm): unknown

Application rate

Gross application rate: 600 g/ha for grapevines, 400 g/ha for strawberries and tomatoes Crop growth stage: 77 (summer)/89 (autumn) for grapevines, 60 (spring/summer)/89 (summer) for strawberries, 61 (early summer)/89 (late summer) for tomatoes Canopy interception %: grapevines: 0.60/0.75, strawberries: 0.60/0.60, tomatoes: 0.80/0.50 Application rate net of interception: grapevines: 240/150 g/ha, strawberries: 160/160 g/ha, tomatoes: 80/200 g/ha No. of applications: 1 for grapevines, 1-2 for strawberries and tomatoes Time of application (absolute or relative application dates): please refer to table B.2.4.1-3 in Vol. 3 CP B.8

^{*} Geometric mean DT50 of 90.6 d derived by pooling laboratory and field data should be used for future simulations.

		Application	Predicted 80 th percentile average annual			
Crop	Scenario	timing	concentrations (µg/L)			
		unning	PEARL	PELMO	MACRO	
	Châtaaudun	Summer	< 0.001	< 0.001	< 0.001	
	Chateaudun	Autumn	< 0.001	< 0.001	< 0.001	
	Hamburg	Summer	< 0.001	< 0.001	NA	
	Hamburg	Autumn	< 0.001	< 0.001	NA	
	Vromamiinator	Summer	< 0.001	< 0.001	NA	
	Kremsmunster	Autumn	< 0.001	< 0.001	NA	
Carriera	D:	Summer	< 0.001	< 0.001	NA	
Grapevines	Placenza	Autumn	< 0.001	< 0.001	NA	
	Donto	Summer	< 0.001	< 0.001	NA	
	Pono	Autumn	< 0.001	< 0.001	NA	
	S avilla	Summer	< 0.001	< 0.001	NA	
	Sevilla	Autumn	< 0.001	< 0.001	NA	
	Thing	Summer	< 0.001	< 0.001	NA	
	Thiva	Autumn	< 0.001	< 0.001	NA	
	Hamburg	Spring/summer	< 0.001	< 0.001	< 0.001	
	Hamburg	Summer	< 0.001	< 0.001	< 0.001	
	T.1.1.1.	Spring/summer	< 0.001	< 0.001	NA	
Stuarthamiaa	Jokioinen	Summer	< 0.001	< 0.001	NA	
Strawberries	Vromamiinator	Spring/summer	< 0.001	< 0.001	NA	
	Kremsmunster	Summer	< 0.001	< 0.001	NA	
	C:11-	Spring/summer	< 0.001	< 0.001	NA	
	Sevilla	Summer	< 0.001	< 0.001	NA	
	Châtaaudun	Early summer	< 0.001	< 0.001	< 0.001	
	Chateaudun	Late summer	< 0.001	< 0.001	< 0.001	
	Diagonzo	Early summer	< 0.001	< 0.001	NA	
	Placeliza	Late summer	< 0.001	< 0.001	NA	
Tomataas	Donto	Early summer	< 0.001	< 0.001	NA	
Tomatoes	Pono	Late summer	< 0.001	< 0.001	NA	
	C:11-	Early summer	< 0.001	< 0.001	NA	
	Sevilla	Late summer	< 0.001	< 0.001	NA	
	Thive	Early summer	< 0.001	< 0.001	NA	
	Tillva	Late summer	< 0.001	< 0.001	NA	

 $PEC_{(gw)}$ From lysimeter / field studies

Parent	1 st year	2 nd year	3 rd year
Annual average (µg/L)	/	/	/
Metabolite X	1 st year	2 nd year	3 rd year
Annual average (µg/L)	No major metabolites		

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent	Version control no. of FOCUS calculator:
Parameters used in FOCUSsw step 1 and 2	Molecular weight (g/mol): 223.3
	K_{OC}/K_{OM} (mL/g): 1177/682.6 (geomean, n = 5)
	DT ₅₀ soil (d): 59.2 days (field, in accordance with FOCUS SFO)*
	DT_{50} water/sediment system @ 20°C (d): 16.2 d (highest DT_{50} (total system) of 2 water/sediment systems)
	DT_{50} water @ 20°C (d): 1000 (worst-case default value according to FOCUS recommendation)
	DT_{50} sediment @ 20°C (d): 16.2 (highest DT_{50} (total system) of 2 water/sediment systems)
	Crop interception (%): vines 60%, strawberries 40%, tomatoes 70% (the agreed % was max. 70 % for all crops)
Parameters used in FOCUSsw step 3 (if performed)	Version control no.'s of FOCUS software: FOCUS PRZM, MACRO and TOXSWA
	Water solubility @ 20°C (mg/L): 3.1
	Vapour pressure: 1.21 x 10 ⁻⁵ Pa at 20°C
	Kom/Koc (mL/g): 682.6/1177 (geomean, n = 5)
	1/n: (Freundlich isotherm exponent) 0.83 (arithmetic mean, $n = 5$)
	Q10=2.58, Walker equation coefficient 0.7
	Crop uptake factor: 0.0 (default value for non-systemic compounds)
Application rate	Crop and growth stage: vines, strawberries, tomatoes (for application dates and growth stages please refer to study report No. WP13101, Peeters, 2016b)
	Number of applications: 1 for vines, 1-2 for strawberries and tomatoes
	Interval (d): for application dates please refer to study report No. WP13101, Peeters, 2016b
	Application rate(s): 600 g a.s./ha for vines, 400 g a.s./ha for strawberries and tomatoes
	Application window:
	Grapevines:
	1. First possible summer application after maximum leaf

area development
2. Last possible autumn application 21 days before
harvest date
Strawberries:
1. Last possible spring application 1 day before harvest
date
2. Last possible summer application 1 day before harvest
date
Tomatoes
1. Last possible summer application 1 day before harvest
date

^{*} Geometric mean DT50 of 90.6 d derived by pooling laboratory and field data should be used for future simulations.

FOCUS	summer	Water		Sediment		
Step	application					
for						
vines						
		Global	TWAC 7d	Global max.	TWAC 7d	
		max.	$(\mu g/L)$	(µg/kg)	(µg/kg)	
		(µg/L)				
1	all	93.90	73.37	916.2	850	
2	Northern Europe	16.06	10.75	131.9	120.5	
2	Southern Europe	16.35	13.84	165.4	151.2	
3	D6 – ditch (D6d)	10.28	7.446	18.61	17.62	
	R1 – pond (R1p)	0.367	0.329	1.550	1.547	
	R1 – stream (R1s)	7.333	0.151	0.656	0.483	
	R2 – stream (R2s)	10.11	0.154	0.814	0.516	
	R3 – stream (R3s)	10.63	0.565	2.711	1.659	
	R4 – stream (R4s)	7.537	0.258	1.394	0.929	
4	D6 – ditch (D6d)	0.821	0.626	1.851	1.756	
20 m	R1 - pond (R1p)	0.128	0.118	0.593	0.592	
no-	R1 – stream (R1s)	0.700	0.019	0.105	0.078	
spray	R2 – stream (R2s)	0.963	0.016	0.081	0.058	
buffer	R3 – stream (R3s)	1.003	0.058	0.280	0.194	
zone	R4 – stream (R4s)	0.723	0.059	0.307	0.211	

FOCUS	autumn	Water		Sediment	
Step	application	Global	TWAC 7d	Global max.	TWAC 7d
for		max.	$(\mu g/L)$	(µg/kg)	(µg/kg)
vines		(µg/L)			
1	all	93.90	73.37	948.3	850.0
2	Northern Europe	22.29	19.40	232.4	212.4
2	Southern Europe	19.32	16.62	198.9	181.8
3	D6 – ditch (D6d)	10.28	7.451	18.79	17.82
	R1 – pond (R1p)	0.366	0.329	1.872	1.871
	R1 – stream (R1s)	7.538	0.226	1.171	0.777
	R3 – stream (R3s)	10.63	0.661	5.617	4.636
4	D6 – ditch (D6d)	2.127	0.619	1.847	1.755
20 m	R1 – pond (R1p)	0.127	0.117	0.711	0.711
no-	R1 – stream (R1s)	0.719	0.023	0.118	0.089
spray	R3 – stream (R3s)	0.999	0.157	0.862	0.683
buffer					
zone					

FOCUS Step	multiple spring	W	ater	Sedi	ment
for	applications	Global	TWAC 7d	Global max.	TWAC 7d
strawberries		max.	(µg/L)	(µg/kg)	(µg/kg)
		(µg/L)			
1	all	111.1	92.49	$1.22 \text{ x } 10^3$	$1.08 \ge 10^3$
2	Southern Europe	25.26	23.08	285.1	260.5
3	D6 – ditch (D6d)	2.223	0.426	2.497	2.015
	R2 – stream (R2s)	1.909	0.130	17.44	15.12
	R3 – stream (R3s)	3.427	0.460	2.482	2.134
	R4 stream (R4s)	6.186	1.528	10.36	8.318
4	D6 – ditch (D6d)	0.320	0.115	0.546	0.527
20 m	R2 – stream (R2s)	0.247	0.030	1.019	0.876
vegetated	R3 – stream (R3s)	0.809	0.106	0.500	0.420
buffer zone	R4 - stream (R4s)	1.460	0.360	1.963	1.548

FOCUS Step	single spring	W	ater	Sedi	ment
for	application	Global	TWAC 7d	Global max.	TWAC 7d
strawberries		max.	(µg/L)	(µg/kg)	(µg/kg)
		$(\mu g/L)$			
1	all	55.57	46.24	610.8	541.2
2	Southern Europe	13.59	12.38	152.5	139.6
3	D6 – ditch (D6d)	2.536	0.484	2.104	1.645
	R2 – stream (R2s)	2.208	0.064	10.37	9.036
	R3 – stream (R3s)	2.349	0.260	1.474	1.264
	R4 - stream (R4s)	3.011	0.806	6.053	4.927
4	D6 – ditch (D6d)	0.189	0.061	0.321	0.311
20 m	R2 – stream (R2s)	0.227	0.015	0.592	0.513
vegetated	R3 – stream (R3s)	0.428	0.057	0.270	0.221
buffer zone	R4 - stream (R4s)	0.710	0.191	1.061	0.845

FOCUS Step	multiple summer	W	ater	Sedi	ment
for	applications	Global TWAC 7d		Global max.	TWAC 7d
strawberries		max. (µg/L)		(µg/kg)	(µg/kg)
		(µg/L)			
1	all	111.1	92.49	$1.22 \text{ x } 10^3$	$1.08 \ge 10^3$
2	Northern Europe	14.21	12.75	155.1	143.5
3	Southern Europe	19.92	18.09	222.3	203.9
3	D3 – ditch (D3d)	2.212	0.319	1.794	1.361

	D4 – pond (D4p)	0.121	0.111	1.033	1.033
	D4 – stream (D4s)	1.716	0.089	0.348	0.306
	D6 – ditch (D6d)	3.109	2.019	6.863	6.523
	R1 – pond (R1p)	0.524	0.489	3.947	3.945
	R1 - stream (R1s)	3.196	0.364	8.961	7.560
4	D3 – ditch (D3d)	0.151	0.025	0.157	0.126
20 m	D4 – pond (D4p)	0.098	0.092	0.765	0.765
vegetated	D4 – stream (D4s)	0.357	0.089	0.344	0.301
buffer zone	D6 – ditch (D6d)	0.464	0.154	0.622	0.592
	R1 – pond (R1p)	0.131	0.122	0.953	0.952
	R1 - stream (R1s)	0.754	0.084	0.766	0.609

FOCUS Step	single summer	W	ater	Water Sedim	
for	application	Global	TWAC 7d	Global max.	TWAC 7d
strawberries		max.	(µg/L)	(µg/kg)	(µg/kg)
		$(\mu g/L)$			
1	all	55.57	46.24	610.7	541.1
2	Northern Europe	7.646	6.820	82.57	76.70
2	Southern Europe	10.62	9.599	117.5	108.1
3	D3 – ditch (D3d)	2.527	0.347	1.479	1.082
	D4 – pond (D4p)	0.087	0.077	0.505	0.504
	D4 – stream (D4s)	1.791	0.032	0.134	0.117
	D6 – ditch (D6d)	2.551	1.811	4.687	4.399
	R1 – pond (R1p)	0.447	0.408	2.226	2.223
	R1 - stream (R1s)	1.733	0.360	8.948	7.485
4	D3 – ditch (D3d)	0.188	0.029	0.130	0.102
20 m	D4 – pond (D4p)	0.039	0.036	0.338	0.338
vegetated	D4 – stream (D4s)	0.181	0.032	0.132	0.116
buffer zone	D6 – ditch (D6d)	0.196	0.148	0.444	0.417
	R1 – pond (R1p)	0.108	0.098	0.572	0.571
	R1 - stream (R1s)	0.413	0.083	0.736	0.585

FOCUS Step	multiple summer	W	ater	Sedi	ment
for tomatoes	applications	Global	TWAC 7d	Global max.	TWAC 7d
		max.	(µg/L)	(µg/kg)	(µg/kg)
		$(\mu g/L)$			
1	all	111.1	92.49	$1.22 \text{ x } 10^3$	$1.08 \ge 10^3$
2	Southern Europe	11.36	10.08	121.5	113.3
3	D6 – ditch (D6d)	2.191	0.163	0.820	0.562
	R2 – stream (R2s)	1.939	0.126	36.78	34.91
	R3 – stream (R3s)	3.450	0.807	9.734	7.644
	R4 - stream (R4s)	5.336	0.645	5.154	3.628
4	D6 – ditch (D6d)	0.520	0.085	0.426	0.362
20 m	R2 – stream (R2s)	0.188	0.029	2.016	1.922
vegetated	R3 – stream (R3s)	0.824	0.194	1.052	0.781
buffer zone	R4 - stream (R4s)	1.271	0.148	1.007	0.695

FOCUS Step	single summer	W	ater	Sedi	ment
for tomatoes	application	Global TWAC 7d		Global max.	TWAC 7d
		max. (µg/L)		(µg/kg)	(µg/kg)
		(µg/L)			
1	all	55.57	46.24	610.7	541.1
2	Southern Europe	6.160	5.430	65.13	59.51
3	D6 – ditch (D6d)	2.499	0.153	0.737	0.492
	R2 – stream (R2s)	2.243	0.046	18.44	17.56
	R3 – stream (R3s)	2.358	0.338	5.743	4.806

	R4 - stream (R4s)	2.448	0.325	2.461	1.804
4	D6 – ditch (D6d)	0.186	0.024	0.129	0.110
20 m	R2 – stream (R2s)	0.232	0.010	0.992	0.950
vegetated	R3 – stream (R3s)	0.365	0.081	0.539	0.440
buffer zone	R4 - stream (R4s)	0.583	0.071	0.462	0.334

Metabolite **No major metabolites**

Estimation of concentrations from other routes of exposure (Regulation (EU) N $^{\circ}$ 284/2013, Annex Part A, point 9.4)

Method of calculation

No study available, Atmospheric exposure resulting from other routes of exposure such as dust deposition, amenity use or indirect exposure of surface water via a sewage treatment plant (STP) after application of the plant protection product in storage rooms, is not anticipated in accordance with the uses of the Frupica® WP formulation in agricultural crops as proposed. Therefore, further information is not required or provided.

PEC

Maximum concentration

No data

Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)				
Birds								
Mallard duck Anas platyrhynchos	a.s.	Acute	LD ₅₀	> 2250 mg a.s./kg bw				
Bobwhite quail Colinus virginianus	a.s.	Acute	LD ₅₀	> 2250 mg a.s./kg bw				
Bobwhite quail Colinus virginianus	a.s.	Long-term	LD ₅₀ /10	225.0 mg a.s./kg bw/day				
Bobwhite quail Colinus virginianus	a.s.	Long-term	NOEC	100 mg a.s./kg bw/day				
Mammals			•					
Mouse	a.s.	Acute	LD ₅₀	> 5000 mg a.s./kg bw				
Rat	a.s.	Acute	LD ₅₀	> 5000 mg a.s./kg bw				
Mouse	Preparation	Acute	LD ₅₀	> 5000 mg form./kg bw (= 2650 mg a.s./kg bw)				
Rat	Preparation	Acute	LD ₅₀	> 5000 mg form./kg bw (= 2650 mg a.s./kg bw)				
Rabbit	a.s.	Long-term	NOAEL	10 mg a.s./kg bw/day				
Rat	a.s.	Long-term	NOAEL	93 mg/kg bw/day				

Endocrine disrupting properties (Annex Part A, points 8.1.5)

For the ecotoxicological assessments, no other data were available to address the potential endocrine activity of mepanipyrim. Pending on the outcome of the data gap in Section 2, further ecotoxicological tests might be necessary to address the potential endocrine disrupting properties of mepanipyrim.

Additional higher tier studies (Annex Part A, points 10.1.1.2):

The applicant provided residue studies in grapevines, strawberry and tomato. From these studies, the highest measured residue value on the fruit, measured directly after the last application, was derived for each crop. The measured residue data on tomato could potentially be used to refine the long-term risk assessment for frugivorous mammals in tomato. The number of studies available (n=9) was however not considered sufficient to override the residue dataset from the EFSA Guidance Document (n = 86). Therefore, the RUD value for tomato could not be refined.

Based on data available from literature, the common vole (*Microtus arvilis*) was initially identified as focal species for small herbivorous mammals in grapevines, strawberry and tomato. However, at Pesticides Peer Review Meeting 154, the experts agreed that the available information is not sufficient for supporting the selection of the common vole as a specific focal species in these crops. A refinement based on biological parameters specific for the common vole (e.g. PD or PT refinements) could not be used in the risk assessment.

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3): No additional data available for mepanipyrim.

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Growth stage	Indicat	or or focal species	Time s	cale	(mş	DDD g/kg bw per		TER	Trigger
_		_				day)			
Screening Step	(Birds)								
All	Small	omnivorous bird	Acu	te		57.18	2	>39.3	10
All	Small	omnivorous bird	Long-t	term		12.37		8.1	5
Screening Step	(Mamma	ls)							
All	Small he	erbivorous mammal	Acu	te		81.84	2	>61.1	10
All	Small he	erbivorous mammal	Long-t	term		22.99		0.43	5
Tier 1 (Mamma	als)								
$BBCH \ge 40$	Large he	erbivorous mammal lagomorph"	Long-t	erm		1.05		9.5	5
$BBCH \ge 20$	Sma ma	ll insectivorous mmal "shrew"	Long-t	erm		0.60		16.6	5
$BBCH \ge 40$	Small he	erbivorous mammal "vole"	Long-t	erm		6.90		1.4	5
$BBCH \ge 40$	Small or	nnivorous mammal "mouse"	Long-t	erm		0.73		13.7	5
Higher tier (Ma	ammals):	-							
Risk from bioa	ccumulati	ion and food chain b	ehaviour						
						DDD			
Indi	cator or fo	ocal species	Ti	me scale	e	(mg/kg bw per day)	Г	TER	Trigger
Earthworm-eating	ng birds		Lo	ong-term	ı	0.266		375	5
Earthworm-eating	ng mamma	als	Lo	ong-term	ı	0.325	(*)	30.7	5
Fish-eating birds	8		Lo	ong-term	ı	0.13	7	75 ^a	5
Fish-eating mammals			Lo	ong-term	ı	0.12	8	6.7 ^a	5
Higher tier : not	required								
Risk from cons	umption (of contaminated wat	er						
Scenarios	•	Indicator or focal s	pecies	Time	scale	PEC _{dw} xD	WR	TER	Trigger
Leaf scenario		Birds		acute		Not	relev	ant	5

Grapevines at BBCH 77-89, 1 x 600 g a.s./ha

Puddle scenario, Screen	ing step				
1)Application rate (g a.s./	ha)/relevant endpoint <50 (koc<	500 L/kg), TEI	R calculation not	needed	
2)Application rate (g a.s./	ha)/relevant endpoint <3000 (ko	c≥500 L/kg), T	ER calculation no	ot needed	
Puddle scenario	Birda	acuta	Not pooded	Case 2	10
	Bilds	acute	Not lieeueu	(<0.27)	
Puddle scenario	Mammala	acuta	Not pooded	Case 2	10
	Waininais	acute	Not lieeueu	(<0.12)	
Puddle scenario	Dirda	Long torm	Not pooded	Case 2	5
	Blids	Long-term	Not needed	(6.0)	
Puddle scenario	Mammala	Long torm	Not pooded	Case 2	5
	wiammais	Long-term	not needed	(60)	

^a TER value calculated based on a BCF of 980, which was not normalized to 5% lipid content, as it was derived from a study where the lipid content was not measured.

Strawberries at BBCH 60-89, 2 x 400 g a.s./ha (interval 7 days) (both indoor and outdoor use)

Crowth store	Indicator or focal graning	Time		DDD	тер	Triggor	
Growin stage	mulcator or local species	1 me s	scale	(mg/kg bw per dav)	ILK	Ingger	
Screening Step	(Birds)			uuj)			
All	Small omnivorous bird	Acu	te	88.93	>25.3	10	
All	Small omnivorous bird	Long-t	term	21.98	4.5	5	
Tier 1 (Birds)							
$BBCH \ge 40$	Small omnivorous bird "lark"	Long-t	term	1.49	67.0	5	
BBCH 61-89	Frugivorous bird "starling"	Long-t	term	4.55	22.0	5	
$BBCH \ge 20$	Small insectivorous bird "wagtail"	Long-t	term	3.29	30.4	5	
Screening Step	(Mammals)						
All	Small herbivorous mammal	Acu	te	66.30	> 75.4	10	
All	Small herbivorous mammal	Long-t	term	16.38	0.61	5	
Tier 1 (Mamma	als)						
$BBCH \ge 20$	Small insectivorous mammal "shrew"	Long-t	term	0.64	15.5	5	
$BBCH \geq 40$	Small herbivorous mammal "vole"	Long-t	g-term 9.80		1.0	5	
$BBCH \geq 40$	Large herbivorous mammal "lagomorph"	Long-t	term	1.93	5.2	5	
$BBCH \ge 40$	Small omnivorous mammal "mouse"	Long-t	term	1.05	9.5	5	
Higher tier (Ma	ammals): -						
Risk from bioa	ccumulation and food chain b	ehaviour					
				DDD			
Indi	cator or focal species	Ti	me scale	(mg/kg bw per day)	TER	Trigger	
Earthworm-eating	ng birds	Lo	ong-term	0.460	217	5	
Earthworm-eating	ng mammals	Lo	ong-term	0.561	17.8	5	
Fish-eating birds			ong-term	0.21	484 ^a	5	
Fish-eating mammals			ong-term	0.18	54.2 ^a	5	
Higher tier : not	required						
Risk from consumption of contaminated water							
Scenarios	Indicator or focal s	pecies	Time sca	ale PEC _{dw} xDV	WR TER	Trigger	
Leaf scenario	Birds		acute	Not	relevant	5	

Puddle scenario, Screening step									
1)Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed									
2)Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed									
Puddle scenario	Birds	acute	Not needed	Case 2 (<0.36)	10				
Puddle scenario	Mammals	acute	Not needed	Case 2 (<0.16)	10				
Puddle scenario	Birds	Long-term	Not needed	Case 2 (8.0)	5				
Puddle scenario	Mammals	Long-term	Not needed	Case 2 (80)	5				

^a TER value calculated based on a BCF of 980, which was not normalized to 5% lipid content, as it was derived from a study where the lipid content was not measured.

Tomatoes at BBCH 61-89, 2 x 400 g a.s./ha (interval 7 days) (both indoor and outdoor use)

day)day)AllSmall omnivorous birdAcute88.93>25.310AllSmall omnivorous birdLong-term21.984.55BBCH 71-80Frugivorous bird "crow"Long-term10.859.25BBCH 71-80Frugivorous bird "crow"Long-term1.1586.75BBCH 250Small omnivorous bird "starling"Long-term1.1289.35BBCH 71-80Frugivorous bird "starling"Long-term7.0214.25BBCH 71-80Frugivorous bird "starling"Long-term7.0214.25BBCH 71-80Frugivorous bird "starling"Long-term7.0214.25BBCH 71-80Frugivorous bird "starling"Long-term3.173.165BBCH 71-80Small insectivorous mammalLong-term3.173.165Small insectivorous mammalLong-term3.17<	Growth stage	Indicator or focal species	Time	Time scale (mg/		TER	Trigger	
Screening Step (BirRs)AllSmall omnivorous birdLong-term21.984.55AllSmall omnivorous birdLong-term21.984.55BBCH 250Frugivorous bird "crow"Long-term10.859.25BBCH 250Small granivorous bird "finch"Long-term1.1586.75BBCH 250Small omnivorous bird "finch"Long-term1.1289.35BBCH 20Small insectivorous bird "starling"Long-term7.0214.25BBCH 20Small insectivorous bird "starling"Long-term3.2930.45Screening Step (Mammals)Long-term3.2930.45Screening Step (Mammals)Small herbivorous mammalLong-term24.520.415AllSmall insectivorous mammalLong-term24.520.415BBCH 20Small insectivorous mammalLong-term0.6415.55BBCH 20Small insectivorous mammal "rat"Long-term7.361.45BBCH 20Small insertivorous mammal "rouge"Long-term0.7812.85BBCH 250Small onnivorous mammal "rouge"Long-term0.7812.85BBCH 250Small onnivorous mammal "rouge"Long-term0.7812.85BBCH 250Small onnivorous mammal "rouge"Long-term0.7812.85BBCH 250Small onnivorous mammal "rouge"Long-term0.7812.85	G • G	(D' 1)			day)			
All Small ofmivorous bird Acute 88.93 >2.2.3 10 BRCH Small omnivorous bird Long-term 21.98 4.5 5 BBCH > 50 Small granivorous bird Long-term 10.85 9.2 5 BBCH > 50 Small granivorous bird Long-term 1.15 86.7 5 BBCH > 50 Small omnivorous bird Long-term 1.12 89.3 5 BBCH > 1.80 Frugivorous bird "starling" Long-term 7.02 14.2 5 BBCH > 1.80 Frugivorous bird "starling" Long-term 3.29 30.4 5 Screening Step (Mammals) Long-term 3.29 30.4 5 BBCH 71-80 Frugivorous mammal Acute 76.38 >65.5 10 All Small herbivorous mammal Long-term 3.17 3.16 5 BBCH 71-89 Frugivorous mammal "rat" Long-term 0.64 15.5 5 BBCH 20 Small insectivorous mammal "rat" Long-term 0.64 15.5 5 BBCH 20 Small onnivorous mammal "rat" <t< td=""><td>Screening Step</td><td>(Birds)</td><td></td><td>4</td><td>00.02</td><td>. 25.2</td><td>10</td></t<>	Screening Step	(Birds)		4	00.02	. 25.2	10	
All Small ofmitvorous bird Long-term 21.98 4.5 5 BBCH 71-80 Frugivorous bird Long-term 10.85 9.2 5 BBCH ≥ 50 Small granivorous bird Long-term 1.15 86.7 5 BBCH ≥ 50 Small onnivorous bird Long-term 1.12 89.3 5 BBCH ≥ 50 Small insectivorous bird Long-term 7.02 14.2 5 BBCH ≥ 20 Small insectivorous bird Long-term 3.29 30.4 5 Screening Step (Mammals) Long-term 3.29 30.4 5 All Small herbivorous mammal Long-term 24.52 0.41 5 BBCH ≥ 20 Small insectivorous mammal Long-term 3.17 3.16 5 BBCH ≥ 50 Small insectivorous mammal Long-term 0.64 15.5 5 BBCH ≥ 50 Small insectivorous mammal Long-term 0.78 12.8 5 BBCH ≥ 50 Small onnivorous mammal Long-term 0.78 12.8 5 BBCH ≥ 50 Small on and food chain behaviour	All	Small omnivorous bird	Acu	ite	88.93	>25.3	10	
Iter 1 (Birds)BBCH 1:80Frugivorous bird "crow"Long-term10.859.25BBCH ≥ 50 Small granivorous bird "lark"Long-term1.1586.75BBCH ≥ 50 Small omnivorous bird "lark"Long-term1.1289.35BBCH 20Frugivorous bird "starling"Long-term7.0214.25BBCH ≥ 20 Small insectivorous bird "wagtail"Long-term3.2930.45Screening Step (Mammals)Small herbivorous mammalAcute76.38>65.510AllSmall herbivorous mammalLong-term3.173.165BBCH 71-89Frugivorous mammal "rat"Long-term3.173.165BBCH 20Small insectivorous mammal "snew"Long-term0.6415.55BBCH 20Small insectivorous mammal "snew"Long-term0.6415.55BBCH 20Small insectivorous mammal "vole"Long-term0.7812.85BBCH 20Small omnivorous mammal "snew"Long-term0.7812.85BBCH 250Small herbivorous mammal "nonse"Long-term0.7812.85BBCH 250Small herbivorous mammal "nonse"Long-term0.7812.85BBCH 250Small omnivorus mammal "nonse"Long-term0.7812.85BBCH 250Small omnivorus mammal "nonse"Long-term0.7114.35Earthworm-eating mammalsLong-term0.70114.3	All	Small omnivorous bird	Long-	term	21.98	4.5	5	
BBCH /1-80 Frugivorous bird 'crow' Long-term 'instanting'' 10.85 9.2 5 BBCH ≥ 50 Small granivorous bird 'finch'' Long-term instanting'' 1.15 86.7 5 BBCH ≥ 50 Small omnivorous bird 'lark'' Long-term instanting'' 1.12 89.3 5 BBCH ≥ 50 Small insectivorous bird 'starling'' Long-term instanting'' 7.02 14.2 5 BBCH ≥ 10 Small insectivorous bird 'starling'' Long-term instanting'' 3.29 30.4 5 Screening Step (Mammals) Small insectivorous mammal Acute instanting'' 76.38 >65.5 10 All Small inerbivorous mammal Long-term instanting'' 24.52 0.41 5 BBCH 71-89 Frugivorous mammal 'rat'' Long-term instanting'' 3.17 3.16 5 BBCH ≥ 20 Small insectivorous mammal 'shrew'' Long-term instanting'' 0.64 15.5 5 BBCH ≥ 50 Small omnivorous mammal 'shrew'' Long-term instanting'' 0.78 12.8 5 BBCH ≥ 50 Small omnivorous mammal 'mat'' Long-term instanting'' 0.78 12.8 5 BBCH ≥ 50 Sma	Tier I (Birds)		T		10.05	0.0	-	
BBCH ≥ 50 Small grantvorous bird "finch" Long-term 1.15 86.7 5 BBCH ≥ 50 Small ornnivorous bird "lark" Long-term 1.12 89.3 5 BBCH > 50 Frugivorous bird "starling" Long-term 7.02 14.2 5 BBCH ≥ 20 Small insectivorous bird "wagtail" Long-term 3.29 30.4 5 Screening Step (Mammals)	BBCH /1-80	Frugivorous bird "crow"	Long-	term	10.85	9.2	5	
BBCH ≥ 50 Small omnivorous bird "lark" Long-term 1.12 89.3 5 BBCH 71-80 Frugivorous bird "starling" Long-term 7.02 14.2 5 BBCH ≥ 20 Small insectivorous bird "wagtail" Long-term 3.29 30.4 5 Screening Step (Mammals)	$BBCH \ge 50$	Small granivorous bird "finch"	Long-	term	1.15	86.7	5	
BBCH 71-80 Frugivorous bird "starling" Long-term 7.02 14.2 5 BBCH ≥ 20 Small insectivorous bird "wagtail" Long-term 3.29 30.4 5 Screening Step (Mammals) All Small herbivorous mammal Acute 76.38 >65.5 10 All Small herbivorous mammal Long-term 24.52 0.41 5 Tier 1 (Mammals) Tern 1 (Mammals) Small insectivorous mammal "rat" Long-term 3.17 3.16 5 BBCH ≥ 20 Small insectivorous mammal "shrew" Long-term 0.64 15.5 5 BBCH ≥ 50 Small herbivorous mammal "shrew" Long-term 7.36 1.4 5 BBCH ≥ 50 Small omnivorous mammal "shrew" Long-term 0.78 12.8 5 Higher tier (Mammals): - - - - - 7 5 Earthworm-eating birds Long-term 0.755 174 5 5 Earthworm-eating mammals Long-term 0.575 174 5 5 Earthworm-eating mammals Long-term 0.21 484 ª	$BBCH \geq 50$	Small omnivorous bird "lark"	Long-	term	1.12	89.3	5	
BBCH ≥ 20 Small insectivorous bird "wagtail" Long-term 3.29 30.4 5 Screening Step (Mammals) 30.4 5 5 All Small herbivorous mammal Acute 76.38 > 65.5 10 All Small herbivorous mammal Long-term 24.52 0.41 5 BBCH 71-89 Frugivorus mammal "rat" Long-term 3.17 3.16 5 BBCH ≥ 20 Small insectivorous mammal mammal "shrew" Long-term 0.64 15.5 5 BBCH ≥ 50 Small herbivorous mammal "yole" Long-term 0.78 12.8 5 BBCH ≥ 50 Small omnivorous mammal "mouse" Long-term 0.78 12.8 5 Higher tier (Mammals): - Small omnivorous mammal "mouse" Long-term 0.78 12.8 5 Earthworm-eating birds Long-term 0.575 174 5 Earthworm-eating mammals Long-term 0.21 484^a 5 Fish-eating birds Long-term 0.21 484^a 5 Fish-eating birds	BBCH 71-80	Frugivorous bird "starling"	Long-	term	7.02	14.2	5	
Screening Step (Mammals)AllSmall herbivorous mammalAcute76.38>65.510AllSmall herbivorous mammalLong-term24.520.415Tier 1 (Mammals)BBCH 71-89Frugivorous mammal "rat"Long-term3.173.165BBCH ≥ 20 Small insectivorous mammal "shrew"Long-term0.6415.55BBCH ≥ 20 Small insectivorous mammal "vole"Long-term7.361.45BBCH ≥ 50 Small herbivorous mammal "mouse"Long-term0.7812.85BBCH ≥ 50 Small onnivorous mammal "mouse"Long-term0.7812.85Higher tier (Mammals): -Risk from bioaccumulation and food chain behaviourIndicator or focal speciesDDD (mg/kg bw per day)TER per day)Earthworm-eating mammalsLong-term0.70114.35Fish-eating birdsLong-term0.70114.35Fish-eating birdsLong-term0.1854.2 a5Higher tier : not requiredRisk from consumption of contaminated waterScenariosIndicator or focal speciesTime scalePEC_wxDWRTERTriggerLong-term0.1854.2 a5Higher tier : not required	$BBCH \geq 20$	Small insectivorous bird "wagtail"	Long-	term	3.29	30.4	5	
All Small herbivorous mammal Acute 76.38 >65.5 10 All Small herbivorous mammal Long-term 24.52 0.41 5 Tier 1 (Mammals) Image: Addition of the second of the	Screening Step	(Mammals)						
AllSmall herbivorous mammalLong-term24.520.415Tier 1 (Mammals)Fugivorous mammal "rat"Long-term3.173.165BBCH 20Small insectivorous mammal "shrew"Long-term0.6415.55BBCH 20Small herbivorous mammal "wole"Long-term7.361.45BBCH 20Small ornivorous mammal "mouse"Long-term0.7812.85BBCH 20Small ornivorous mammal "mouse"Indicator or focal speciesTime scaleDDD (mg/kg bw per day)TERTriggerEarthworn-eating mammalsLong-term0.70114.355Earthworn-eating mammalsLong-term0.1854.2 a5Fish-eating birdsLong-term0.1854.2 a55Higher tier : not requiredIndicator or focal speciesTime scalePEC_dwxDWRTERTriggerRisk from consumption of contaminated waterScenariosIndicator or focal speciesTime scalePEC_dwxDWRTERTriggerBirdsLong-term0.1854.2 a5 <td>All</td> <td>Small herbivorous mammal</td> <td>Acu</td> <td>ite</td> <td>76.38</td> <td>>65.5</td> <td>10</td>	All	Small herbivorous mammal	Acu	ite	76.38	>65.5	10	
Tier 1 (Mammals)BBCH 71-89Frugivorous mammal "rat"Long-term 3.17 3.16 5 BBCH ≥ 20 Small insectivorous mammal "shrew"Long-term 0.64 15.5 5 BBCH ≥ 50 Small herbivorous mammal "vole"Long-term 7.36 1.4 5 BBCH ≥ 50 Small omnivorous mammal "mouse"Long-term 0.78 12.8 5 Higher tier (Mammals): -Risk from bioaccumulation and food chain betwourDDD (mg/kg bw per day)TriggerIndicator or focal speciesIong-term 0.755 174 5 Earthworm-eating mammalsLong-term 0.701 14.3 5 Fish-eating birdsLong-term 0.21 484^a 5 Fish-eating birdsLong-term 0.18 54.2^a 5 Higher tier : not requiredRisk from consumption of contaminated waterScenariosIndicator or focal speciesTime scalePEC _{dwx} DWRTERTriggerEating mammalsLong-term 0.18 54.2^a 5 5 Higher tier : not requiredIndicator or focal speciesTime scalePEC _{dwx} DWRTERTriggerLong-term 0.18 54.2^a 5 Higher tier : not requiredIndicator or focal speciesIndicator or focal speciesIndicator or focal speciesIndicatorHigher tier	All	Small herbivorous mammal	Long-	term	24.52	0.41	5	
BBCH 71-89 Frugivorous mammal "rat" Long-term 3.17 3.16 5 BBCH ≥ 20 Small insectivorous mammal "shrew" Long-term 0.64 15.5 5 BBCH ≥ 50 Small herbivorous mammal "vole" Long-term 7.36 1.4 5 BBCH ≥ 50 Small omnivorous mammal "mouse" Long-term 0.78 12.8 5 BBCH ≥ 50 Small omnivorous mammal "mouse" Long-term 0.78 12.8 5 BBCH ≥ 50 Indicator or focal species Time scale DDD (mg/kg bw per day) TER Trigger Earthworm-eating birds Long-term 0.575 174 5 Earthworm-eating mammals Long-term 0.575 174 5 Fish-eating birds Long-term 0.18 54.2 ^a 5 Fish-eating mammals Long-term 0.18 54.2 ^a 5 Higher tier : not required Indicator or focal species Indicator or focal species TER 5 Higher tier : not required Indicator or focal species Ime sca	Tier 1 (Mamma	als)						
BBCH ≥ 20Small insectivorous mammal "shrew"Long-term0.6415.55BBCH ≥ 50Small herbivorous mammal "vole"Long-term7.361.45BBCH ≥ 50Small omnivorous mammal "mouse"Long-term0.7812.85Higher tier (Mammals): -Risk from bioaccumulation and food chain behaviourDDD (mg/kg bw per day)TERTriggerIndicator or focal speciesTime scaleDDD (mg/kg bw per day)Time grade5Earthworm-eating birdsLong-term0.70114.35Fish-eating birdsLong-term0.70114.35Fish-eating birdsLong-term0.70114.35Fish-eating birdsLong-term0.1854.2 a5Higher tier : not requiredBick from consumtion of contaminated waterScenariosIndicator or focal speciesTime scalePEC dwxDWRTERTriggerLeaf scenarioBirdsacuteNot relevant5	BBCH 71-89	Frugivorous mammal "rat"	Long-	term	3.17	3.16	5	
BBCH ≥ 50 Small herbivorous mammal "vole" Long-term 7.36 1.4 5 BBCH ≥ 50 Small omnivorous mammal "mouse" Long-term 0.78 12.8 5 Higher tier (Mammals): - Time scale DDD Trigger Indicator or focal species Time scale DDD Trigger Earthworm-eating birds Long-term 0.575 174 5 Earthworm-eating mammals Long-term 0.701 14.3 5 Fish-eating birds Long-term 0.18 54.2 a 5 Higher tier : not required Risk from consumption of contaminated water Scenarios Indicator or focal species Time scale PEC _{alw} xDWR TER Trigger Laf scenario Birds acute Not relevant	$BBCH \geq 20$	Small insectivorous mammal "shrew"	Long-	term	0.64	15.5	5	
BBCH ≥ 50 Small omnivorous mammal "mouse"Long-term 0.78 12.8 5 Higher tier (Mammals): -Risk from bioaccumulation and food chain behaviourIndicator or focal speciesDDD (mg/kg bw per day)TER 	$BBCH \ge 50$	Small herbivorous mammal "vole"	Long-	term	7.36	1.4	5	
Higher tier (Mammals): - Risk from bioaccumulation and food chain behaviour Indicator or focal species Time scale DDD (mg/kg bw per day) TER Trigger Earthworm-eating birds Long-term 0.575 174 5 Earthworm-eating mammals Long-term 0.701 14.3 5 Fish-eating birds Long-term 0.21 484 a 5 Fish-eating mammals Long-term 0.18 54.2 a 5 Higher tier : not required Indicator or focal species Time scale PEC _{dw} xDWR TER Trigger Risk from consumption of contaminated water Time scale PEC _{dw} xDWR TER Trigger Leaf scenario Birds acute Not relevant 5	$BBCH \ge 50$	Small omnivorous mammal "mouse"	Long-	term	0.78	12.8	5	
Risk from bioaccumulation and food chain behaviour Indicator or focal species $Time scale$ DDD (mg/kg bw per day) TER Trigger Earthworm-eating birds Long-term 0.575 174 5 Earthworm-eating mammals Long-term 0.701 14.3 5 Fish-eating birds Long-term 0.21 484 a 5 Fish-eating mammals Long-term 0.18 54.2 a 5 Higher tier : not required Indicator or focal species Time scale PEC _{dw} xDWR TER Trigger Scenarios Indicator or focal species Singes Singes 5 5 Leaf scenario Birds acute Not relevant 5	Higher tier (Ma	ammals): -						
Indicator or focal speciesTime scaleDDD (mg/kg bw per day)TERTriggerEarthworm-eating birdsLong-term0.5751745Earthworm-eating mammalsLong-term0.70114.35Earthworm-eating birdsLong-term0.70114.35Fish-eating birdsLong-term0.21484 a5Fish-eating mammalsLong-term0.1854.2 a5Higher tier : not requiredIndicator or focal speciesTime scale $PEC_{dw}xDWR$ TERTriggerLeaf scenarioBirdsacuteNot relevant5	Risk from bioa	ccumulation and food chain	behaviour					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Indi	cator or focal species	Ti	ime scale	DDD (mg/kg bw per day)	TER	Trigger	
Earthworm-eating mammalsLong-term 0.701 14.3 5 Fish-eating birdsLong-term 0.21 484^{a} 5 Fish-eating mammalsLong-term 0.18 54.2^{a} 5 Higher tier : not requiredIndicator or focal speciesTime scale $PEC_{dw}xDWR$ TERTriggerLeaf scenariooBirdsacuteNot relevant 5 5 5	Earthworm-eating	ng birds	L	ong-term	0.575	174	5	
Fish-eating birds Long-term 0.21 484 a 5 Fish-eating mammals Long-term 0.18 54.2 a 5 Higher tier : not required Indicator or focal species Time scale PEC _{dw} xDWR TER Trigger Leaf scenarioo Birds acute Not relevant 5	Earthworm-eating	ng mammals	L	ong-term	0.701	14.3	5	
Fish-eating mammals Long-term 0.18 54.2 a 5 Higher tier : not required	Fish-eating birds		L	ong-term	0.21	484 ^a	5	
Higher tier : not required Risk from consumption of contaminated water Scenarios Indicator or focal species Time scale PEC _{dw} xDWR TER Trigger Leaf scenario Birds acute Not relevant 5	Fish-eating mammals		L	ong-term	0.18	54.2 ^a	5	
Risk from consumption of contaminated waterScenariosIndicator or focal speciesTime scalePEC _{dw} xDWRTERTriggerLeaf scenarioBirdsacuteNot relevant5	Higher tier : not	required						
ScenariosIndicator or focal speciesTime scalePEC_dwxDWRTERTriggerLeaf scenarioBirdsacuteNot relevant5	Risk from consumption of contaminated water							
Leaf scenario Birds acute Not relevant 5	Scenarios	Indicator or focal	species	Time scale	e PEC _{dw} xDV	WR TER	Trigger	
	Leaf scenario	Birds		acute	Not	relevant	5	

Puddle scenario, Screening step									
1)Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed									
2)Application rate (g a.s./ha)/relevant endpoint <3000 (koc≥500 L/kg), TER calculation not needed									
Deddle energy		1		Casa 2	10				
Puddle scenario	Birds	acute	Not needed	Case 2	10				
				(<0.36)					
Puddle scenario	Mammals	acute	Networded	Case 2	10				
			Not needed	(<0.16)					
Puddle scenario	Dinda	I an a tanna	Networded	Case 2	5				
	Birds	Long-term	Not needed	(8.0)					
Puddle scenario	Mammala	I an a tanna	Naturadad	Case 2	5				
	Iviammais	Long-term	Not needed	(80)					

^a TER value calculated based on a BCF of 980, which was not normalized to 5% lipid content, as it was derived from a study where the lipid content was not measured.

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)*

* This section does not yet reflect the new EFSA Guidance Document on aquatic organisms which has been noted in the meeting of the Standing Committee on Plants, Animals, Food and Feed on 11 July 2014.

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Laboratory tests	·			·
Fish				
Rainbow trout (Oncorhynchus mykiss)	Mepanipyrim	Acute 96 h (static)	Mortality, LC ₅₀	> 0.74 mg a.s./L (mm)
Rainbow trout (Oncorhynchus mykiss)	Frupica 50 WP	Acute 96 h (static)	Mortality, LC ₅₀	> 0.67 mg a.s./L (mm)
Rainbow trout (Oncorhynchus mykiss)	Mepanipyrim	Chronic 28 d (flow- through)	Growth, NOEC	0.029 mg a.s./L (mm)
Rainbow trout (Oncorhynchus mykiss)	Mepanipyrim	Chronic 91 d (flow- through)	Larval survival, NOEC Growth, EC_{50} Growth, EC_{20} Growth, EC_{10}	0.051 mg a.s./L (mm) 0.130 mg a.s./L (mm) 0.046 mg a.s./L (mm) 0.027 mg a.s./L (mm)
Fathead minnow (Pimephales promelas)	Mepanipyrim	Chronic 32 d (semi-static)	Development, NOEC	0.51 mg a.s./L (mm)
Aquatic invertebrates				
Daphnia magna	Mepanipyrim	Acute 48 h (static)	Mortality, EC ₅₀	0.63 mg a.s./L (mm)
Daphnia magna	Frupica 50 WP	Acute 48 h (static)	Mortality, EC ₅₀	0.48 mg a.s./L (mm)

	1			1
Group	Test substance	Time-scale	End point	Toxicity ¹
		(Test type)		
Daphnia magna	Mepanipyrim	Chronic 21 d (flow-	Development, NOEC	0.031 mg a.s./L
		through)	Development, EC ₅₀	0.277 mg a.s./L
			Development, EC ₂₀	0.206 mg a.s./L
			Development, EC_{10}	(mm) 0.176 mg a.s./L (mm)
Sediment-dwelling organisms				
Midge (Chironomus riparius)	Mepanipyrim	Chronic 28 d (spiked water, static)	NOEC	4.67 mg a.s./kg dry sediment (im)
				(3.28 mg a.s./L (im))
Algae		·		
Green microalgae	Mepanipyrim	Chronic 72 h	Growth rate:	
(Pseudokirchneriella		(static)	E_rC_{50}	2.74 mg a.s./L
<i>subcapitata</i>)			FC	(mm)
			$\mathbf{E}_{\mathbf{r}}\mathbf{C}_{20}$	(mm)
			E_rC_{10}	1.13 mg a.s./L
			NOEG	(mm)
			NUECr	(mm)
			Yield:	
			E_yC_{50}	1.52 mg a.s./L
			E_yC_{20}	1.04 mg a.s./L
			E ₂ C ₁₀	(mm) 0.86 mg a.s./L
			2y~10	(mm)
			NOEC _y	0.363 mg a.s./L
				(mm)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Green microalgae	Frupica 50 WP	Chronic 72 h	Growth rate:	
(Pseudokirchneriella		(static)	E_rC_{50}	2.49 mg a.s./L
subcapitata)				(mm)
			E_rC_{20}	0.89 mg a.s./L
				(mm)
			E_rC_{10}	0.53 mg a.s./L
				(mm)
			NOECr	0.041 mg a.s./L
				(mm)
			Yield:	
			E_yC_{50}	0.75 mg a.s./L
				(mm)
			E_yC_{20}	0.21 mg a.s./L
				(mm)
			E_yC_{10}	0.11 mg a.s./L
				(mm)
			NOEC _y	0.041 mg a.s./L
				(mm)

Further testing on aquatic organisms

Not needed

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

Based on the specific long-term *in vivo* studies reported in the DRAR there are no indications that mepanipyrim has endocrine-specific effects on fish. However, pending on the outcome of the data gap in Section 2, further ecotoxicological tests might be necessary to address the potential endocrine disrupting properties of mepanipyrim.

 $(_{nom})$ nominal concentration; $(_{mm})$ mean measured concentration; $(_{im})$ initial measured concentration prep.: preparation; a.s.: active substance

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Mepanipyrim
logP _{O/W}	3.28
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	280*
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	-
Annex VI Trigger for the bioconcentration factor	-
Clearance time (days) (CT_{50})	-
(CT ₉₀)	-
Level and nature of residues (%) in organisms after the 14 day depuration phase	-
Higher tier study	
Not needed	

* based on total ¹⁴C. As the study from which this bioconcentration factor was derived was performed in accordance with a previous version of OECD Test Guideline 305, the lipid content of the fish tissue was not measured. It was therefore not possible to normalize the bioconcentration factor to 5% lipid content.

Regulatory acceptable concentrations for the most sensitive aquatic organisms

Mepanipyrim				
	Most sensitive species group	Endpoint	Assessment factor	RAC
Acute effect assessment	Aquatic invertebrates	$EC_{50} = 0.48 \text{ mg a.s./L}$	100	0.0048 mg a.s./L
Chronic	Chironomus riparius	NOEC = 4.67 mg a.s./kg	10	0.467 mg a.s./kg
effect assessment	Fish	$EC_{10} = 0.027 \text{ mg a.s./L}$	10	0.0027 mg a.s./L

Comparison of the RAC for the most sensitive aquatic organisms with FOCUS $\text{PEC}_{\text{SW/SED}}$ values (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

FOCUS _{sv}	w step	1-4 –	Compariso	n of RACs	and PEC _{sy}	V/PEC _{SED}	for	mepanipyri	m – Gi	apevines at
BBCH 77	7-89,	1 x 60	0 g a.s./ha (outdoor use	e)					

Step	Scenario	RAC _{SW,CH} (µg a.s./L)	Max PEC _{sw} (µg a.s./L)	RAC _{SED,CH} (µg a.s./kg)	Max PEC _{SED} (µg a.s./kg)
1	Europe		93.90		948.3
2	Northern Europe		22.29		232.4
2	Southern Europe		19.32		198.9
	D6 ditch		10.28		18.79
	R1 pond		0.367		1.872
2	R1 stream		7.538		1.171
5	R2 stream		10.11		0.814
	R3 stream	2.7	10.63	46.7	5.617
	R4 stream		7.537		1.394
	D6 ditch		2.127		1.851
	R1 pond		0.128		0.711
4	R1 stream		0.719		0.118
4	R2 stream		0.963		0.081
	R3 stream		1.003		0.862
	R4 stream]	0.723		0.307

Notes: Step 4 mitigation was 20 m no-spray buffer; values in bold exceed the relevant RAC, indicating an unacceptable risk

FOCUS_{sw} step 1-4 – Comparison of RACs and PEC_{SW}/PEC_{SED} for mepanipyrim – Strawberries at BBCH 60-89, 2 x 400 g a.s./ha (interval 7 days) (outdoor use)

Stop	Sconario	RAC _{SW,CH}	Max PEC _{SW}	RAC _{SED,CH}	Max PEC _{SED}
Step	Scenario	(µg a.s./L)	(µg a.s./L)	(µg a.s./kg)	(µg a.s./kg)
1	Europe		111.1		1220
2	Northern Europe		14.21		155.1
2	Southern Europe		25.26		285.1
	D3 ditch		2.527		1.794
	D4 pond		0.121		1.033
	D4 pond		1.791		0.348
	D6 ditch		3.109		6.863
3	R1 pond		0.524		3.947
	R1 stream		3.196	46.7	8.961
	R2 stream		2.208		17.44
	R3 stream	2.7	3.427		2.482
	R4 stream		6.186		10.36
	D3 ditch		0.188		0.157
	D4 pond		0.098		0.765
	D4 pond		0.357		0.344
	D6 ditch		0.464		0.622
4	R1 pond		0.131		0.953
	R1 stream		0.754		0.766
	R2 stream		0.247		1.019
	R3 stream		0.809		0.500
	R4 stream		1.460]	1.963

Notes: Step 4 mitigation was 20 m no-spray buffer and vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk

FOCUS_{sw} step 1-4 – Comparison of RACs and PEC_{SW}/PEC_{SED} for mepanipyrim – Tomatoes at BBCH 61-89, 2 x 400 g a.s./ha (interval 7 days) (outdoor use)

Step	Scenario	RAC _{SW,CH} (µg a.s./L)	Max PEC _{sw} (μg a.s./L)	RAC _{SED,CH} (µg a.s./kg)	Max PEC _{SED} (µg a.s./kg)
1	Europe		111.1		1220
2	Northern Europe		NA		NA
2	Southern Europe		11.36		121.5
	D6 ditch		2.499		0.820
2	R2 stream		2.243		36.38
3	R3 stream	2.7	3.450	46.7	7.743
	R4 stream		5.336		5.154
	D6 ditch		0.520		0.426
4	R2 stream		0.232		2.016
4	R3 stream	1	0.824		1.052
	R4 stream		1.271		1.007

Notes: NA = not applicable; Step 4 mitigation was 20 m no-spray buffer and vegetated filter strip; values in bold exceed the relevant RAC, indicating an unacceptable risk

Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Honeybee (Apis mellifera)	Mepanipyrim	Acute, adult toxicity	Oral toxicity (LD ₅₀)	> 50 µg a.s./bee
Honeybee (Apis mellifera)	Mepanipyrim	Acute, adult toxicity	Contact toxicity (LD ₅₀)	> 100 µg a.s./bee
Honeybee (Apis mellifera)	Frupica 50 WP	Acute, adult toxicity	Oral toxicity (LD ₅₀)	> 100 µg a.s./bee
Honeybee (Apis mellifera)	Frupica 50 WP	Acute, adult toxicity	Contact toxicity (LD ₅₀)	> 80 µg a.s./bee
Honeybee (Apis mellifera)	Mepanipyrim	Chronic (10d), adult toxicity	LDD50	> 60.2 µg a.s./bee/day
Honeybee (Apis mellifera)	Mepanipyrim	Chronic (7d), larval toxicity	NOEL	155 μg/larva/ developmental period
Bumblebee (Bombus terrestris)	Mepanipyrim	Acute, adult toxicity	Oral toxicity (LD ₅₀)	> 100 µg a.s./bee
Bumblebee (Bombus terrestris)	Mepanipyrim	Acute, adult toxicity	Contact toxicity (LD ₅₀)	> 100 µg a.s./bee

Potential for accumulative toxicity: not assessed
Semi-field test (Cage and tunnel test)
None
Field tests
None

Risk assessment for bees according to SANCO/10329/2002 (acute risk) for Grapevines at BBCH 77-89, 1 x 600 g a.s./ha

(covers the acute risk to bees following the use (both indoor and outdoor) in Strawberries at BBCH 60-89, 2 x 400 g a.s./ha and the use in Tomatoes at BBCH 61-89, 2 x 400 g a.s./ha)

Species	Test substance	Risk quotient	HQ/TER	Trigger
Honeybee (Apis mellifera)	Mepanipyrim	HQ _{oral}	< 12	≥ 50
Honeybee (Apis mellifera)	Mepanipyrim	HQ _{contact}	< 6	≥ 50
Honeybee (Apis mellifera)	Frupica 50 WP	HQ _{oral}	< 6	≥ 50
Honeybee (Apis mellifera)	Frupica 50 WP	HQ _{contact}	< 7.5	\geq 50

Risk assessment for bees according to EFSA (2013)

for Grapevines at BBCH 77-89, 1 x 600 g a.s./ha, Strawberries (indoor and outdoor) at BBCH 60-89, 2 x 400 g a.s./ha (interval 7 days), and Tomatoes (indoor and outdoor) at BBCH 61-89, 2 x 400 g a.s./ha (interval 7 days)

Acute contact exposure of adult honeybees – screening step

Test substance	Crop	Application rate	LD ₅₀ (µg	HQ	Trigger
		(g a.s./ha)	a.s./bee)		value
	Vineyard	600	> 100	< 6.0	85
Mepanipyrim	Strawberries ¹	400	> 100	< 4.0	42
	Fruiting Vegetables ¹	400	> 100	< 4.0	42
	Vineyard	600	>80	< 7.5	85
Frupica 50 WP	Strawberries ¹	400	> 80	< 5.0	42
	Fruiting Vegetables ¹	400	> 80	< 5.0	42

¹Both indoor and outdoor use

Acute and chronic oral exposure of adult honeybees and honeybee larvae – screening step

Type of assessment	Test substance	Crop	Application rate (kg a.s./ha)	SV	Endpoint	ETR	Trigger value
Acute oral	Mepanipyrim	Vineyard ¹	0.6	10.6		< 0.12	0.2
exposure	1 19	Strawberries ²	0.4	7.6		< 0.06	0.2
adult bees		Strawberries ³	0.4	10.6	50	< 0.08	0.2
		Fruiting Vegetables ²	0.4	7.6	> 50 μg a.s./bee	< 0.06	0.2
		Fruiting Vegetables ³	0.4	10.6		< 0.08	0.2
	Frupica 50	Vineyard ¹	0.6	10.6		< 0.06	0.2
	WP	Strawberries ²	0.4	7.6		< 0.03	0.2
		Strawberries ³	0.4	10.6	> 100 µg	< 0.04	0.2
		Fruiting Vegetables ²	0.4	7.6	a.s./bee	< 0.03	0.2
		Fruiting Vegetables ³	0.4	10.6		< 0.04	0.2
Chronic oral	Mepanipyrim	Vineyard ¹	0.6	10.6		< 0.106	0.03
exposure		Strawberries ²	0.4	7.6		< 0.050	0.03
adult bees		Strawberries ³	0.4	10.6	> 60.2 µg	< 0.070	0.03
		Fruiting Vegetables ²	0.4	7.6	a.s./bee/day	< 0.050	0.03
		Fruiting Vegetables ³	0.4	10.6		< 0.070	0.03
Chronic oral	Mepanipyrim	Vineyard ¹	0.6	6.1		0.024	0.2
exposure		Strawberries ²	0.4	4.4	155	0.011	0.2
larvae		Strawberries ³	0.4	6.1	155 µg a.s./	0.016	0.2
		Fruiting Vegetables ²	0.4	4.4	developmental	0.011	0.2
		Fruiting Vegetables ³	0.4	6.1	period	0.016	0.2

¹Sideward spray application; ²Outdoor use – Downward spray application; ³Indoor use – Sideward spray application

Chronic oral exposure of adult honeybees – Tier 1

Crop	Scenario	BBCH	Appl. rate (kg a.s./ha)	Ef	SV	twa	Endpoint (µg a.s./bee/day)	ETR	Trigger value
Vineyard ¹	Treated crop	≥ 70	0.6	1	0	0.72		0.000	0.02
	Weeds	≥ 70	0.6	0.3	2.9	0.72	>60.2	< 0.006	0.03
	Field	≥ 70		0.027	2.9	0.72		< 0.001	

	margin								
	Adjacent	> 70		0.0143	5.8	0.72		< 0.001	
	crop	<u>~</u> 70		0.0145	5.0	0.72		< 0.001	
	Succeeding	≥ 70		1	0.54	0.72		< 0.004	
		10.00		1	5.0	0.72		<	
	Ireated	40-69		1	5.8	0.72		0.039*	
	crop	≥ 70		1	0	0.72		0.000	
	Weeds	40-69		0.4	2.9	0.72		< 0.006	
Strawberries	weeds	≥ 70		0.4	2.9	0.72		< 0.006	
outdoor ²	Field	40-69	0.4	0.0092	2.9	0.72	> 60.2	0.000	0.03
0444000	margin	≥ 70		0.0092	2.9	0.72		0.000	
	Adjacent	40-69		0.0033	5.8	0.72		0.000	
	crop	≥ 70		0.0033	5.8	0.72		0.000	
	Succeeding	40-69		1	0.54	0.72		< 0.003	
	crop	≥ 70		1	0.54	0.72		< 0.003	
	Treated	40-69		1	8.2	0.72		< 0.039	
	crop	≥ 70		1	0	0.72		0.000	
	Weeds	40-69		0.4	2.9	0.72	> 60.2	< 0.006	
~		≥ 70		0.4	2.9	0.72		< 0.006	
Strawberries,	Field	40-69	0.4	0.0092	2.9	0.72		0.000	0.03
indoor	margin	≥ 70		0.0092	2.9	0.72		0.000	
	Adjacent	40-69		0.0033	5.8	0.72		0.000	
	crop	≥ 70		0.0033	5.8	0.72		0.000	
	Succeeding	40-69		1	0.54	0.72		< 0.003	
	crop	$\geq /0$		1	0.54	0.72		< 0.003	
	Treated	50-69		1	0.92	0.72		< 0.004	
	crop	$\frac{2}{0}$		1	0	0.72		0.000	
	Weeds	50-69		0.3	2.9	0.72	-	< 0.004	
Fruiting	T2' 1 1	$\geq /0$		0.3	2.9	0.72		< 0.004	
vegetables,	Field	> 70	0.4	0.0092	2.9	0.72	> 60.2	0.000	0.03
outdoor ²	Adiagant	$\frac{2}{0}$		0.0092	2.9	0.72		0.000	
	crop	> 70		0.0033	5.8	0.72		0.000	
	Succording	<u><</u> 70 50.69		1	0.54	0.72		< 0.000	
	crop	> 70		1	0.54	0.72		< 0.003	
	Treated	50-69		1	0.04	0.72		0.000	
	crop	> 70		1	0.00	0.72		0.000	
		50-69		03	2.9	0.72		< 0.000	
	Weeds	> 70		0.3	2.9	0.72		< 0.004	
Fruiting	Field	50-69		0.0092	2.9	0.72		0.000	
vegetables,	margin	> 70	0.4	0.0092	2.9	0.72	> 60.2	0.000	0.03
1ndoor ¹	Adjacent	50-69		0.0033	5.8	0.72		0.000	
	crop	≥ 70		0.0033	5.8	0.72		0.000	
	Succeeding	50-69		1	0.54	0.72		< 0.003	
	crop	≥ 70		1	0.54	0.72		< 0.003	

¹Sideward spray application; ²Downward spray application

* Despite the trigger was slightly breached, EFSA concluded a low risk based on the fact that the ETR was calculated with an unbounded LDD_{50} and that only 4% effect was seen at the highest tested dose. More details about the rationale for this decision are included in the evaluation table.

Risk assessment for contaminated water

Risk assessment for guttation water							
Type of assessment	Crop	Water consumption (µL)	PEC (µg/µL)	Endpoint	ETR	Trigger	
Acute oral	Vineyard ¹	11.4	0.0031	> 50 µg	0.0007	0.2	

exposure adult	Strawberries ²	11.4	0.0031	a.s./bee	0.0007	0.2
bees	Fruiting Vegetables ²	11.4	0.0031		0.0007	0.2
Chaonia anal	Vineyard ¹	11.4	0.00167		0.0003	0.03
chronic oral	Strawberries ²	11.4	0.00167	> 60.2 µg	0.0003	0.03
bees	Fruiting Vegetables ²	11.4	0.00167	a.s./bee/day	0.0003	0.03
Chronic oral	Vineyard ¹	111	0.00223	155 µg a.s./	0.0016	0.2
	Strawberries ²	111	0.00223	larvae per	0.0016	0.2
exposure larvae	Fruiting Vegetables ²	111	0.00223 development al period		0.0016	0.2
Risk assessment	for contaminated	surface water				
Type of assessment	Crop	Water consumption (µL)	PEC (µg/µL)	Endpoint	ETR	Trigger
A	Vineyard ¹	11.4	0.000094		2.1 x 10 ⁻⁵	0.2
Acute oral	Strawberries ²	11.4	0.00011	> 50 µg	2.5 x 10 ⁻⁵	0.2
bees	Fruiting Vegetables ²	11.4	0.00011	a.s./bee	2.5 x 10 ⁻⁵	0.2
Chronic oral	Vineyard ¹	11.4	0.000094		1.8 x 10 ⁻⁵	0.03
exposure adult	Strawberries ²	11.4	0.00011	> 60.2 µg	2.1 x 10 ⁻⁵	0.03
bees	Fruiting Vegetables ²	11.4	0.00011	a.s./bee/day	2.1 x 10 ⁻⁵	0.03
Chaonia anal	Vineyard ¹	111	0.000094	155 µg a.s./	6.7 x 10 ⁻⁵	0.2
exposure	Strawberries ²	111	0.00011	larvae per	8.0 x 10 ⁻⁵	0.2
larvae	Fruiting Vegetables ²	111	0.00011	development al period	8.0 x 10 ⁻⁵	0.2

¹Sideward spray application; ²Downward spray application

Acute contact exposure of adult bumblebees – screening step

Test substance	Crop	Application rate	LD ₅₀ (µg	HQ	Trigger
		(g a.s./ha)	a.s./bee)		value
	Vineyard	600	> 100	< 6.0	14
Mepanipyrim	Strawberries ¹	400	> 100	< 4.0	7
	Fruiting Vegetables ¹	400	> 100	< 4.0	7

¹For both outdoor and indoor application

Acute oral exposure of adult bumblebees – screening step

Type of assessment	Test substance	Crop	Application rate (kg a.s./ha)	SV	Endpoint	ETR	Trigger value
Acute oral	Mepanipyrim	Vineyard ¹	0.6	13.3		< 0.080	0.036
exposure		Strawberries ²	0.4	11.2		< 0.045	0.036
adult bees		Strawberries ³	0.4	13.3	> 100 ug	< 0.053	0.036
		Fruiting Vegetables ²	0.4	11.2	a.s./bee	< 0.045	0.036
		Fruiting Vegetables ³	0.4	13.3		< 0.053	0.036

¹Sideward spray application; ²Outdoor use - Downward spray application; ³Indoor use – Sideward spray application

Сгор	Scenario	BBCH	Appl. rate (kg a.s./ha)	Ef	SV	Endpoint (µg a.s./bee)	ETR	Trigger value
Vineyard ¹	Treated	> 70		1	0		0.000	
	crop	_ /0	0.0	1	0	> 100	0.000	0.026
	Weeds	≥ 70	0.0	0.3	6.5	> 100	< 0.0117	0.050
	Field	≥ 70		0.027	6.5		< 0.0011	

Acute oral exposure of adult bumblebees – Tier 1

	margin							
	Adjacent crop	≥ 70		0.0143	11.2		< 0.0010	
	Succeeding crop	≥ 70		1	0.9		< 0.0054	
	Treated	40-69		1	11.2		< 0.0448*	
	weet	≥ 70 40-69		1 0.4	0 6.5		0.0000 < 0.0104	
Strawbarrias	weeds	≥ 70		0.4	6.5		< 0.0104	
outdoor ²	Field	40-69	0.4	0.0092	6.5	> 100	< 0.0002	0.036
outdoor	margin	≥ 70		0.0092	6.5		< 0.0002	
	Adjacent	40-69		0.0033	11.2		< 0.0001	
	crop	≥ 70		0.0033	11.2		< 0.0001	
	Succeeding	40-69	_	1	0.9		< 0.0036	
	crop	\geq 70		1	0.9		< 0.0036	
	Treated	40-69		1	13.3		< 0.0532*	
	erop	≥ 70		1	0		0.0000	
	Weeds	40-69		0.4	6.5	> 100	< 0.0104	
Strawberries		≥ 70		0.4	6.5		< 0.0104	
indoor ¹	Field	40-69	0.4	0.0092	6.5		< 0.0002	0.036
maoor	margin	≥ 70		0.0092	6.5		< 0.0002	
	Adjacent	40-69		0.0033	11.2		< 0.0001	
	crop	≥ 70		0.0033	11.2		< 0.0001	
	Succeeding	40-69		1	0.9		< 0.0036	
	crop	≥ 70		1	0.9		< 0.0036	
	Treated	50-69		1	2.3		< 0.0092	
	crop	≥ 70		1	0		0.0000	
	Weeds	50-69		0.3	6.5	> 100	< 0.0078	
Fruiting		≥ 70		0.3	6.5		< 0.0078	
vegetables	Field	50-69	0.4	0.0092	6.5		< 0.0002	0.036
$outdoor^2$	margin	≥ 70	0.4	0.0092	6.5		< 0.0002	0.050
0444001	Adjacent	50-69		0.0033	11.2		< 0.0001	
	crop	≥ 70		0.0033	11.2		< 0.0001	
	Succeeding	50-69		1	0.9		< 0.0036	
	crop	≥ 70		1	0.9		< 0.0036	
	Treated	50-69		1	0.15		< 0.0006	
	crop	≥ 70		1	0		0.0000	
	Weeds	50-69		0.3	6.5		< 0.0078	
Fruiting	weeds	≥ 70		0.3	6.5		< 0.0078	
vegetables	Field	50-69	0.4	0.0092	6.5	> 100	< 0.0002	0.036
indoor ²	margin	≥ 70	0.4	0.0092	6.5	> 100	< 0.0002	0.050
1110001	Adjacent	50-69		0.0033	11.2		< 0.0001	
	crop	≥ 70		0.0033	11.2		< 0.0001	
	Succeeding	50-69		1	0.9		< 0.0036	
	crop	≥ 70		1	0.9		< 0.0036	

¹Sideward spray application; ²Downward spray application

* Despite the trigger was slightly breached, EFSA concluded a low risk based on the fact that the ETR was calculated with an unbounded LD_{50} and that 0% effect was seen at the highest tested dose. More details about the rationale for this decision are included in the evaluation table.

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	Frupica 50 WP	Mortality, LR ₅₀	> 1000 g a.s/ha
		Reproduction, ER ₅₀	> 1000 g a.s./ha
Aphidius rhopalosiphi	Frupica 50 WP	Mortality, LR ₅₀	> 1000 g a.s./ha
		Reproduction, ER ₅₀	250 g a.s./ha
Additional species			
Poecilus cupreus	Frupica 50 WP	Mortality, LR ₅₀	> 1400 g a.s./ha
		Reproduction, ER ₅₀	> 1400 g a.s./ha
Chrysoperla carnea	Frupica 50 WP	Mortality, LR ₅₀	> 500 g a.s./ha
		Reproduction	35.9% reduction in reproductive successs at 500 g a.s./ha
Coccinella septempunctata	Frupica 50 WP	Mortality Reproduction	47.7% higher larval mortality compared to controlat 500 g a.s./ha
			54.99 % reduction in reproduction success compared to control at 500 g a.s./ha
Trichogramma cacoeciae	Frupica 50 WP	Reproduction	96% reduction in parasitation capacity compared to control at 500 g a.s./ha

Laboratory tests with standard sensitive species

First tier risk assessment for Grapevines at BBCH 77-89, 1 x 600 g a.s./ha / Strawberries (indoor and outdoor) at BBCH 60-89, 2 x 400 g a.s./ha (7 day interval) / Tomatoes (indoor and outdoor) at BBCH 61-89, 2 x 400 g a.s./ha (7 day interval)

(the highest in-field and off-field PER values were used to calculate the HQ values to cover all the proposed uses)

Test substance	Species	Effect	HQ in-field	HQ off-field ¹	Trigger
		(LR ₅₀ g/ha)			
Frupica 50 WP	Typhlodromus pyri	> 1000	< 0.68	< 0.048	2
Frupica 50 WP	Aphidius rhopalosiphi	> 1000	< 0.68	< 0.048	2
Frupica 50 WP	Poecilus cupreus	> 1400	< 0.49	< 0.034	2
Frupica 50 WP	Chrysoperla carnea	> 500	< 1.36	< 0.096	2

¹a distance of 3 m was assumed to calculate the drift rate for the use in grapevines, and a distance of 1 m was assumed for the use in strawberries and tomatoes

Extended laboratory	v tests, aged	residue tests
---------------------	---------------	---------------

Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)	End point	% effect ¹	ER ₅₀
Aphidius rhopalosiphi	Adult	Frupica 50 WP, Vine leaves	48h of exposure	606 g a.s./ha and 2 x 404 g a.s./ha; fresh and 7d aged residues	Mortality, reproduction	At 606 and 2 x 404 g a.s./ha: <25% mortality on fresh residues and < 10% on 7d aged residues; reduction in parasitation capacity < 35% both on fresh and 7d aged residues	-
Chrysoperla carnea	Larvae and adults	Frupica 50 WP, Vine leaves	3 weeks of exposure	45 g a.s./ha, 600 g a.s./ha and 2 x 400 g a.s./ha; fresh and 7d aged residues	Mortality, reproduction	At 45, 600 and 2 x 400 g a.s./ha (0 and 7 d residues on vine leaves): mortality <15% in all treatments; >16.2 eggs/female/day with hatching success >83.8% in all treatments ($\le15\%$ reduction compared to control)	-
Coccinella septempunctata	Larvae and adults	Frupica 50 WP, Vine leaves	3 weeks of exposure	45 g a.s./ha, 600 g a.s./ha and 2 x 400 g a.s./ha; fresh and 7d aged residues	Mortality, reproduction	At 45, 600 and 2 x 400 g a.s./ha (0 and 8 d residues on vine leaves): mortality \leq 30% in all treatments; >5 eggs/female/day with hatching success >69.5% in all treatments (<35% reduction compared to control)	-

¹Positive percentages relate to adverse effects

Semi-field tests

A semi-field test was performed with *Aphidius rhopalosiphi* adults, on treated strawberry plants. The adult wasps were exposed for 96h to either fresh or 14 day aged residues of mepanipyrim following treatment with Frupica 50 WP. The plants were treated with either 45 g a.s./ha, 600 g a.s./ha or 2 x 400 g a.s./ha.

Results: At 45, 600 and 2 x 400 g a.s./ha (0 and 14d residues on strawberries): <30% reduction in parasitation capacity (no reduction on 14d aged residues); no behavioural effects

Field studies

A field test was performed with *Typhlodromus pyri* (mobile stages), on treated vine plants. The mites were exposed for 57 days to residues of mepanipyrim following a treatment with Frupica 50 WP at 600 g a.s./ha.

Results: the number of mites per leaf 7 days after treatment reduced to 57% of control levels, to 77% after 21 days and to 88% after 57 days.

Additional specific test

None

Risk assessment for – Grapevines at BBCH 77-89, 1 x 600 g a.s./ha / Strawberries at BBCH 60-89, 2 x 400 g a.s./ha (7 day interval) (both indoor and outdoor) / Tomatoes at BBCH 61-89, 2 x 400 g a.s./ha (7 day interval) (both indoor and outdoor), based on extended lab tests, aged residue tests, semi-field and field tests.

As the effects observed in the extended lab tests, aged residue tests, semi-field and field tests were below the 50% threshold of ESCORT II at application rates covering the intended application rates in grapevines, strawberry and tomato, the risk to non-target arthropods can be considered acceptable.

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
Earthworms					
Earthworm (Eisenia fetida)	Frupica 50 WP	Mixed with soil as a solution / 10%	Chronic	Reproduction	NOEC = 230 mg prep./kg d.w.soil (= 113 mg a.s/kg d.w. soil) NOEC _{CORR} = 115 mg prep./kg d.w.soil (= 56.5 mg a.s/kg d.w. soil)
Other soil mac	roorganisms				
Folsomia candida	Mepanipyrim	Mixed with soil as a solution / 5%	Chronic	Mortality:	LC ₁₀ = 73.52 mg a.s./kg d.w. soil LC _{10, CORR} = 36.76 mg a.s./kg d.w. soil LC ₂₀ = 341.79 mg a.s./kg d.w. soil LC _{20, CORR} = 170.90 mg a.s./kg d.w. soil NOEC = 104.98 mg a.s./kg d.w. soil NOEC _{CORR} = 52.49 mg a.s./kg d.w. soil EC ₁₀ = 67.69 mg a.s./kg d.w. soil EC _{10, CORR} = 33.85 mg a.s./kg d.w. soil EC ₂₀ = 131.90 mg a.s./kg d.w. soil
				Reproduction:	a.s./kg d.w. soll $EC_{20, CORR} = 65.95 \text{ mg}$

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity
					a.s./kg d.w. soil NOEC = 58.35 mg a.s./kg d.w. soil NOEC _{CORR} = 29.18 mg a.s./kg d.w. soil
Hypoaspis aculeifer	a.s.	Mixed with soil as a solution / 5%		Reproduction	NOEC = 1000 mg a.s./kg soil d.w. NOEC _{CORR} = 500 mg a.s./kg soil d.w.

¹To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %).

Higher tier testing (e.g. modelling or field studies); None

Nitrogen transformation	Mepanipyrim	Maximum tested rate of 5.2 mg a.s./kg d.w. soil; sandy loam soil	6.96 % effect at day 21 at 5.2 mg a.s./kg d.w.soil [In line with the OECD test guideline the endpoint should be based on nitrogen transformation rate and not nitrogen levels]
	Mepanipyrim	Maximum tested rate of 3.335 mg a.s./kg d.w. soil; sandy loam and clay loam soil	Sandy loam soil: 20.2% effect at day 28 at 3.335 mg a.s./kg d.w. soil Clay soil : 14.2 % effect at day 70 at 3.335 mg a.s./kg d.w. soil
	Frupica 50 WP	Maximum tested rate of 2.7 mg a.s./kg d.w. soil; Sandy loam soil	5.55 % effect at day 81 at 2.7 mg a.s./kg d.w.soil

Toxicity/exposure ratios for soil organisms

Grapevines at BBCH 77-89, 1 x 600 g a.s./ha

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger		
Earthworms							
Eisenia fetida	Frupica 50 WP	Chronic	0.252	224	5		
Other soil macroorganisms							
Folsomia candida	Mepanipyrim	Chronic	0.252	115.8	5		
Hypoaspis aculeifer	Mepanipyrim	Chronic	0.252	1984	5		

¹maximum PEC soil was used

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger
Earthworms					
Eisenia fetida	Frupica 50 WP	Chronic	0.434	130	5
Other soil macroorganisms					
Folsomia candida	Mepanipyrim	Chronic	0.434	67.22	5
Hypoaspis aculeifer	Mepanipyrim	Chronic	0.434	1152	5

Strawberries at BBCH 60-89, 2 x 400 g a.s./ha (7 day interval) (both indoor and outdoor use)

¹maximum PEC soil was used

Tomatoes at BBCH 61-89, 2 x 400 g a.s./ha (7 day interval) (both indoor and outdoor use)

Test organism	Test substance	Time scale	Soil PEC ¹	TER	Trigger
Earthworms					
Eisenia fetida	Frupica 50 WP	Chronic	0.217	260	5
Other soil macroorganisms					
Folsomia candida	Mepanipyrim	Chronic	0.217	134.45	5
Hypoaspis aculeifer	Mepanipyrim	Chronic	0.217	2304	5

¹maximum PEC soil was used

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data						
Not provided as ER5	0 tests are availa	able				
Laboratory dose response tests						
Species	Test substance	ER ₅₀ (g/ha) ² vegetative vigour	$\frac{\text{ER}_{50} (\text{g/ha})^2}{\text{emergence}}$	Exposure ¹ (g/ha) ²	TER	Trigger
Zea mais (maize), Allium cepa (onion), Brassica napus (oilseed rape), Cucumis sativa (cucumber), Helianthus annuus (sunflower), Phaseolus vulgaris (bean)	Frupica 50 WP	> 780.96	> 780.96	1) 48.12 2) 11.08 3) 11.08	1) 16.2 2) 70.5 3) 70.5	5
Extended laboratory	studies: None	•	·	•	-	•

Semi-field and field test: *None*

Note: 1) For the use in grapevines; 2) for the use in strawberry (both indoor and outdoor); 3) for the use in tomato (both indoor and outdoor)

¹ Exposure has been estimated based on Ganzelmeier drift data with a standard drift distance of 1 meter for Strawberry and Tomato and 3 meters for Grapevines

 2 dose is expressed as g a.s./ha

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	EC ₅₀ > 100 mg a.s./L
Pseudomonas sp	No data available

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

No data available

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds¹

Compartment	
soil	Parent (mepanipyrim)
water	Parent (mepanipyrim)
sediment	Parent (mepanipyrim)
groundwater	Parent (mepanipyrim)

¹ metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance	Mepanipyrim
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ¹¹ :	H400 H410
Peer review proposal ¹² for harmonised classification according to Regulation (EC) No 1272/2008:	Category Acute 1 Endpoint: 0.63 mg/L [48h EC50 Daphnia magna] H400 (M-factor = 1) Category chronic 1 Endpoint: 0.027 mg/L [Chronic
	NOEC Oncorhynchus mykiss] H410 (M-factor = 1)

¹¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

Regulation (EC) No 1272/2008.

Abbreviations

1/ <i>n</i>	slope of Freundlich isotherm
λ	wavelength
3	decadic molar extinction coefficient
a.s.	active substance
AChE	acetylcholinesterase
ADE	actual dermal exposure
ADI	acceptable daily intake
AF	assessment factor
AAOEL	acute acceptable operator exposure level
AOEL	acceptable operator exposure level
AP	alkaline phosphatase
AR	applied radioactivity
ARfD	acute reference dose
AST	aspartate aminotransferase (SGOT)
AUC	area under the blood concentration/time curve
AV	avoidance factor
BCF	bioconcentration factor
BUN	blood urea nitrogen
bw	body weight
CAS	Chemical Abstracts Service
CFU	colony-forming units
ChE	cholinesterase
CI	confidence interval
CIPAC	Collaborative International Pesticides Analytical Council Limited
CL	confidence limits
Cmax	concentration achieved at peak blood level
DAA	days after application
DAT	days after treatment
DDD	daily dietary dose
DM	dry matter
DT ₅₀	period required for 50% dissipation (define method of estimation)
DT ₉₀	period required for 90% dissipation (define method of estimation)
dw	dry weight
EbC ₅₀	effective concentration (biomass)
EC ₅₀	effective concentration
ECHA	European Chemicals Agency

EEC	European Economic Community
EMDI	estimated maximum daily intake
ER ₅₀	emergence rate/effective rate, median
ErC ₅₀	effective concentration (growth rate)
ETR	exposure toxicity ratio
ETR _{acute}	exposure toxicity ratio for acute exposure
ETR _{larvae}	exposure toxicity ratio for chronic exposure
ETR _{larvae}	exposure toxicity ratio for larvae
ETR _{HPG}	exposure toxicity ratio for effects on honeybee hypopharygeal glands
EU	European Union
EUROPOEM	European Predictive Operator Exposure Model
f(twa)	Time-weighted average factor
FAO	Food and Agriculture Organization of the United Nations
FID	flame ionisation detector
FIR	food intake rate
FOB	functional observation battery
FOCUS	Forum for the Co-ordination of Pesticide Fate Models and their Use
GAP	Good Agricultural Practice
GC	gas chromatography
GCPF	Global Crop Protection Federation (formerly known as International Group of National Associations of Manufacturers of Agrochemical Products; GIFAP)
GGT	gamma glutamyl transferase
GM	geometric mean
GS	growth stage
GSH	glutathione
Hb	haemoglobin
Hct	haematocrit
HPLC	high-pressure liquid chromatography or high-performance liquid chromatography
HPLC-MS	high-pressure liquid chromatography-mass spectrometry
HPG	hypopharygeal glands
HQ	hazard quotient
HQ _{contact}	hazard quotient for contact exposure
HR	hazard rate
IEDI	international estimated daily intake
IESTI	international estimated short-term intake
ISO	International Organization for Standardization
IUPAC	International Union of Pure and Applied Chemistry
iv	intravenous

- JMPR Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues (Joint Meeting on Pesticide Residues) **K**_{doc} organic carbon linear adsorption coefficient Freundlich organic carbon adsorption coefficient **K**_{Foc} LC liquid chromatography LC_{50} lethal concentration, median LC-MS liquid chromatography-mass spectrometry LC-MS-MS liquid chromatography with tandem mass spectrometry LD_{50} lethal dose, median; dosis letalis media LDD₅₀ lethal dietary dose; median LDH lactate dehydrogenase LOAEL lowest observable adverse effect level LOD limit of detection LOQ limit of quantification M/L mixing and loading MAF multiple application factor MCH mean corpuscular haemoglobin MCHC mean corpuscular haemoglobin concentration MCV mean corpuscular volume mm millimetre (also used for mean measured concentrations) mΝ milli-newton MRL maximum residue level MS mass spectrometry MSDS material safety data sheet MTD maximum tolerated dose MWHC maximum water-holding capacity NESTI national estimated short-term intake no observed adverse effect concentration NOAEC NOAEL no observed adverse effect level NOEC no observed effect concentration NOEL no observed effect level NPD nitrogen-phosphorus detector OECD Organisation for Economic Co-operation and Development ΟM organic matter content Ра pascal PD proportion of different food types PEC predicted environmental concentration
- PEC_{air} predicted environmental concentration in air

PEC_gw	predicted environmental concentration in groundwater
PEC_{sed}	predicted environmental concentration in sediment
PEC _{soil}	predicted environmental concentration in soil
PEC _{sw}	predicted environmental concentration in surface water
PHED	pesticide handler's exposure data
PHI	pre-harvest interval
PIE	potential inhalation exposure
рК _а	negative logarithm (to the base 10) of the dissociation constant
Pow	partition coefficient between <i>n</i> -octanol and water
PPE	personal protective equipment
ppm	parts per million (10^{-6})
PT	proportion of diet obtained in the treated area
PTT	partial thromboplastin time
QSAR	quantitative structure-activity relationship
r ²	coefficient of determination
RPE	respiratory protective equipment
RUD	residue per unit dose
SC	suspension concentrate
SD	standard deviation
SFO	single first-order
SFO SMILES	single first-order simplified molecular-input line-entry system
SFO SMILES SPG	single first-order simplified molecular-input line-entry system specific protection goal
SFO SMILES SPG SSD	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution
SFO SMILES SPG SSD STMR	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue
SFO SMILES SPG SSD STMR t _{1/2}	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation)
SFO SMILES SPG SSD STMR t _{1/2} TER	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _A	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _A TER _{LT}	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _A TER _{LT} TER _{ST}	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure technical concentrate
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _A TER _{LT} TER _{ST} TK	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure technical concentrate
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _A TER _{LT} TER _{ST} TK TLV	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure technical concentrate threshold limit value time until peak blood levels achieved
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _L T TER _S T TK TLV Tmax TMDI	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure technical concentrate threshold limit value time until peak blood levels achieved theoretical maximum daily intake
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _A TER _{LT} TER _{ST} TK TLV TMAX TMDI TRR	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure technical concentrate threshold limit value time until peak blood levels achieved theoretical maximum daily intake total radioactive residue
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _A TER _L T TER _S T TK TLV Tmax TMDI TRR TSH	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure technical concentrate threshold limit value time until peak blood levels achieved theoretical maximum daily intake total radioactive residue thyroid-stimulating hormone (thyrotropin)
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _A TER _{LT} TER _{ST} TK TLV Tmax TMDI TMDI TRR TSH TWA	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure technical concentrate threshold limit value time until peak blood levels achieved theoretical maximum daily intake total radioactive residue thyroid-stimulating hormone (thyrotropin) time-weighted average
SFO SMILES SPG SSD STMR t _{1/2} TER TER _A TER _L T TER _S T TK TLV TMA TMDI TRR TSH TWA UDS	single first-order simplified molecular-input line-entry system specific protection goal species sensitivity distribution supervised trials median residue half-life (define method of estimation) toxicity exposure ratio toxicity exposure ratio for acute exposure toxicity exposure ratio for acute exposure toxicity exposure ratio following chronic exposure toxicity exposure ratio following repeated exposure technical concentrate threshold limit value time until peak blood levels achieved theoretical maximum daily intake total radioactive residue thyroid-stimulating hormone (thyrotropin) time-weighted average unscheduled DNA synthesis

ultraviolet
water/sediment
weight per unit volume
weight per unit weight
white blood cell
water-dispersible granule
World Health Organization