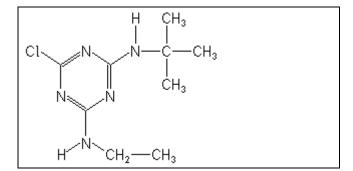


Appendix to:

EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance terbuthylazine. EFSA Journal 2017;15(6):4868, 58 pp. doi:10.2903/j.efsa.2017.4868

© European Food Safety Authority, 2017


Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) ‡	Terbuthylazine (ISO 1750)					
Function (e.g. fungicide)	Herbicide					
Rapporteur Member State	United Kingdom (UK)					
Identity (Annex IIA, point 1)						
Chemical name (IUPAC) ‡	N^2 - <i>tert</i> -butyl-6-chloro- N^4 -ethyl-1,3,5-triazine-2,4-diamine					
Chemical name (CA) ‡	6-chloro- <i>N</i> -(1,1-dimethylethyl)- <i>N</i> '-ethyl-1,3,5- triazine-2,4-diamine					
CIPAC No ‡	234					
CAS No ‡	5915-41-3					
EC No (EINECS or ELINCS) ‡	227-637-9					
FAO Specification (including year of publication) ‡	Yes (1993) terbuthylazine content not less than 930 g/kg. (234/TC/S (1991))					
Minimum purity of the active substance as manufactured ‡	Syngenta960 g/kgOxon980 g/kg					
Identity of relevant impurities (of	Propazine (SYN) 10 g/kg					
toxicological, ecotoxicological and/or	Atrazine (Oxon) 1 g/kg					
environmental concern) in the active substance as manufactured	Simazine (SYN) 30 g/kg					
substance as manufactured	Simazine (Oxon) 5 g/kg					
Molecular formula ‡	$C_9H_{16}CIN_5$					
Molecular mass ‡	229.7 g/mol					

Structural formula ‡

Physical and chemical properties (Annex IIA, point 2)

Melting point (state purity) ‡	Syngenta: 175.5°C (99.4%) Oxon: 175.7°C (99.6%)				
Boiling point (state purity) ‡	Syngenta: decomposition observed at $224^{\circ}C$ (99.4%)				
	Oxon: decomposition after melting (99.6%)				
Temperature of decomposition (state	Syngenta: 224°C (99.4%)				
purity)	Oxon: 230°C (99.6%)				
Appearance (state purity) ‡	Syngenta: White crystalline powder (99.4%) Oxon: White powder (99.6%)				
Vapour pressure (state temperature, state	Syngenta: 9.0 x 10 ⁻⁵ Pa at 25 °C (99.4%)				
purity) ‡	Oxon: 1.52 X 10 ⁻⁴ Pa at 22 °C (>99%.)				
Henry's law constant ‡	Syngenta: 2.3×10^{-3} Pa m ³ mol ⁻¹				
,	Oxon: $4.18 \times 10^{-3} \text{ Pa m}^3 \text{ mol}^{-1}$				
Solubility in water (state temperature, state	Syngenta:9.0 mg/L at 25 °C (pH 7.4) (99.4%)				
purity and pH) ‡	Oxon: 6.6 mg/L at 20 °C (pH 4-10) (>99%)				
Solubility in organic solvents ‡	Syngenta: at 25°C in g/L (96.8%)				
(state temperature, state purity)	hexane 0.41				
(toluene 9.8				
	dichloromethane 51				
	methanol 18				
	octanol 12				
	acetone 41				
	ethyl acetate 35				
	Oxon: at 20°C in g/L (99.5%)				
	hexane 0.275				
	toluene 7.17				
	dichloromethane 62.7				
	methanol 14.9				
	acetone 32.8				
	ethyl acetate 30.5				
Surface tension ‡	Syngenta: 71.8 mN/m at 20 °C (90 % saturated				
(state concentration and temperature, state	solution)(96.5%)				
purity)	Oxon: 70.9 mN/m at 20 °C (90 % saturated solution)(96.8%)				
Partition co-efficient ‡ (state temperature, pH and purity)	Syngenta: $\log P_{O/W} = 3.4$ at 25 °C (not pH dependent (99.4%)				
	Oxon: $\log P_{O/W} = 3.41$ at 20 °C (not pH dependant (99.5%)				
Dissociation constant (state purity) ‡	Syngenta: $pKa_1 = 1.95 (99.4\%)$				
	Oxon: $pKa_1 = 1.84 (99.5\%)$				

UV/VIS absorption (max.) incl. ε ‡	Syngenta:	solu	tion:		
(state purity, pH)	Solution	λ (nm)	ε (l/mol cm)		
	neutral	222	38538		
		263	3444		
	acidic	223	30103		
		263	4468		
	basic	223	37426		
		263	3395		
	No absorption	maximum	observed between 290 and		
	750 nm in ner	utral and b	asic solution and between		
	310 nm and 75	50 nm in ac	idic solution.		
	Oxon: soluti	ion:			
	Solution	λ (nm)	ε (l/mol cm)		
	neutral	222	38696		
		262	3291		
	acidic	222	29424		
	basic	222	38191		
		262	3241		
Flammability ‡ (state purity)	Syngenta: Not	highly flan	nmable (96.8%)		
	Oxon: Not hig	hly flamma	ble (96.5%)		
	Not classified.				
Explosive properties ‡ (state purity)	Syngenta: Not	explosive	(96.8%)		
	Oxon: Not exp	olosive (96.	5%)		
Oxidising properties [‡] (state purity)	Syngenta: Not oxidising (96.8%)				
	Oxon: Not oxi	dising (96.	5%)		

Summary of representative uses evaluated

a) Syngenta - Tradename: [GARDO[®] GOLD[®]]

Active Ingredients: [Terbuthylazine and S-metolachlor]

Crop and/			F	Pests or	Fo	ormulation		Appli	cation		Application rate per treatment			PHI	Remarks:
or situation	Member State or	Product name	G or	Group of pests	Туре	Conc. of as	method kind	growth stage &	number min-max	interval between	kg as/hL	water L/ha	kg as/ha	(days)	Kemarks:
(a)	Country	name	I (b)	controlled (c)	(1.6)		(61)	season		applications (min)	min-max	min-max	min max	(1)	(m)
(a)			(U)	(t)	(d-f)	(i)	(f-h)	(j)	(k)	()					
Maize	N.EU.	GARDO® GOLD®	F	Dicot and monocot weeds	SE	187.5 g/L Terbuthylazin e 312.5 g/L S-metolachlor	Tractor - mounted sprayer	pre- emergence - 8 leaf	1	Not applicable	0.15-0.375 Terbuthylazine 0.25-0.614 S-metolachlor	200 500	Max. 0.75 Terbuthylazine Max. 1.228 S- metolachlor	Not appli- cable	[1] [2] [3] [4] [5]
Maize	S.EU.	GARDO [®] GOLD [®]	F	Dicot and monocot weeds	SE	187.5 g/L Terbuthylazin e 312.5 g/L S- metolachlor	Tractor - mounted sprayer	pre- emergence - 8 leaf	1	Not applicable	0.168-0.422 Terbuthylazine 0.28-0.71 S- metolachlor	200 500	Max. 0.844 Terbuthylazine Max. 1.415 S- metolachlor	Not appli- cable	[1] [2] [3] [4] [5]

b) Oxon - Tradename: [Terbuthylazine 500 g/L SC]

Active Ingredients: [Terbuthylazine]

Crop and/or Member		G	F G	Pests or Group of pests	Preparation		Application			Application rate per treatment (for explanation see the text in front of this section)			PHI		
situation (a)	State or Country	Product name	or I (b)	controlled (c)	Type (d-f)	Conc. of as (i)	method kind (f-h)	growth stage & season (j)	number min-max (k)	interval between applicatio ns (min)	kg as/hL min-max (l)	Water L/ha min-max	kg as/ha min-max (l)	(days) (m)	Remarks
Maize	France (N) Germany (N) The Netherlands (N) France(S) Italy (S) Spain S)	Terbuthyl- azine 500 g/I SC	F	Annual and perennial broad leaved weeds	SC	500 g/l	Spray	Pre- emergence Early post emergence (12-16)	1	-	0.15-0.5	200-500	0.75- 0.844	n.r	[1] [3] [4] [5]
Sorghu m	Italy (S) Spain (S)	Terbuthyl- azine 500 g/l SC	F	Annual and perennial broad leaved weeds	SC	500 g/l	Spray	Pre- emergence Early post emergence (14)	1	-	0.2-0.5	200-500	0.844	n.r.	[1] [3] [4] [5]

[1] A critical area of concern is identified because a high long-term risk and a high risk from secondary poisoning were indicated for mammals in section 5 of EFSA (2011).

[2] A high long-term risk to earthworms was indicated in the risk assessment for the representative uses of the formulation 'Gardo® Gold®' according to EFSA (2011)..

[3] Critical areas of concern were identified for groundwater contamination of metabolites (MT1, MT13 and MT14) for which the groundwater relevance was indicated due to intakes of infants being calculated to be bove the ADI and because a herbicidally relevant metabolite (MT1) occurs in groundwater, both over a wide range of geoclimatic conditions.

[4] For the metabolites LM2, LM3, LM4, LM5 and LM6 the groundwater relevance assessment could not be finalised.

[5] A high long-term risk to birds was indicated according to EFSA (2011)..

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use	(i) g/kg or g/L.
situation should be described (e.g. fumigation of a structure)	(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)	8263-3152-4), including where relevant, information on season at time of application
(c) <i>e.g.</i> biting and suckling insects, soil born insects, foliar fungi, weeds	(k) Indicate the minimum and maximum number of application possible under practical conditions of use
(d) <i>e.g.</i> wettable powder (WP), emulsifiable concentrate (EC), granule (GR)	(1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha
(e) GCPF Codes - GIFAP Technical Monograph No 2, 1989	instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(f) All abbreviations used must be explained	(m) PHI - minimum pre-harvest interval
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench	n.r.= not relevant, the pre-harvest interval is covered by the growing period remaining between the
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of	envisaged application and harvest
equipment used must be indicated	

Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)	Syngenta: Method AW52/3. GC-FID and internal calibration with prometryn Oxon: HPLC-UV at 220nm and external calibration				
Impurities in technical as (analytical technique)	Syngenta: Relevant impurities: GC-FID and internal calibration with prometryn Oxon: GC-FID and internal calibration with 0.02% solution dibutylphthalate in acetone				
Plant protection product (analytical technique)	Syngenta: Method AF-1301/3. Reverse phase HPLC- UV at 210nm and external calibration Oxon: Method MAN/024/01. Reverse phase HPLC-UV at 254nm and external calibration				

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for monitoring purposes

Food of plant origin	Terbuthylazine (MT0)
Food of animal origin	Not necessary for the representative uses.
Soil	Terbuthylazine (MT0) plus desethyl-terbuthylazine (MT1) plus hydroxyl-terbuthylazine (MT13)
Water surface	Terbuthylazine (MT0) plus desethyl-terbuthylazine (MT1) plus hydroxyl-terbuthylazine (MT13)
drinking/ground	Terbuthylazine (MT0), desethyl-terbuthylazine (MT1), hydroxy-terbuthylazine (MT13), desethyl-hydroxy- terbuthylazine (MT14). Open regarding LM2, LM3, LM4, LM5 and LM6
Air	Terbuthylazine

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)

Syngenta: DFG S19. GC-NPD with LOQ of 0.02 mg/kg in grain (acceptable ILV). Terbuthylazine only Oxon: Published method. GC-NPD with LOQ of 0.02 mg/kg in grain. Terbuthylazine only

Not required

Soil (analytical technique and LOQ)	Syngenta: REM 148.05 GC-MS confirmation with target m/z of 214 and 3 qualifier ions (m/z 216, 229 and 173). LOQ was 0.02 mg/kg. REM 148.11. HPLC-MS/MS parent ion m/z = 230 and daughter ion m/z was 174. MT1 m/z was 202 and daughter m/z 146. MT13 m/z was 212 and daughter m/z was 156. MT14 m/z was 184 and daughter m/z was 128. LOQ was 0.01 mg/kg for each.
	Oxon: HPLC-MS/MS parent ion $m/z = 230$ and daughter ion m/z was 174. MT1 m/z was 202 and daughter m/z 146. MT13 m/z was 212 and daughter m/z was 156. LOQ was 0.01 mg/kg for each
Water (analytical technique and LOQ)	Syngenta: RAM 426/01 (validated in river, ground and drinking water). Reverse phase HPLC-MS/MS. Parent ion $m/z = 230$ and daughter ion m/z was 174. MT1 m/z was 202 and daughter m/z 146. MT13 m/z was 212 and daughter m/z was 156. MT14 m/z was 184 and daughter m/z was 128. LOQ was 0.1 µg/l for each.
	Oxon: Reverse phase HPLC-MS/MS (validated in surface and drinking water). Parent ion $m/z = 230$ and daughter ion m/z was 174. MT1 m/z was 202 and daughter m/z 146. MT13 m/z was 212 and daughter m/z was 156. LOQ was 0.05 µg/l for each.
Air (analytical technique and LOQ)	Syngenta: GC-NPD with confirmation by GC-MS with target m/z 214 and qualifier ions m/z 216, 229 and 173. LOQ was $1\mu g/m^3$. Oxon: GC-NPD with LOQ of $1\mu g/m^3$.
Body fluids and tissues (analytical technique and LOQ)	Syngenta: No data submitted or required. Oxon: No data submitted or required.

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

Active substance

RMS/peer review proposal
None

Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Toxicologically relevant compounds ‡ (animals and plants)	Terbuthylazine
Toxicologically relevant compounds ‡ (environment)	Terbuthylazine and desethyl-metabolite (MT1), MT13, MT14, LM1,
	Data gap regarding LM2, LM3, LM4, LM5, LM6

Other toxicological studies (Annex IIA, point 5.8)

Mechanism studies ‡	None submitted
Studies performed on metabolites or impurities ‡	
MT14	Acute oral LD_{50} (rats) : > 2000 mg/kg bw.
	90-day dietary rats: NOAEL and LOAEL of 10.3 and 45.7 mg/kg bw/day, based on increased mortality and water consumption, changes in haematology, clinical chemistry and urinalysis parameters and increased kidney weight, renal (histo)pathology secondary to chronic renal failure.
	Mutagenicity in bacterial cells: negative.
	Clastogenicity in CHO (Chinese Hamster Ovary) cells: negative.
	Mouse Lymphoma assay: negative
MT13	Acute oral LD_{50} (rats) : > 2000 mg/kg bw.
	90-day dietary rats: NOAEL and LOAEL of 3.4 and 10.3 mg/kg bw/day based on changes in haematology and clinical chemistry parameters.
	Mutagenicity in bacterial cells: negative
	Mouse lymphoma assay in L5178Y cells: negative
	Clastogenicity in cultured human lymphocytes: negative
MT20	Acute oral LD_{50} (rats) : > 5500 mg/kg bw
	90-day dietary rats:
	M: NOAEL and LOAEL of 16.7 and 34.1 mg/kg bw/day, based on decreased bodyweight, changes in clinical chemistry and urinalysis parameters and organ weight effects F: NOAEL and LOAEL of 0.7 and 7.6 mg/kg
	bw/day, based on altered oestrus cycle length and prolonged oestrus and/or dioestrus
	Mutagenicity in bacterial cells: negative
	Mouse micronucleus assay: negative

MT1	Acute oral LD_{50} (rats) : 236 mg/kg bw
	Acute oral LD ₅₀ (rats) : 300-500 mg/kg bw
	Mutagenicity in bacterial cells: negative
	Second Mutagenicity in bacterial cells: negative
	In Vitro Cytogenetic Assay in Human Lymphocytes: negative
	Gene Mutation Assay: weakly positive
	Mouse micronucleus assay: negative
	in vivo unscheduled DNA synthesis: negative
	90-day rat study Reduced bodyweight gain Total WBC (white blood cells) reduced no NOAEL
LM1	Mutagenicity in bacterial cells: negative
	Mammalian cell Gene Mutation Assay: negative
	In Vitro Chromosome Aberration: negative
LM2	Mutagenicity in bacterial cells: negative
	Mammalian cell Gene Mutation Assay: negative
	In vitro Chromosome Aberration: negative
LM3	Mutagenicity in bacterial cells: negative
	Mammalian cell Gene Mutation Assay: negative
	In vitro Chromosome Aberration: negative
LM4	Mutagenicity in bacterial cells: negative
	Mammalian cell Gene Mutation Assay: negative
	In vitro Chromosome Aberration: negative
LM5	Mutagenicity in bacterial cells: negative
	Mammalian cell Gene Mutation Assay: negative
	In vitro Chromosome Aberration: negative
LM6	Mutagenicity in bacterial cells: negative
	Gene Mutation Assay: weakly positive
	In Vitro Chromosome Aberration: negative
	Mouse micronucleus assay: negative
	hier and hier and here and here here here

Summary (Annex IIA, point 5.10)

ADI ‡ AOEL ‡ ARfD ‡

Value (mg/kg bw (per day))	Study	Uncertainty factor
0.004	dog, 1-year & rat, 2-year	100
0.0032	dog, 1-year	Overall 126* (100 + 79 %*)
0.008	rabbit developmental study	100

*correction for oral absorption (79 %)

Metabolites MT1, MT13, MT14

ADI ‡

ARfD ‡

0.004	dog, 1-year & rat, 2-year	100
0.008	rabbit developmental study	100

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

Substance :	Terbuthylazine
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ¹ :	No current Annex VI entry. RAC opinion (June 2015): Acute Tox.4 - H302 "Harmful if swallowed" STOT-RE-2 – H373 May cause damage to organs through prolonged or repeated exposure.
Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:	Acute Tox.4 - H302 Harmful if swallowed STOT-RE-2 – H373 May cause damage to organs through prolonged or repeated exposure.

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355. 2 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with

Regulation (EC) No 1272/2008.

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

ADI	0.004 mg/kg bw/day
TMDI (% ADI) according to WHO European diet	
IEDI (% ADI) according to EFSA PRIMo rev2 model	Highest IEDI: 21.6 % ADI (WHO cluster B) considering as a worst case, the STMRs of 0.06 mg/kg (total residues) in maize, sorghum and in rotational oilseed crops, root crops, and cereals (rice, wheat/ rye, oat/ barley)
NEDI (% ADI) according to national diets (to be specified)	Population groups (EFSA PRIMo) with profile similar to consumer group defaults for drinking water assessessment (WHO, 2011) Adult: 12.6 % ADI (IE); Toddler: 9.1% ADI (FR 1-1.5 yrs, 10.6 kg) Infant: 9.0% ADI (UK; 0.5-1 yr, 8.7 kg)
Factors included in IEDI and NEDI	
ARfD	0.008 mg/kg bw
IESTI (% ARfD) according to EFSA PRIMo rev2 model	Highest IESTI: 63% ARfD (Carrot as rotational crop, HR 0.08 mg/kg)
NESTI (% ARfD) according to national (to be specified)	
Factors included in IESTI and NESTI	

Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite(s)

	Concentration		Intakes via drinking water								
	$\left[\mu g/L\right]^3$	[mg	/kg bw per		[% ADI]						
		Adult	Toddler	Infant	Adult	Toddler	Infant				
M13	26.15	0.000872	0.002615	0.003922	21.8	65.4	98.1				
M1	0.13	0.000004	0.000013	0.000019	0.10	0.31	0.47				
M14	2.41	0.000080	0.000241	0.000362	2.0	6.0	9.0				
Sum	26.15	0.000956	0.002869	0.004303	23.9	71.7	107.6				

³ parent equivalents

www.efsa.europa.eu/efsajournal

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1) – SYN and OXON

Mineralisation after 100 days ‡	0.4 - 10.35 % after 112 - 120 d at 20 °C, [¹⁴ C-triazine ring]-label (n ⁴ = 17) 0.29 % after 118 d at 10 °C, [¹⁴ C-triazine ring]-label (n= 1; SYN only)
Non-extractable residues after 100 days ‡	17.3 - 30.8 % after 112 - 120 d at 20 °C, [¹⁴ C-triazine ring]-label (n= 17) 9.31 % after 118 d at 10 °C, , [¹⁴ C-triazine ring]-label (n= 1; SYN only)
Metabolites requiring further consideration ‡ - name and/or code, % of applied (range	Max values from studies: desethyl-terbuthylazine (MT1) $- 3.0 - 25.1$ % at 56 - 210 d at 20 °C (n= 17)
and maximum)	14.6 % at 118 d at 10 °C (n=1; SYN only) hydroxy-terbuthylazine (MT13) – $4.2 - 34.5$ % at 90 - 311 d at 20 °C (n= 17)

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2) – SYN and OXON

Anaerobic degradation ‡

Mineralisation after 100 days	≤ 0.1 % after 100 - 118 d, [¹⁴ C-triazine ring]- label (n= 2)
Non-extractable residues after 100 days	30.1 - 39.43 % after 100 - 118 d, [¹⁴ C-triazine ring]-label (n= 2)
Metabolites that may require further	Max values from studies:
consideration for risk assessment - name and/or code, % of applied (range and	desethyl-terbuthylazine (MT1) – $0.3 - 4.5$ % at 30 - 56 d (n= 2)
maximum)	hydroxy-terbuthylazine (MT13) – 1.0 – 8.16 % at 91 - 100 d (n= 2)
	[¹⁴ C-triazine ring]-label
Soil photolysis ‡	
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and	DT50 in light exposed samples = 52 d; DT50 in dark control = 117 d (DT50 via photolysis only = 93.6 d; SYN)
maximum)	DT50 in light exposed samples = 28.2 d; DT50 in dark control = 126.6 d (DT50 via photolysis only = 36.3 d; OXON)

⁴ n corresponds to the number of soils.

Max values from studies (irradiated value

minus non-irradiated value): Desethyl-terbuthylazine (MT1) – 3.6 % at 31 d exposure 12 hours irradiated at 550 W.m²/ 12 hours dark (n= 1; SYN) 12.59 % at 15 d – exposure 700 W.m² continuous (n= 1; OXON). Hydroxy-terbuthylazine (MT13) – 5.49 % at 15 d – exposure 700 W.m² continuous (n= 1; OXON)

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1) – SYN and OXON

Terbuthylazine	Aerol	Aerobic conditions							
Soil name and classification	% OM	pH (KCl or CaCl ₂)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.	
Gartenacker Sandy Loam	3.79	7.25	20 °C / 26.73 %	48.92	78.7	51.6	1.7	SFO	
Pappelacker Loamy Sand	1.9	7.6	20 °C / 15.8 %	29.3	93.1	60.4	2.9	SFO	
Weide Sandy Loam	2.24	7.5	20 °C / 18.96 %	36.6	65.0	41.0	2.5	SFO	
Speyer 2.2 Loamy Sand	3.91	6.1	20 °C / 19.2 %	12.1	167	167	2.1	SFO	
Borstel Loamy Sand	2.59	5.8	20 °C / 10.88 %	14 ^b	143	120	1.0	SFO	
Lorsch Sandy Clay Loam	3.1	5.3	20 °C / 19.92 %	22 ^b	110	103	1.4	SFO	
Gartenacker Silt Loam 1.57 kg/ha	3.59	7.32	20 °C / 29.17 %	48.61	77.0	53.9	4.4	SFO	
Gartenacker Silt Loam 0.15 kg/ha	3.59	7.32	20 °C / 29.17 %	48.61	59.7	41.8	4.9	SFO	
Collombey Sand	2.29	7.7	20 °C / 16.8 %	25.31	80.0	60.0	5.9	SFO	
Les Evouettes Silt Loam	2.41	6.1	20 °C / 22.12 %	40.21	58.4	38.2	7.7	SFO	
Speyer 2.2 Loamy Sand	4.4	6.0	20 °C / 16.16 %	21.21	122	101	2.2	SFO	
Speyer 2.3 Sandy Loam	1.28	6.6	20 °C / 12.56 %	18.61	112	85.2	2.4	SFO	
Les Evouettes Loam	6.4	6.8	20 °C / 35.85 %	47.8	69.7	57.0	4.3	SFO	
Speyer 2.2 Loamy Sand	3.95	6.18	20 °C / 17.72 %	14 ^b	136	138	5.6	SFO	
Sisseln Sandy Loam	2.71	7.16	20 °C / 20.96 %	19 ^b	83.7	83.7	4.1	SFO	
Collombey Loamy Sand	2.02	7.45	20 °C / 16.12 %	14 ^b	73.6	73.6	4.2	SFO	
Diegten Clay Loam	2.74	6.9	20 °C / 20.76 %	28 ^b	117	94.9	1.9	SFO	
Geometric mean ^a					91.1	72.0	-	-	
Median					88.4	75.1	-	-	

Laboratory studies ‡

(a) Geometric mean for replicate soil values calculated first (excluding the two Les Evouettes soils that were considered to be substantially different from each other due to contrasting organic matter contents e.g. 2.41 and 6.4% organic matter)

(b) FOCUS default moisture content based on soil texture Note that the t-test result was >99% for every soil

Desethyl- terbuthylazine (MT1)		Aerobic conditions (where metabolite applied as starting material)								
Soil name and classification	% OM	pH (KCl or CaCl ₂)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.		
Borstel – Loamy Sand	2.63	5.79	20 °C / 10.9 %	14 ^a	83.9	70.3	1.9	SFO		
Gartenacker* - Loam	3.20	7.28	20 °C / 26.7 %	25 ^a	61.8	61.8	3.1	SFO		
Lorsch – Sandy Clay Loam	3.16	5.25	20 °C / 19.9 %	22 ^a	40.7	38.0	3.3	SFO		
Speyer 2.3 – Sandy Loam	2.1	6.4	20 °C / 15.6 %	19 ^a	61.8	53.8	6.7	SFO		
Speyer 2.1 – Sand	1.07	5.9	20 °C / 12.4 %	12 ^a	45.2	45.2	4.9	SFO		
Speyer 2.2 – Loamy Sand	4.00	5.6	20 °C / 19.2 %	14 ^a	50.7	50.7	4.1	SFO		
Westmaas – Silt Loam	2.41	7.4	20 °C / 15.6 %	26 ^a	93.8	65.6	6.0	SFO		
Geometric mean					60.0	54.0	-	-		
Median		61.8	53.8	-	-					

* NB. Significant volatiles observed for Gartenacker soil

^a FOCUS default moisture content based on soil texture

^b t-test result was >99% for every soil

Desethyl- terbuthylaz ine (MT1)	Ae	Aerobic conditions (where metabolite formed from parent terbuthylazine during the study)									
Soil name and classification	% OM	pH (KCl or CaCl ₂)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	Form. frac. (ffm)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.		
Gartenacker Sandy Loam	3.79	7.25	20 °C / 26.73 %	48.92	66.0	0.606	43.2	5.8	SFO		
Pappelacker Loamy Sand	1.9	7.6	20 °C / 15.8 %	29.3	105.7	0.591	68.6	6.2	SFO		
Weide Sandy Loam	2.24	7.5	20 °C / 18.96 %	36.6	87.4	0.536	55.2	4.6	SFO		
Borstel Loamy Sand	2.59	5.8	20 °C / 10.88 %	14 ^b	53.8	0.357	45.1	2.3	SFO		
Gartenacker Silt Loam 1.57 kg/ha	3.59	7.32	20 °C / 29.17 %	48.61	112.8	0.430	78.9	11.3	SFO		
Gartenacker Silt Loam 0.15 kg/ha	3.59	7.32	20 °C / 29.17 %	48.61	42.9	0.575	30.0	9.3	SFO		
Collombey Sand	2.29	7.7	20 °C / 16.8 %	25.31	26.9	0.498	20.2	18.1	SFO		
Les Evouettes Silt Loam	2.41	6.1	20 °C / 22.12 %	40.21	21.7	0.594	14.3	13.7	SFO		
Speyer 2.3 Sandy Loam	1.28	6.6	20 °C / 12.56 %	18.61	91.6	0.346	69.6	11.7	SFO		
Sisseln Sandy Loam	2.71	7.16	20 °C / 20.96 %	19 ^b	76.6	0.536	76.6	6.0	SFO		
Collombey Loamy Sand	2.02	7.45	20 °C / 16.12 %	14 ^b	60.4	0.580	60.4	3.5	SFO		
Diegten Clay Loam	2.74	6.9	20 °C / 20.76 %	28 ^b	63.5	0.323	51.5	7.7	SFO		
Arithmetic me	ean ^a				-	0.484	-	-	-		
Geometric me	an ^a				61.8	-	46.9	-	-		
Median ^a					68.4	0.536	51.5	-	-		

(a) Average formation fraction and geometric mean DT_{50} for replicate soil values calculated first

(b) FOCUS default moisture content based on soil texture

Note that the t-test result was >99% for all soils except Collombey (>95%), Les Evouettes (>98%) and Speyer 2.3 (>92%)

Hydroxy- terbuthylazine (MT13)	Aero	Aerobic conditions (where metabolite applied as starting material)									
Soil type	% OM	pH (K Cl)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.			
Borstel – Loamy Sand	2.6	5.8	20 °C / 10.88 %	14 ^a	207	173	4.7	SFO			
Gartenacker – Loam	2.8	7.6	20 °C / 25.08 %	25 ^a	298	298	2.2	SFO			
Vetroz – Silt Loam	3.1	7.7	20 °C / 23.56 %	26 ^a	281	278	2.9	SFO			
Cranfield 115 – Clay Loam	2.9	7.4	20 °C / 22.1 %	30.4 ^c	>1000	>1000	3.3	SFO			
Cranfield 164 – Silt Loam	5.2	6.5	20 °C / 29.12 %	41.2 ^c	>1000	>1000	3.7	SFO			
Cranfield 243 – Sandy Loam	1.9	4.3	20 °C / 20.44 %	22.7 ^a	645	600	1.7	SFO			
Geometric mean					473 ^b	453 ^b	-	-			

^a FOCUS default moisture content based on soil texture

^b the geomean was calculated assuming a default DT_{50} of 1000 d for Cranfield 115 and Cranfield 164 soils ^c measured pF2.5 value was above the FOCUs default pF2 and the measured pF2.5 was used as a worst-case assessment.

Hydroxy- terbuthylazine (MT13)	Aerobi study)	c conditi	ons (where n	netabolite for	rmed from par	rent terbuthylazine during the
Soil type	% OM	pH (KCl or CaCl ₂)	Visual inspection	Form. frac. (ffm	Min chi ² error (%)	Method of calc.
Gartenacker Sandy Loam (Out)	3.79	7.25	Acceptable	0.076	10.1	SFO using a fixed DT ₅₀ of 473 d
Pappelacker Loamy Sand	1.9	7.6	Acceptable	0.065	27.7	SFO using a fixed DT_{50} of 473 d
Weide Sandy Loam	2.24	7.5	Acceptable	0.057	28.5	SFO using a fixed DT_{50} of 473 d
Speyer 2.2 Loamy Sand ^a	3.91	6.1	Acceptable	0.302	25.9	SFO using a fixed DT_{50} of 473 d
Borstel Loamy Sand	2.59	5.8	Very good	0.212	2.7	SFO using a fixed DT_{50} of 473 d
Lorsch Sandy Clay Loam	3.1	5.3	Very good	0.367	6.3	SFO using a fixed DT_{50} of 473 d
Gartenacker Silt Loam 2.6 kg/ha ^a	3.59	7.32	Acceptable	0.06	16.1	SFO using a fixed DT_{50} of 473 d
Gartenacker Silt Loam 0.25 kg/ha ^a	3.59	7.32	Acceptable	0.07	22.4	SFO using a fixed DT_{50} of 473 d
Collombey Sand ^a	2.29	7.7	Acceptable	0.287	18.7	SFO using a fixed DT_{50} of 473 d
Les Evouettes Silt Loam	2.41	6.1	Good	0.363	10.8	SFO using a fixed DT_{50} of 473 d
Speyer 2.2 Loamy Sand ^a	4.4	6.0	Good	0.362	12.8	SFO using a fixed DT_{50} of 473 d
Speyer 2.3 Sandy Loam	1.28	6.6	Acceptable	0.238	27.6	SFO using a fixed DT_{50} of 473 d
Speyer 2.2 Loamy Sand ^a	3.95	6.18	Reasonable	0.474	20	SFO using a fixed DT_{50} of 473 d
Sisseln Sandy Loam	2.71	7.16	Acceptable	0.14	13.4	SFO using a fixed DT_{50} of 473 d
Collombey Loamy Sand ^a	2.02	7.45	Good	0.106	13.5	SFO using a fixed DT_{50} of 473 d
Diegten Clay Loam	2.74	6.9	Very good	0.191	3.3	SFO using a fixed DT_{50} of 473 d
Arithmetic mean ^a				0.207	-	_
Median ^a				0.196	-	-

(Out) = Outlier excluded.

^a Average for replicate soil values calculated first [Gartenacker 0.069; Speyer 2.2 0.379; Collombey 0.196]. Note the actual value selected for modelling purposes included additional information from the field dissipation studies.

Desethyl hydroxy- terbuthylazine (MT14)	Aero	bic c	conditions (wl	here metaboli	te applied	as starting r	naterial)	
Soil type	% OM	pH (K Cl)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%) ^b	Method of calc.
Borstel – Loamy Sand	2.6	5.8	20 °C / 10.88 %	14 ^a	135	113	7.7	SFO

Desethyl hydroxy- terbuthylazine (MT14)	Aero	Aerobic conditions (where metabolite applied as starting material)								
Soil type	% OM	pH (K Cl)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%) ^b	Method of calc.		
Gartenacker – Loam	2.8	7.6	20 °C / 25.08 %	25ª	50.1	50.1	5.3	SFO		
Lorsch – sandy clay loam	3.1	5.3	20 °C / 19.92 %	22ª	377	351	5.1	SFO		
Vetroz – Silt Loam	3.1	7.7	20 °C / 23.56 %	26 ^a	69.7	65.1	4.0	SFO		
Geometric mean					115	107	-	-		

^a FOCUS default moisture content based on soil texture

^b t-test result was >99% for every soil except Lorsch where it was >97%

Desethyl hydroxy- terbuthylazine (MT14)			nditions (wh ine during th		te formed from	m parent desethyl-				
Soil type	% OM	pH (KCl)Visual inspectionForm. frac. (ffmMin chi2 error (%)Method of calc.								
Borstel – Loamy Sand	2.6	5.8	Very good	0.203	2.7	SFO using a fixed DT_{50} of 135 d				
Gartenacker – Loam	2.8	7.6	Very good	0.179	9.1	SFO using a fixed DT_{50} of 50.1 d				
Lorsch – sandy clay loam	3.1	5.1 5.3 Very good 0.458 3.5 SFO using a fixed DT ₅₀ of 377 d								
Arithmetic mean 0.280										

All studies performed at 20°C

LM1 (MT24)	Aero	robic conditions (where metabolite was applied as parent)								
Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.		
Gartenacker – Loam	1.96	7.5	20 °C / pF2	35.3	0.41	0.41	4.1 (p=5.3E-009)	SFO		
18 Acres	2.88	7	20 °C / pF2	29.8	0.48	0.48	10.1 (p=1.5E-006)	SFO		
Vetroz – Silt Loam	2.36	7.6	20 °C / pF2	26.4	0.33	0.33	24.2 (p=2.8E-004)	SFO		
Geometric mean	eometric mean					0.4	-	-		

LM2 (MT28)	Aero	obic con	ditions (where	metabolite wa	s applied as p	parent)		
Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.
Gartenacker – Loam	3.1	7.5	20 °C / pF2	35.3	19.1	19.1	8.8 (p=1.9E-009)	SFO
18 Acres	3.4	6.5	20 °C / pF2	29.8	11.5	11.5	7.9 (2.2E-008)	SFO
Vetroz – Silt Loam	3.9	7.8	20 °C / pF2	26.4	20.5	20.5	6.3 (p=3.1E-011)	SFO
Geometric mean	Geometric mean					16.5	-	-

LM3	Aero	obic con	ditions (where	metabolite wa	as applied as p	oarent)		
Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.
Gartenacker – Loam	3.1	7.5	20 °C / pF2	35.3	7.3	7.3	7.2 (3.4E-009)	SFO
18 Acres	3.4	6.5	20 °C / pF2	29.8	38.7	38.7	13.2 (1.3E-006)	SFO
Vetroz – Silt Loam	3.9	7.8	20 °C / pF2	26.4	6.5	6.5	5.1 (1.6E-010)	SFO
Geometric mean	Geometric mean					12.2	-	-

LM4	Aero	obic con	ditions (where	metabolite wa	as applied as p	parent)		
Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.
Gartenacker – Loam	3.1	7.5	20 °C / pF2	35.3	49.9	49.9	2.5 (1.1E-013)	SFO
18 Acres	3.4	6.5	20 °C / pF2	29.8	65.2	65.2	6.8 (2.0E-008)	SFO
Vetroz – Silt Loam	3.9	7.8	20 °C / pF2	26.4	47.4	47.4	3.1 (1.7E-012)	SFO
Geometric mean	Geometric mean					53.6	-	-

LM5 (MT23)	Aero	Aerobic conditions (where metabolite was applied as parent)									
Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.			
Gartenacker – Loam	3.0	7.5	20 °C / pF2	35.3	40.2	40.2	2.9 (7.6E-012)	SFO			

LM5 (MT23)	Aero	Aerobic conditions (where metabolite was applied as parent)								
Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.		
18 Acres	4.7	6.5	20 °C / pF2	29.8	70.6	70.6	5.9 (1.4E-008)	SFO		
Vetroz – Silt Loam	4.1	8.0	20 °C / pF2	26.4	36.5	36.5	7.1 (4.2E-009)	SFO		
Geometric mean	Geometric mean					47.0	-	-		

LM5		Aerobic conditions (where metabolite was formed from parent desethyl-hydroxy terbuthylazine)										
Soil type	% OM	pH (KCl)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Formation fraction	Min chi ² error (%)	Method of calc.			
Gartenacker – Loam	2.8	7.6	20 °C / 25.08 %	25 ^ª	119	119	0.491	4.72 (p = 0.0812 ^b)	SFO			
Vetroz – Silt Loam	3.1	7.7	20 °C / 23.56 %	26 ^a	146	136	0.440	3.00 (p = 0.1570 ^b)	SFO			
Geometric mean	132	128	0.466 (arithmetic mean)	-	-							

^a FOCUS default moisture content based on soil texture

^b due to the high degree of uncertainty associated with the LM5 DT50 values derived from this study the modelling endpoint has been taken from the LM 5 dosed studies only (i.e. geometric mean of 47.0 d).

LM6	Aero	obic con	ditions (where	metabolite w	as applied	as parent)		
Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT _{50, actual} (d)	DT _{50, ref} 20 °C pF2 (d)	Min chi ² error (%)	Method of calc.
Gartenacker – Loam	3.0	7.5	20 °C / pF2	35.3	211	211	3.3 (2.5E-007)	SFO
18 Acres	4.7	6.5	20 °C / pF2	29.8	390	390	2.1 (2.2E-006)	SFO
Vetroz – Silt Loam	4.1	8.0	20 °C / pF2	26.4	171	171	2.6 (1.7E-009)	SFO
Geometric mean	Geometric mean					241	-	-

Field studies ‡

Terbuthylazine	Aerobic condition	s							
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	% OM	рН	Depth (cm)	DT _{50, ref} 20 °C pF2 (d)	DT _{90, ref} 20 °C pF2 (d)	Min chi ² error (%)	t-test (%)	Method of calc. ^a
Loam – Bare soil	St Aubin, Switzerland	3.1	7.2	0-10	17.4	58	5.2	> 99%	SFO
Silt loam – Bare soil	Eschwege, Germany	4.0	6.2	0-20	16.9	56.1	16.7	> 99%	SFO
Silt loam – Bare soil	Goch, Germany	6.4	6.25	0-20	28.8	95.8	8.2	> 99%	SFO
Silty clay loam – Bare soil	Keeken, Germany	7.6	6.1	0-20	24.3	80.9	17.7	>99%	SFO
Silt loam – Bare soil	Pleidsheim, Germany	2.1	6	0-20	15.4	51.1	19.2	> 99%	SFO
Loamy sand – Bare soil	Lorsch Helming, Germany	1.4	5.25	0-20	6.43	21.4	21	>99%	SFO
Loamy sand – Bare soil	Weeze Wemb, Germany	3.8	6.2	0-20	11.1	36.8	17.7	> 99%	SFO
Clay loam – Bare soil	Grisolles, Southern France	1.62	7.3	0-30	52.5	175	13.2	> 99%	SFO
Silt loam – Bare soil	Molinella, Italy ^d	1.31	7.6	0 - 30	149	497	12.9	> 99%	SFO
Silt loam – Bare soil	St Firmin, France (North) (1.0) ^c	1.6	8.4	0 - 10	24.8	82.3	8.7	> 99%	SFO
Silt loam – Bare soil	St Firmin, France (North) (1.5) ^c	1.6	8.4	0 - 10	21.2	70.5	9.5	> 99%	SFO
Sand – Bare soil	Nevoy, France (North) (1.0) ^c	1.0	8.6	0 - 10	12.5	41.5	8.8	> 99%	SFO
Sand – Bare soil	Nevoy, France (North) (1.5) ^c	1.0	8.6	0 - 10	19.4	64.4	6.5	> 99%	SFO
Silt loam – Bare soil	Charny, France (North) (1.0) ^c	1.0	5.9	0 - 10	12.5	41.5	8.8	> 99%	SFO
Silt loam – Bare soil	Charny, France (North) (1.0) ^c	1.0	5.9	0 - 10	17.6	58.5	9.4	>99%	SFO
Silty sand – Bare soil	Ports sur Vienne, France (North) (1.0) ^c	1.9	6.6	0 - 10	13.9	46.3	4.9	> 99%	SFO
Silty sand – Bare soil	Ports sur Vienne, France (North) (1.5) ^c	1.9	6.6	0 - 10	27.9	92.8	13.7	> 99%	SFO
Sandy silt loam – Bare soil	Eraclea, Italy (1.0) ^b	3.4	7.6	0 - 10	67.7	225	39.6	>81%	SFO
Sandy silt loam – Bare soil	Eraclea, Italy (1.0) ^b	3.4	7.6	0 - 10	9.51	31.6	20.2	>98%	SFO
Clay – Bare soil	Emilia, Italy ^c	3.3	7.5	0-10	32.6	1.8	7	> 99%	SFO
Clay – Bare soil	Emilia Italy ^c	3.3	7.5	0 - 10	31.8	1.6	5.3	> 99%	SFO
Soft clayey sand – Bare soil	Hilgermissen, Germany ^e	1.5	5.9	0 - 10	33.5	111	11.8	> 99%	SFO
Clayey sand – Bare soil	Leutzke, Germany	2.9	5.5	0 - 10	9.72	32.3	25.7	> 99%	SFO

Field studies ‡

Terbuthylazine	Aerobic condition	S							
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	% OM	рН	Depth (cm)	DT _{50, ref} 20 °C pF2 (d)	DT _{90, ref} 20 °C pF2 (d)	Min chi ² error (%)	t-test (%)	Method of calc. ^a
Geometric mean ^c					21.8	72.6	-	-	-
Median ^c					20.0	66.5	-	-	-

NK – not known

^a soils were normalised for temperature assuming a Q10 of 2.58 using a time step normalisation procedure. Soil moisture content was assumed to be at pF2 and not corrected for.

^b Excluded from statistical evaluations due to poor fits

 $^{\rm c}\,$ Geometric mean of replicate trials calculated first; median based on n=16

^d The un-normalised SFO DT50 at the Molinella field site (SEU) was 149.9 d (chi2 error level = 12.8%, acceptable visual fit)

^d The un-normalised SFO DT50 at the Hilgermissen field site (NEU) was 46.6 d (chi2 error level = 17.2%, acceptable visual fit up to approximate DT90)

Field studies

Desethyl terbuthylazine	Aerobic condit during the stud	`	where n	netabolit	e formed	from par	rent terl	buthyla	zine	
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	% OM	рН	DT _{50, ref} 20 °C pF2 (d)	DT _{90, ref} 20 °C pF2 (d)	Form. frac. (ffm	Min chi ² error (%)	t-test (%)	Method of calc. ^d	
Loam – Bare soil	St Aubin, Switzerland	3.1	7.2	16.6	55.3	0.292	17.6	>99%	SFO	
Silt loam – Bare soil	Pleidsheim, Germany	2.1	6	31	103	0.112	17	>76%	SFO	
Loamy sand – Bare soil	Lorsch Helming, Germany	1.4	5.25	2.13	7.08	0.256	22.1	>68%	SFO	
Clay loam – Bare soil	Grisolles, Southern France	1.62	7.3	51	169	0.767	15.6	>99%	SFO	
Silt loam – Bare soil	Molinella, Italy	1.31	7.6	208	693	0.513	6.6	>77%	SFO	
Silt loam – Bare soil	St Firmin, France (North) (1.0)	1.6	8.4	15.5	51.6	0.829	18.1	>99%	SFO	
Silt loam – Bare soil	St Firmin, France (North) (1.5)	1.6	8.4	19	63.2	0.445	3.1	>96%	SFO	
Silt loam – Bare soil	Charny, France (North) (1.0)	1.0	5.9	47.3	157	0.306	5.8	>97%	SFO	
Silt loam – Bare soil	Charny, France (North) (1.5)	1.0	5.9	69.9	231	0.258	11.4	>97%	SFO	
Soft clayey sand – Bare soil	Hilgermissen, Germany	1.5	5.9	23.4	77.8	0.695	8	>99%	SFO	
Arithmetic mean ^{a,b}		-	-	0.444	-	-	-			
Geometric mean ^{a,c}	Geometric mean ^{a,c}				89.2	-	-	-	-	
Median ^{a,c}	Median ^{a,c} 27.2 90.4 -									

^a only valid datasets considered

^b arithmetic mean of replicate soils calculated first

^c geometric mean of replicate soils calculated first

^d soils were normalised for temperature assuming a Q10 of 2.58 using a time step normalisation procedure. Soil moisture content was assumed to be at pF2 and not corrected for.

NB the applicant proposed a geometric mean of 29.6 d based on a marginally different set of soils considered acceptable

Field studies

Hydroxy-terbuthy	ylazine	Aerobic during th			ere metabolite formed from parent terbuthylazine				
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	% OM	рН	Visual inspection	Form. frac. (ffm	Min chi ² error (%)	Method of calc.		
Clay loam – Bare soil	Grisolles, Southern France	1.62	7.3	Acceptable	0.068	12.1	SFO using a fixed DT_{50} of 453 d		
Silt loam – Bare soil	Molinella, Italy	1.31	7.6	Reasonable	0.122	14.5	SFO using a fixed DT_{50} of 453 d		
Loam – Bare soil	St Aubin, Switzerland	3.1	7.2	Reasonable	0.079	24.2	SFO using a fixed DT_{50} of 453 d		
Silt loam – Bare soil	St Firmin, France (North) (1.5)	1.6	8.4	Good	0.056	11.3	SFO using a fixed DT_{50} of 453 d		
Sand – Bare soil	Nevoy, France (North) (1.0)	1.0	8.6	Acceptable	0.163	20.1	SFO using a fixed DT_{50} of 453 d		
Sand – Bare soil	Nevoy, France (North) (1.5)	1.0	8.6	Good	0.431	15.4	SFO using a fixed DT_{50} of 453 d		
Silty sand – Bare soil	Ports sur Vienne, France (North) (1.5)	1.9	6.6	Reasonable	0.198	20.9	SFO using a fixed DT_{50} of 453 d		
Soft clayey sand – Bare soil	Hilgermissen, Germany	1.5	5.9	Acceptable	0.154	32.4	SFO using a fixed DT_{50} of 453 d		
Arithmetic mean ^{a, b}	Arithmetic mean ^{a, b}				0.139	-	-		
Median ^a	Aedian ^a					-	-		

^aarithmetic mean of replicate soils calculated first

b arithmetic mean of replicate soils calculated first

Note the actual formation fraction proposed for modelling was derived from combined lab and field datasets and was calculated to be 0.197

pH dependence ‡ (yes / no) (if yes type of dependence)	Possible weak negative correlation between degradation of terbuthylazine and soil pH based on laboratory studies ($r^2 = 0.3485$). No correlation observed based on field dissipation studies.
Soil accumulation and plateau concentration ‡	No evidence of accumulation of terbuthylazine, desethyl-terbuthylazine, hydroxy- terbuthylazine or desethyl-hydroxy- terbuthylazine after repeated applications at 7 locations in Northern Italy.

Terbuthylazine	Anae	robic c	conditions				
Soil type	OM %	рН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa	St. (r ²)	Method of calculation
Gartenacker – Sandy loam - SYN	3.79	7.25	20 oC / flooded soil	108.3 / 359.9	N/A	0.981	SFO
Speyer 2.3 – Sandy Loam - SYN	2.07	6.3	20 oC / flooded soil	131 / 436	N/A	0.966	SFO
Geometric mean	1			119.1			

Laboratory studies ‡

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Terbuthylazine ‡							
Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Speyer 2.2 Loamy Sand – OXON	2.29	6.0	N/A	N/A	5.34	233	0.98
Les Evouettes Sandy Loam – OXON	1.20	5.9	N/A	N/A	2.95	246	0.90
Sisseln Sandy Loam – OXON	1.57	7.1	N/A	N/A	2.37	151	0.93
Vetroz Silt Loam - OXON	4.1	7.3	N/A	N/A	8.18	200	0.90
Pappelacker Loamy Sand – SYN	1.1	7.6	N/A	N/A	2.10	191	0.92
Lorsch Sandy Clay Loam – SYN	1.8	5.3	N/A	N/A	5.86	318	0.94
Gartenacker Loam – SYN	2.0	7.1	N/A	N/A	3.74	187	0.88
Vetroz Silt Loam - SYN	4.7	7.2	N/A	N/A	10.49	223	0.97
Borstel Loamy Sand – SYN*	1.48	6.1	N/A	N/A	4.93	333	0.91
Arithmetic mean		I		<u> </u>	5.1	231	0.93
pH dependence, Yes or No		Possible weak negative correlation between sorption and soil pH ($r^2 = 0.5456$					

NR = not recorded

Desethyl-terbuthylazine (M	1T1) ‡						
Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Collombey Loamy Sand - SYN	0.80	7.3	N/A	N/A	0.594	74.0	0.85
Les Evouettes Silt Loam – SYN	2.40	7.2	N/A	N/A	1.43	59.0	0.86
Vetroz Silt Loam - SYN	4.70	7.2	N/A	N/A	3.29	70.0	0.91
Speyer 2.1 Sand – OXON	0.6	5.9	N/A	N/A	0.43	67.2	0.95
Speyer 2.2 Loamy Sand – OXON	2.3	5.6	N/A	N/A	1.9	81.7	0.91
Beek Silt Loam – OXON	0.6	6.6	N/A	N/A	0.28	43.8	0.94
Marknesse Silt Loam - OXON	1.3	7.5	N/A	N/A	1.24	96.9	0.92
Lorsch Sandy Clay Loam - SYN	1.84	5.25	N/A	N/A	1.56	85.0	0.94
Borstel Loamy Sand – SYN	1.48	6.1	N/A	N/A	1.80	122	0.77
Arithmetic mean		•	•	•	1.39 ^a	77.7 ^ª	0.89
pH dependence (yes or no)			No				

^a arithmetic mean based on all data

Hydroxy-terbuthylazine (MT	13) ‡						
Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Cranfield 115 Clay Loam – OXON	1.7	7.9	N/A	N/A	3.51	208.6	0.82
Cranfield 164 Silt Loam – OXON	3.0	7.1	N/A	N/A	5.94	196.9	0.8
Cranfield 243 Sandy Loam - OXON	1.1	5.4	N/A	N/A	2.14	193.1	0.85
Borstel Sandy Loam - SYN	1.3	5.0	N/A	N/A	3.64	279.7	0.87
Collombey Loamy Sand - SYN	0.80	7.3	N/A	N/A	1.19	149	0.91
Les Evouettes Silt Loam - SYN	2.40	7.2	N/A	N/A	2.49	104	0.79
Vetroz Silt Loam - SYN	4.70	7.2	N/A	N/A	8.36	178	1.31
Arithmetic mean		÷			3.90	187	0.91
pH dependence (yes or no)			No				

Desethyl-hydroxy-terbuthylazine (MT14) ‡											
Soil Type	OC %	Soil pH (CaCl ₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n				
Borstel Loamy Sand	1.3	5.0	1.8	136	1.44	111	0.93				
Lorsch Sandy Clay Loam	1.8	5.3	3.8	211	3.39	188	0.97				
Gartenacker Loam/Silt Loam	2.0	7.1	1.2	59	1.10	55	0.98				
Vetroz Silt Loam	4.7	7.2	2.8	60	2.67	57	0.98				
Wisborough- Silty Clay Loam	3.44	5.02	4.40	375	3.36	98	0.8892				

pH dependence (yes or no)							
Median (all data, n=12)					2.91	121	0.92
Champaign - Silty Clay	2.52	7.34	4.62	236	2.50	99	0.8787
Pappelacker - Sandy Loam	2.76	7.06	0.78	28	0.61	22	0.9220
Tsukuba - Loam	3.87	6.49	5.23	152	5.07	131	0.8881
Ushiku - Sandy Clay Loam	1.98	5.99	6.98	1208	2.83	143	0.8674
Bosket - Loam [*]	0.58	5.68	3.97	158	5.83	1010	0.9572
Kochi - Loam	1.17	5.65	8.26	213	2.98	254	0.8991
18 Acres - Sandy Clay Loam	1.95	5.27	4.79	242	3.34	171	0.9166

Terbutryn (MT26) ‡							
Soil Type	OC %	Soil pH (KCl)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Pappelacker - Sandy Loam	1.1	7.6	N/A	N/A	4.3	392	1.01
Speyer 2.1 - sand	0.6	7.4	N/A	N/A	3.7	605	1.06
Gartenacker Loam/Silt Loam	2.1	7.3	N/A	N/A	10.5	504	1.39
Vetroz Silt Loam	4.7	7.2	N/A	N/A	25.1	533	1.01
Illarsaz – silt loam	19.8	6.7	N/A	N/A	109.9	555	1.02
Arithmetic mean					13	518	1.04
pH dependence (yes or no)			No evide	nce from r	narrow pH	range stud	lied

LM1							
Soil Type	OC %	Soil pH (CaCl ₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker Silt Loam	2.95	7.1	0.507	30	0.51	30.2	1.03
18 Acres Clay Loam	4.34	7.2	0.853	34	0.82	32.7	0.98
Vetroz Loam	4.09	7.6	0.832	35	0.87	36.6	1.05
Arithmetic mean					0.73	33.2	1.02
pH dependence (yes or no)			No evidence from narrow pH range studied				ied

LM2							
Soil Type	OC %	Soil pH (CaCl ₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker Silt Loam	2.95	7.1	0.16	8.7	0.16	9	1.07
18 Acres Clay Loam	4.74	6.1	0.35	13.7	0.35	13	0.93
Vetroz Loam	4.09	7.6	0.15	6.1	0.15	6	1.1

www.efsa.europa.eu/efsajournal

Arithmetic mean		0.22	9.4	1.03
pH dependence (yes or no)	Yes - slight trend re decreasing pH. How the mean was consi modelling.	vever give	n the low s	sorption

LM3							
Soil Type	OC %	Soil pH (CaCl ₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker Silt Loam	2.95	7.1	0.083	4.8	0.071	4.2	0.85
18 Acres Clay Loam	4.74	6.1	0.101	3.7	0.091	3.3	0.9
Vetroz Loam	4.09	7.6	0.098	4.1	0.087	3.7	0.87
Arithmetic mean					0.083	3.7	0.87
pH dependence (yes or no)			No evidence from narrow pH range studied				

LM4							
Soil Type	OC %	Soil pH (CaCl ₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker Silt Loam	2.95	7.1	0.103	6	0.097	4.9	0.81
18 Acres Clay Loam	4.74	6.1	0.474	17.2	0.463	15.4	0.91
Vetroz Loam	4.09	7.6	0.108	4.5	0.096	3.8	0.84
Arithmetic mean			•	•	0.22	8.0	0.85
pH dependence (yes or no)			Yes - trend relating increasing Kfoc with decreasing pH. However given the low sorption the mean was considered appropriate for modelling.				

LM5							
Soil Type	OC %	Soil pH (CaCl ₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker Silt Loam	2.95	7.1	0.414	24	0.32	19	0.87
18 Acres Clay Loam	4.74	6.1	0.549	20	0.39	14	0.88
Vetroz Loam	4.09	7.6	0.486	21	0.31	13	0.83
Arithmetic mean					0.34	15.3	0.86
pH dependence (yes or no)			No evidence from narrow pH range studied				ied

LM6							
Soil Type	OC %	Soil pH (CaCl ₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker Silt Loam	2.95	7.1	0.282	16	0.23	13	0.92
18 Acres Clay Loam	4.74	6.2	0.485	18	0.4	14	0.93
Vetroz Loam	4.09	7.6	0.43	18	0.31	13	0.89
Arithmetic mean					0.38	13.3	0.91
pH dependence (yes or no) No evidence from narrow pH range			range stud	ied			

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2) – SYN and OXON

Column leaching ‡ (SYN)	Eluation (mm): 200 mm				
	Time period (d): 2 d				
	Leachate: < 0.01 - 0.04 % total				
	residues/radioactivity in leachate				
	82.45 - 90.14 % active substance and 0.46 - 1.49 % extractable metabolites in soil.				
	45.48 – 87.37 % total residues/radioactivity retained in top 2 cm				
Lysimeter/ field leaching studies ‡ (SYN)	Location: Schmallenberg/Grafschaft, Germany				
Summary of metabolite codes:-	Study type (e.g.lysimeter, field): lysimeter (x2)				
	Soil properties $(0 - 30 \text{ cm})$: Borstel Sandy				
MT1 = GS26379	Loam, pH = 5.7, OC= 1.5 %, MWHC = not				
MT13 = GS23158	stated (FC = $20 - 34$ % by volume)				
MT14 = GS28620	Dates of application : 28/05/1990				
MT19 = GS17792	Crop : maize followed by the rotational crops winter wheat and winter barley.				
MT20 = GS28273	Number of applications: 1 application to maize				
MT22 = G28279	in first year only				
LM1 = MT24 = G35713	Duration: 2 years,				
LM2 = MT28 = CSAA036479	Application rate: 700 - 790 g/ha				
LM3 = SM9 = CSCD692760	Average annual rainfall (mm): 863 mm				
LM4 = CSAA404949	Average annual leachate volume (mm): 418.3				
LM5 = MT23 = SM12 = GS16984	mm				
LM6 = SM6 = CSCD648241	% radioactivity in leachate (maximum/year): 1.45 – 1.48 % AR				
	Annual average maximum concentrations (e.g. 1^{st} or 2^{nd} yr, Lysimeter 38 or 44):				
	$< 0.02 \ \mu g/L$ terbuthylazine,				

	< 0.02 ug/L desorbal torbutbalazing
	$< 0.02 \ \mu g/L$ desethyl-terbuthylazine,
	0.03 μg/L hydroxy-terbuthylazine. 0.03 μg/L G 28273 (MT20)
	$0.05 \ \mu g/L \ G \ 23273 \ (M120)$ $0.05 \ \mu g/L \ G \ 17792 \ (MT19)$
	$< 0.02 \ \mu g/L G 28279 \ (MT22), G 28260$
	(MT14)
	1.96 µg/L Unidentified radioactivity
	Bi-annual average concentrations (e.g. 1^{st} and 2^{nd} yr, Lysimeter 38 and 44):
	$< 0.02 \ \mu g/L$ terbuthylazine,
	$< 0.02 \ \mu g/L$ desethyl-terbuthylazine,
	$0.02 \mu g/L$ hydroxy-terbuthylazine.
	0.02 µg/L G 28273 (MT20)
	0.03 μg/L GS 17792 (MT19)
	< 0.02 µg/L G 28279 (MT22), G 28260 (MT14)
	1.21 µg/L Unidentified radioactivity
	Amount of radioactivity in the soils at the end of the study = $65.6 - 75.2$ % AR; consisting of:
	5.9 – 6.4 % AR as terbuthylazine,
	1.2 - 1.5 % AR as desethyl-terbuthylazine,
	0.2 - 0.5 % AR as hydroxy-terbuthylazine,
	< LOD – 0.2 % AR as G 28279 (MT22),
	0.1 – 0.2 % AR as GS 28260 (MT14)
Lysimeter/ field leaching studies ‡ (SYN)	Location: Itingen, Switzerland
	Study type (e.g.lysimeter, field): lysimeter
	Soil properties (0 – 30 cm): Neustadt Sand, pH = 6.1, OC= 1.05, MWHC = 34.5 %
	Dates of application : May 1992
	Crop : maize followed by two rotations of winter wheat
	Interception estimated: 25 % (based on standard crop interception values and growth stage of maize at time of application)
	Number of applications: 1 application to maize in first year only
	Duration:
	Application rate: 891 g/ha
	Average annual rainfall (mm): 1090 mm
	Average annual leachate volume (mm): 413.2
	mm
	% radioactivity in leachate (maximum/year): 2.34 % AR
	2.54 /0 / MX

metabolites in the leachate were determined based on analysis during the original study coupled with additional information from further more recent accurate mass structural elucidation work. Parent and desethyl terbuthylazine were identified in the original study. Two further metabolites were plausibly assigned to LM3 and LM6 based on the additional mass spectral elucidation work. Assignation of other peaks was less certain based on matching relative retention times since matching HPLC conditions between this study and later definitive studies were not available. Quantitative concentrations are also uncertain due to the presence of multiple components in single peaks. Annual average concentrations (µg/l parent equivalents) Lysimeter 27: $< 0.05 \ \mu g/L$ terbuthylazine (1st year); < 0.05 μ g/L terbuthylazine (2nd year); < 0.05 μ g/L terbuthylazine (mean of 1st and 2nd year) $< 0.05 \ \mu g/L$ desethylterbuthylazine (1st year); $< 0.05 \mu g/L$ desethylterbuthylazine (2nd year); $< 0.05 \mu g/L$ desethylterbuthylazine (mean of 1st and 2nd year) 0.12 µg/L LM1* (1st year); 0.33 µg/L LM1* (2nd year); 0.25 µg/L LM1* (mean of 1st and 2nd year) 0.17 µg/L LM2* (1st year); 0.17 µg/L LM2* (2nd year); 0.17 µg/L LM2* (mean of 1st and 2nd year) 0.43 µg/L LM3 (1st year); 1.09 µg/L LM3 (2nd vear); 0.84 µg/L LM3 (mean of 1st and 2nd vear) 0.36 µg/L LM5* (1st year); 0.70 µg/L LM5* (2nd year); 0.57 µg/L LM5* (mean of 1st and 2nd year) 0.07 µg/L MT14 and LM4* (1st year); 0.11 μ g/L MT14 and LM4* (2nd year); 0.09 μ g/L MT14 and LM4* (mean of 1st and 2nd year) 0.05 µg/L LM6 (1st year); 0.50 µg/L LM6 (2nd year); 0.33 µg/L LM6 (mean of 1st and 2nd year) 0.25 µg/L LM7* (1st year); 0.05 µg/L LM7* (2nd year); 0.12 µg/L LM7* (mean of 1st and 2nd year)

*= structures tentatively assigned to peaks

	Additional unidentified radioactivity (sum of smaller peaks) 0.11 μ g/L (1 st year); 0.29 μ g/l (2 nd year); 0.22 μ g/l (mean of 1 st and 2 nd year) Amount of radioactivity in the soils at the end of the study = 67.7 % AR; consisting of (0 – 18 cm depth only) 0.92 % AR as parent 0.92 % AR as desethyl-terbuthylazine, 11.97 % AR as hydroxy-terbuthylazine, 1.52 % as desethyl-hydroxy-terbuthylazine, 6.29 % unidentified
Lysimeter/ field leaching studies ‡	Location: Itingen, Switzerland
(OXON)	Study type (e.g.lysimeter, field): lysimeter (x2)
	Soil properties $(0 - 30 \text{ cm})$: Neustadt Sand, pH = 6.1, OC= 1.05, MWHC = 34.5 %
	Dates of application : 18/05/93
	Crop : maize, followed by two rotations of winter wheat
	Number of applications: 1 application to maize in first year only.
	Duration: 2 years
	Application rate: 905 g/ha/lysimeter 7; 929 g/ha/lysimeter 9 (application in first year only)
	Average annual rainfall (mm): 1090 mm
	Average annual leachate volume (mm): 485.6 mm
	% radioactivity in leachate (maximum/year): 1.60 - 1.70 % AR
	Annual average concentrations (e.g. 1 st and 2 nd yr, Lysimeter 7 and 9):
	not detected – terbuthylazine, desethyl terbuthylazine, hydroxy terbuthylazine
	0.04/0.06µg/l LM1 (lysimeter 7/9, 1 st year); 0.12/0.15µg/l LM1 (lysimeter 7/9, 2nd year) 0.04/0.03µg/l LM2 (lysimeter 7/9, 1 st year); 0.10/0.10µg/l LM2 (lysimeter 7/9, 2nd year) 0.26/0.31µg/l LM3 (lysimeter 7/9, 1 st year); 0.85/0.83µg/l LM3 (lysimeter 7/9, 2nd year) 0.38/0.40µg/l LM4 (lysimeter 7/9, 1 st year); 0.14/0.18µg/l LM4 (lysimeter 7/9, 2nd year) 0.10/0.08µg/l LM5 (lysimeter 7/9, 1 st year); 0.71/0.62µg/l LM5 (lysimeter 7/9, 1 st year); 0.33/0.01µg/l LM6 (lysimeter 7/9, 1 st year); 0.53/0.40µg/l LM6 (lysimeter 7/9, 2nd year)

	0.08/0.08µg/l LM7 (lysimeter 7/9, 1 st year);			
	0.06/0.03µg/l LM7 (lysimeter 7/9, 2nd year)			
	Amount of radioactivity in the soils at the end			
	of the study = $76.20 - 80.62$ %AR; consisting			
	of (0 – 38 cm depth only – max values) 6.4 % AR as terbuthylazine			
	1.0 % AR as desethyl-terbuthylazine,			
	53.8 % AR as hydroxy-terbuthylazine,			
	30 - 52 % AR unextraced radioactivity			
Lysimeter/ field leaching studies ‡	Location: Itingen, Switzerland			
(OXON)	Study type (e.g.lysimeter, field): lysimeter (x2)			
	Soil properties $(0 - 30 \text{ cm})$: Neustadt Sandy loam, pH = 6.18, OC= 1.43, MWHC = 45.35 %			
	Dates of application : 10/05/05			
	Crop : bare soil followed by plot being split and one of the following crops being sown: radish, spinach, wheat			
	Interception estimated: 0 % (based on application to bare soil)			
	Annual rainfall during first year May 2005 to April 2006 (mm): 798.5 mm			
	Number of applications: 1 application to bare soil			
	Duration: 1 year			
	Application rate: 972 g/ha (Lysimeter 4); 980 g/ha (Lysimeter 6)			
	Average annual leachate volume (mm): 731 mm			
	% radioactivity in leachate (maximum/year): 1.60 - 1.70 % AR			
	Annual average concentrations (e.g. 1 st yr,			
	Lysimeter 4 or 6): not detected – terbuthylazine, desethyl			
	terbuthylazine, hydroxy terbuthylazine			
	0.03/0.02ug/1 I M1 (lyaimator 4/6 1st year).			
	0.03/0.02µg/l LM1 (lysimeter 4/6, 1 st year); 0.07/0.08µg/l LM2 (lysimeter 4/6, 1 st year);			
	$0.24/0.23\mu g/1 LM3$ (lysimeter 4/6, 1 st year);			
	0.11/0.21µg/l LM4 (lysimeter 4/6, 1 st year);			
	$0.68/0.78 \mu g/l LM5$ (lysimeter 4/6, 1 st year);			
	0.18/0.19µg/l LM6 (lysimeter 4/6, 1 st year); 0.08/0.08µg/l LM7 (lysimeter 4/6, 1 st year);			
	All concentrations are in μ g metabolite/l.			
	Amount of radioactivity in the soils at the end of the study = not reported			

Lysimeter/ field leaching studies ‡ (SYN)	Location: Lorsch, Hessen, Germany
	Study type (e.g.lysimeter, field): Field leaching study
	Soil properties $(0 - 30 \text{ cm})$: sandy loam, pH = $5.2 - 6.3$, OC= $2.3 - 2.6$, MWHC = not reported
	Dates of application : 1990, 1992, 1994 – 1997, 1999 - 2000
	Crop : maize in application years.
	Interception estimated: 25 % (based on standard crop interception values and growth stage of maize at time of application)
	Number of applications: 8 applications, maximum of 1 per year
	Duration: 11 years
	Application rate: 735 g/ha in 1990; 750 g/ha in all other application years
	Average annual rainfall (mm): 587 mm (NB. data from 1993, 1995 and 1998 not reported)
	Average annual leachate volume (mm): Not applicable
	% radioactivity in leachate (maximum/year): Not applicable.
	Frequency of detections, detections above >0.1µg/l and maximum conc.:
	Terbuthylazine: 1 detection out of 418 samples; 0% (~0 samples) >0.1µg/l; maximum concentration = 0.09µg/l.
	Desethyl terbuthylazine: 0 detections out of 419 samples;
	Desethyl hydroxyterbuthylazine: 17 detections out of 51 samples; 24% (~12 samples) >0.1µg/l; maximum concentration = 0.41µg/l.
	2-hydroxy terbuthylazine: 10 detections out of 51 samples, 0%(0 samples) >0.1µg/l; maximum concentration = 0.08µg/l.
	Individual annual maximum concentrations (e.g. 1st, 2nd, 3rd yr): < 0.05 µg/L terbuthylazine < 0.05 µg/L desethyl-terbuthylazine, 0.06 µg/L 2-hydroxy-terbuthylazine 0.25 µg/L desethylhydroxy-terbuthylazine

Individual annual average concentrations (e.g. 1st, 2nd, 3rd yr):
$< 0.05 \ \mu g/L$ terbuthylazine
$< 0.05 \ \mu g/L$ desethyl-terbuthylazine,
$< 0.05 \ \mu g/L \ 2$ -hydroxy-terbuthylazine
$< 0.05 - 0.12 \ \mu g/L$ desethylhydroxy- terbuthylazine
Amount of radioactivity in the soils at the end of the study = not reported
Note that 2-hydroxy terbuthylazine was only analysed for in 1999-2000 and 2000-2001.
Desethylhydroxy terbuthylazine was only
analysed for in 1997-1998, 1999-2000 and 2000-2001.
Location: 10 sites in 5 regions (Emilia
Romagna, Friuli Venezia – Giulia, Lombardia, Piemonte, Veneto) in Northern Italy
Study type (e.g.lysimeter, field): field leaching study
Soil properties: texture class – 5 sandy loams, 3
loams, 1 sandy clay and 1 clay loam; $pH = 4.9$ 7.7; $OC = 0.9 - 3.6\%$; MWHC = not reported
Groundwater depth: 0.12 to 7.1m below ground surface
Dates of application : 2005 to 2007
Crop : maize
Irrigation: sprinkler, basin, border or no
irrigation
Interception estimated: 0 % (applications made shortly after seeding maize)
Number and rate of applications: between 2005
and 2007, 7 sites had 3 annual applications of
856 g terbuthylazine/ha. The remaining 3 sites
had either 2 or 1 annual application.
Duration: bi-monthly sampling for 3 years (17 sampling events)
Average annual rainfall (mm): Reported to be
below the overall average for the period 2000-
2007 but supplemented by irrigation at 9 out of
10 sites.
Frequency of detections, detection $>0.1 \mu g/l$
and maximum conc. (excluding basin irrigated
sites, n=8):
Terbuthylazine: 62 detections out of 395
samples; 3% (~13 samples) >0.1µg/l;

maximum concentration = $3.20 \mu g/l$. Desethyl terbuthylazine: 125 detections out of 395 samples; 5% (~21 samples) >0.1µg/l; maximum concentration = $3.18\mu g/l$. Excluding results from the V2 site after April 2007 when contamination may have occurred, the peak monitored concentration was 1.984µg/l and actual concentrations $>0.1 \mu g/l$ were observed in 17 out of 384 samples (4.4 %). Desethyl hydroxyterbuthylazine: 57 detections out of 144 samples; 29% (~42 samples) $>0.1 \mu g/l$; maximum concentration = 2.65 \mu g/l. 2-hydroxy terbuthylazine: 2 detections out of 144 samples, $0\%(0 \text{ samples}) > 0.1 \mu g/l;$ maximum concentration = $0.05 \mu g/l$. LM5: 11 detections out of 21 samples; 29% (~6 samples) $> 0.1 \mu g/l$; maximum concentration = $0.68 \mu g/l$. LM6: 9 detections out of 21 samples; 38% (~8 samples $>0.1 \mu g/l$; maximum concentration = $1.58 \mu g/l$. Annual average concentrations: $0.03 - 0.58 \mu g/L$ terbuthylazine (basin irrigation) $<0.01 - 0.07 \mu g/L$ terbuthylazine (sprinkler or border irrigation) $0.07 - 0.73 \,\mu g/L$ desethyl terbuthylazine (basin irrigation) $<0.01 - 0.22 \ \mu g/L$ desethyl terbuthylazine (sprinkler or border irrigation) $< 0.05 - 0.05 \mu g/L$ (single sample) 2-hydroxy terbuthylazine (analysed for 2007 only) $0.04 - 0.37 \mu g/L$ desethyl hydroxyterbuthylazine (analysed for the 2007 season only) $<0.05 - 0.48 \ \mu g/L \ GS16984 \ (LM5) \ (analysed$ for the 2007 season only) <0.05 – 1.3 µg/L CSCD648241 (LM6) (analysed for the 2007 season only) Additional monitoring between 2009-2010 at 7 sites across 4 regions (Emilia Romagna, Lombardy, Veneto and Friuli-Venezia-Giulia) to measure residues of LM2, 3, 4, 5 and 6.

LM2 maximum concentration = $0.26\mu g/l$ LM3 maximum concentration = $0.29\mu g/l$ LM4 maximum concentration = $0.50\mu g/l$ LM5 maximum concentration = $0.50\mu g/l$ LM6 maximum concentration = $1.4\mu g/l$

Annual average concentrations in downstream clusters:

LM2 <0.05 - 0.11µg/l LM3 <0.05 - 0.14µg/l LM4 <0.05 - 0.13µg/l LM5 <0.05 - 0.27µg/l LM6 <0.05 - 0.53µg/l

Note that as high concentrations were also found in the upstream monitoring wells (all substances), parts of residues found in downstream monitoring wells are likely to derive from previous usage following several years of commercial application in the upstream areas.

Route and rate of degradation in water (Annex IIA, point 7.2.1) – SYN and OXON

Hydrolytic degradation of terbuthylazine and metabolites $> 10 \% \ddagger$	SYN - pH 5: 73 d at 25 °C (1^{st} order)Hydroxy-terbuthylazine: 16 % AR (50 d)OXON - pH 4: > 1 year at 20 °C (1^{st} order, extrapolated beyond study duration)
	pH 7: SYN - 205 d at 25 °C (1 st order) OXON - No significant degradation at 50 °C after 5 days
	pH 9: SYN - 194 d at 25 °C (1 st order) OXON - No significant degradation at 50 °C after 5 days

Photolytic degradation of terbuthylazine and metabolites above 10 % ‡	SYN - Xenon arc lamp (wavelengths filtered < 290 nm), 12 hours light/12 hours dark for 10 days. Light equivalent to 13.4 days of midsummer sunlight at $30/40^{\circ}$ N.
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	$3 \times 10^{-6} \text{ mol} \cdot \text{Einstein}^{-1}$
Readily biodegradable ‡ (yes/no) (OXON and SYN)	No
Hydrolytic degradation of desethyl- terbuthylazine (MT1) and metabolites > 10 % ‡ (SYN)	pH 4: 135.9 d at 25 °C (1 st order) desethyl-2-hydroxy-terbuthylazine: 11.5 % AR (30 d) pH 5: No significant degradation at 50 °C after 5 days
	pH 7: No significant degradation at 50 °C after 5 days
	pH 9: No significant degradation at 50 °C after 5 days
Photolytic degradation of desethyl- terbuthylazine (MT1) and metabolites above 10 % ‡	SYN - Xenon arc lamp (wavelengths filtered < 290 nm) for 15 days. Light equivalent to 13, 15 and 23 days of summer sunlight at 30 and 50 ^o N on a 12 h light: 12 dark basis at pH 5, 7 and 9 respectively. DT ₅₀ : No significant degradation
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	A valid molar absorption coefficient could not be calculated because of very little or no absorption occurring over the wavelength range 290 – 800 nm.
Readily biodegradable ‡ (yes/no)	No data submitted, substance considered to be not ready biodegradable.

Hydrolytic degradation of hydroxy- terbuthylazine (MT13) and metabolites > 10 % ‡ (SYN)	pH 4: No significant degradation at 50 °C after 5 days
	pH 7: No significant degradation at 50 °C after 5 days
	pH 9: No significant degradation at 50 °C after 5 days
Photolytic degradation of hydroxy- terbuthylazine (MT13) and metabolites above 10 % ‡	Not performed
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	A valid molar absorption coefficient could not be calculated because of very little or no absorption occurring over the wavelength range 290 – 800 nm.
Readily biodegradable ‡ (yes/no)	No. Not readily biodegradable

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

As a result of the confirmatory information assessment, quantified predictions of LM2, LM3, LM4, LM5 and LM6 in groundwater above 0.1µg/l are available. The UK RMS therefore considers that LM2, LM3, LM4, LM5 and LM6 could be added to residue definition for surface water and sediment (by default). Endpoints for use in the surface water assessment are proposed as follows:-

LM2 DT₅₀: 16.5d K_{FOC} :9.4 L/kg, $^{1}/_{n}$ = 1.03

LM3 DT₅₀: 12.2d K_{FOC}: 3.7 L/kg, ¹/_n= 0.87

LM4 DT₅₀: 53.6d K_{FOC}: 8.0 L/kg, $^{1}/_{n}$ = 0.85

LM5 DT₅₀: 47.0d K_{FOC}: 15.3 L/kg, ¹/_n= 0.86

LM6 DT₅₀: 241d K_{FOC}: 13.3 L/kg, ¹/_n= 0.91

In the absence of information on peak occurrence in soil and degradation rates in water, it is proposed that for the purposes of a simple, conservative assessment, peak occurrence in soil is set at 100% and water/sediment DT50 values set to 1000 d. These values may be refined if necessary.

PEC (ground water) (Annex IIIA, point	For FOCUS gw modelling, values used –
9.2.1)	Modelling using FOCUS model(s), with
Method of calculation and type of study	appropriate FOCUSgw scenarios, according to FOCUS guidance.
(<i>e.g.</i> modelling, field leaching, lysimeter)	Model(s) used: PEARL 4.4.4 and PELMO 4.4.3
	Scenarios (list of names): Châteaudun (C), Hamburg (H), Kremsmünster (K), Okehampton (N), Piacenza (P), Porto (O), Sevilla (S), Thiva (T)
	Q10 = 2.58
	Crop: maize
	Terbuthylazine:
	DT_{50} : 20.0 d (normalised median of field studies).
	K_{FOC} : worst case assessment using lowest Kfoc value of 151 L/kg and associated $^{1}/_{n}$ of 0.93 to reflect possible pH dependence:-
	Metabolites:
	Desethyl-terbuthylazine:
	DT_{50} : 26.8 d (geomean of field studies).
	K_{FOC} : 77.7 L/kg, $^{1}/_{n}$ = 0.89 (mean values).
	Formation fraction: 0.44 from parent
	Hydroxy-terbuthylazine: DT ₅₀ : 453 d (geomean of lab studies) K_{FOC} : 187 L/kg, $^{1}/_{n}$ = 0.91 (mean values). Formation fraction: 0.17 from parent (Applicant) and 0.197 (RMS)
	Desethylhydroxy-terbuthylazine: DT ₅₀ : 107 d (geomean of lab studies). K_{FOC} : 121 L/kg, $^{1}/_{n}$ = 0.92 (median values, Applicant) or 111 L/kg, $^{1}/_{n}$ = 0.92 (median values excluding results from the Bosket loam soil, RMS) Formation fraction: 0.28 (from desethyl- terbuthylazine)
	LM1 DT ₅₀ : 0.4d K_{FOC} : 33.2 L/kg, $^{1}/_{n}$ = 1.02 Formation fraction: 0.59 (from LM5)
	LM2 DT ₅₀ : 16.5d K_{FOC} :9.4 L/kg, $^{1}/_{n}$ = 1.03

	Formation fraction: 1 (from LM4)
	LM3 DT ₅₀ : 12.2d K_{FOC} : 3.7 L/kg, ¹ / _n = 0.87 Formation fraction: 1 (from LM2)
	LM4 DT ₅₀ : 53.6d K_{FOC} : 8.0 L/kg, ¹ / _n = 0.85 Formation fraction: 0.08 (from parent terbuthylazine)
	LM5 DT ₅₀ : 47.0d K_{FOC} : 15.3 L/kg, ¹ / _n = 0.86 Formation fraction: 0.47 (from MT14)
	LM6 DT ₅₀ : 241d K_{FOC} : 13.3 L/kg, ¹ / _n = 0.91 Formation fraction: 0.41 (from LM5)
Application rate	Application rate: 750 g/ha Northern Europe 850 g/ha Southern Europe
	No. of applications: 1 Time of application (month or season): 1 day before crop emergence

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

FOCUS-PEARL PEC_{GW} values for Terbuthylazine (using minimum measured Kfoc = 151 ml/g; Kfom = 87.6 ml/g) and three metabolites, following application to Maize at 750 g/ha (RMS simulations)

	PEC _{GW} at 1 m Soil Depth (μg/l)					
Scenario	Terbuthylazine	2-Hydroxy- terbuthylazine (GS23158) ¹	Desethyl- terbuthylazine (GS26379)	Desethyl-hydroxy- terbuthylazine (GS28620) ²		
Châteaudun	< 0.001	15.0	0.061	2.17		
Hamburg	0.005	18.3	0.28	3.44		
Kremsmünster	0.002	12.8	0.186	2.29		
Okehampton	0.007	13.3	0.316	2.89		
Piacenza	0.003	15.4	0.163	2.25		
Porto	<0.001	7.63	0.047	1.25		
Sevilla	< 0.001	4.19	< 0.001	0.188		
Thiva	< 0.001	21.0	0.009	1.66		

¹: 2-hydroxy terbuthylazine $DT_{50} = 453$ d, formation fraction = 0.197 ²: desethyl-hydroxy terbuthylazine $K_{foc} = 111$ ml/g; $K_{fom} = 64.4$ ml/g (median of 11 values)

FOCUS-PEARL PEC_{GW} values for Terbuthylazine (using minimum measured Kfoc = 151 ml/g; Kfom = 87.6 ml/g) and three metabolites, following application to Maize at 850 g/ha (RMS simulations)

	PEC _{GW} at 1 m Soil Depth (μg/l)						
Scenario	Terbuthylazine	2-Hydroxy- terbuthylazine (GS23158) ¹	Desethyl- terbuthylazine (GS26379)	Desethyl-hydroxy- terbuthylazine (GS28620) ²			
Châteaudun	< 0.001	17.2	0.075	2.51			
Hamburg	0.006	20.9	0.336	3.97			
Kremsmünster	0.002	14.7	0.225	2.65			
Okehampton	0.008	15.2	0.4	3.33			
Piacenza	0.003	17.7	0.2	2.6			
Porto	< 0.001	8.69	0.058	1.44			
Sevilla	< 0.001	4.88	< 0.001	0.223			
Thiva	< 0.001	24.1	0.011	1.93			

¹: 2-hydroxy terbuthylazine $DT_{50} = 453 \text{ d}$, formation fraction = 0.197 ²: desethyl-hydroxy terbuthylazine $K_{foc} = 111 \text{ ml/g}$; Kfom = 64.4 ml/g (median of 11 values)

FOCUS-PEARL PEC_{GW} values for Terbuthylazine six lysimeter metabolites LM1-LM6 (using minimum measured Kfoc = 151 ml/g; Kfom = 87.6 ml/g) following application to Maize at 750 g/ha (RMS simulations)

Scenario	PEC _{GW} at 1 m Soil Depth (µg/L)					
	LM1	LM2	LM3	LM4	LM5	LM6
Châteaudun	0.01	2.57	2.1	5.82	2.55	3.97
Hamburg	0.014	4.59	3.4	10.4	4.02	4.72
Kremsmünster	0.009	2.26	1.74	5.37	2.37	2.78
Okehampton	0.009	2.26	1.64	5.43	2.37	1.8
Piacenza	0.008	1.46	1.88	4.14	2.28	4.54
Porto	0.006	1.23	0.93	2.66	1.43	1.67
Sevilla	0.003	0.64	0.54	1.07	0.728	3.71
Thiva	0.009	2.13	1.88	4.78	2.39	8.0

FOCUS-PEARL PEC_{GW} values for Terbuthylazine six lysimeter metabolites LM1-LM6 (using minimum measured Kfoc = 151 ml/g; Kfom = 87.6 ml/g) following application to Maize at 850 g/ha (RMS simulations)

Scenario	PEC _{GW} at 1 m Soil Depth (μg/L)					
	LM1	LM2	LM3	LM4	LM5	LM6
Châteaudun	0.011	2.93	2.39	6.68	2.92	4.49
Hamburg	0.016	5.19	3.86	12	4.62	5.32
Kremsmünster	0.01	2.56	1.97	6.14	2.71	3.13
Okehampton	0.01	2.56	1.86	6.21	2.7	2.02
Piacenza	0.009	2.13	1.66	4.78	2.61	5.14
Porto	0.007	1.39	1.06	3.05	1.65	1.88
Sevilla	0.003	0.727	0.619	1.23	0.838	4.21
Thiva	0.01	2.43	2.15	5.49	2.76	9.06

Residues requiring further assessment

Environmental occurring metabolite Soil: terbuthylazine, desethyl-terbuthylazine, requiring further assessment by other hydroxy-terbuthylazine disciplines (toxicology and ecotoxicology) Surface Water: terbuthylazine, desethylor for which a groundwater exposure terbuthylazine, hydroxy-terbuthylazine assessment is triggered. (MT13), desethyl-hydroxy terbuthylazine and terbutryn (MT26) Sediment: terbuthylazine, desethylterbuthylazine, hydroxy-terbuthylazine (MT13), desethyl-hydroxy terbuthylazine and terbutryn (MT26) Groundwater: terbuthylazine, desethylterbuthylazine, hydroxy-terbuthylazine (MT13) and desethyl-hydroxy-terbuthylazine, LM1, LM2, LM3, LM4, LM5 and LM6 Air: terbuthylazine The above is the original residue definition for environmentally occurring metabolites requiring further assessment by other disciplines. As a result of the confirmatory information assessment, quantified predictions of LM2, LM3, LM4, LM5 and LM6 in groundwater above $0.1 \mu g/l$ are available. The UK RMS therefore considers that LM2, LM3, LM4, LM5 and LM6 could be added to residue definition for surface water and sediment (by default).

Monitoring data, if available (Annex IIA, point 7.4) - SYN

Soil (indicate location and type of study)

Surface water (indicate location and type of study)

a) Two sites in Germany susceptible to run-off and adjacent to streams in typical maize growing areas were selected. Upstream and downstream points of streams were monitored for terbuthylazine and desethylterbuthylazine (MT1) from May to August in 1999 and 2000 following terbuthylazine application to maize in adjacent field. Samples were taken every hour and combined into weekly samples. Samples also taken after heavy rainfall events. Neither analyte detected at 'Ramholz' site at concentrations $> 0.05 \mu g/L$ (LOQ). Max weekly concentrations at the 'Kemading' site were 0.28 and 0.08 µg/L for terbuthylazine and desethylterbuthylazine (MT1) respectively. Max concentrations in event samples were 0.87 µg/L and 0.20 µg/L. Concentrations similar at upstream and downstream sample sites indicate residues arose from applications in upstream catchment.

	b) Two sites in Germany adjacent to brooks were selected each with 10 m vegetated filter strip. Formulations were applied to maize between growth stages BBCH 13 and 16 in 1999 and 2000, and brook surface water samples at the upstream and downstream field edges were taken from one week before application (early May) until early September. Streams were sampled hourly and combined into weekly samples. Samples were also taken after heavy rainfall events. At the 'Adenstadt' site neither terbuthylazine nor desethyl- terbuthylazine (MT1) were observed at concentrations > LOQ (0.05 μ g/L). Only once, in the first week following application was terbuthylazine detected at the 'Süplingen' site at a max concentration of 0.07 μ g/L in a weekly sample. Desethyl-terbuthylazine (MT1) was not detected above the LOQ.
Ground water (indicate location and type of study)	a) Full sample details not provided. 27103 sample data from Germany for the occurrence of terbuthylazine in groundwater. 328 detections of terbuthylazine were observed with 41 > (0.15% of the total analyses) displaying residues in excess of 0.1 μ g/L. The Applicant states that none of these exceedences were due to the correct GAP for approved uses being applied.
	b) Full sample details not provided. Groundwater samples from more than 1000 intakes from 15 municipalities in counties around Denmark in 1990 – 2001 were analysed for residues of plant protection products and their degradation products. The mean depth to the top of the groundwater sample was 24 - 25 m with a mean intake length of 3.5 m. In addition to the groundwater survey, the report also contained information on the analyses of water samples taken from a group of "other borings" which are not used to extract groundwater for drinking purposes. 1016 intakes were analysed for terbuthylazine (the number of analyses was 4086). There were 17 (1.7 %) intakes with detections of terbuthylazine, however, none of them contained concentrations $\ge 0.1 \ \mu g/L$. With regard to the group "other borings", 1156 and 311 borings were analysed for terbuthylazine and desethyl-terbuthylazine (MT1) respectively with 1492 and 527 individual analyses respectively. Terbuthylazine and desethyl-terbuthylazine (MT1) were found in 18 (1.6 %) and 14 (4.5 %) borings, with 3 (0.3 %) and 4 (1.3 %) of these findings being detected at concentrations $\ge 0.1 \ \mu g/L$.
	c) Danish government monitoring programme selected two sites (Jyndevad and Silstrup) in Denmark to assess the leaching potential of pesticides including terbuthylazine. Applications were made to maize in May 2001 at Jyndevad and in May/June 2002 at Silstrup. Soil pore waters and groundwaters were analysed monthly for terbuthylazine and desethyl-terbuthylazine, additionally at Silstrup hydroxy-terbuthylazine, hydroxy-desethyl-

terbuthylazine (MT1) and atrazine-desisopropyl-2hydroxy (MT22) were also monitored for from February 2003.

At Jyndevad, terbuthylazine was not detected in either the soil pore water or the groundwater at concentrations $> 0.01 \ \mu g/L$ in the two year monitoring period. Desethylterbuthylazine (MT1) was detected in pore water at 1 m depth in all but three of the monthly samples between October 2001 (five months after application) and May 2003 at concentrations of $0.020 - 0.056 \ \mu g/L$, however it was not detected in pore waters at 2 m and was only detected once in any of the downstream groundwater monitoring wells.

At Silstrup terbuthylazine residues in well water at 1.5-2.5 m depth ranged from 0.013-0.124 μ g/L over the year with one sample containing $> 0.1 \mu g/L$. Residues of desethyl-ranged from 0.046-0.143 μ g/L over the year with two samples containing $> 0.1 \mu g/L$. Residues from deeper screens were always $< 0.08 \ \mu g/L$ for both terbuthylazine and desethyl-terbuthylazine. Of the remaining metabolites hydroxy-terbuthylazine (MT13) was not detected in the well water. Hydroxy-desethylterbuthylazine (MT1) was only detected once in the well water at a depth of 1.5 - 2.5 m at a concentration of 0.016 µg/L. Atrazine-desisopropyl-2-hydroxy (MT22) was detected three times in the well at 1.5 - 2.5 m depth at concentrations around 0.01 µg/L. It was also detected once at a depth of 3.5 - 4.5 m at a concentration of 0.047μg/L.

d) Targeted groundwater monitoring studies were conducted in Germany in areas of documented use of terbuthylazine containing products. Typical maize regions were investigated i.e. Schleswig-Holstein, Mecklenburg-West Pomerania, Muenster-Emsland (stretching from the federal state North Rhine-Westfalia to Lower Saxony), Rottal (Bavaria) and the Upper Rhine Valley (stretching from the federal state Baden-Wuerttemberg to Hesse). Groundwater was collected from monitoring screen typically situated 5 m below ground surface. Confirmed usage of terbuthylazine containing products in upstream areas (2.5 x 2.5km or 625 ha) was determined via farmer surveys and interviews over three years (2002 - 2004). Results for each site represent the sum over this period as follows:-Wanderup 277 ha, Alt-Bennebek 497ha, Breiholz-Ost 198 ha, Hagen-Suedost 61 ha, Luettow 57 ha, Torgelow 225 ha, Lelkendorf 72 ha, Warnow 60 ha, Pinnow 288ha, Tabeckendorf 114 ha, Postmuenster 92 ha, Hammersbach 102 ha, Kirchham-Pfaffenhof 336 ha, Simbach-Stoelln 137 ha, Biblis 82 ha, Lorsch 56 ha, Rheinhausen-Oberhausen 198 ha, Breisach-Weingenossenschaft 240 ha, Grezhausen 69 ha, Rehderfeld 154 ha, Flechum 114 ha, Dalumer Moor 174 ha, Bexten 139 ha, Große-Luettke 103 ha, and Veltrup

202 ha. The overall mean hectarage treated was reported to be 120 ha across all sites and only those sites that received at least 50 ha of treatment were included in the final 25 sites monitored. The groundwater table was mostly less than 5 meters below ground surface and a wide range of soil properties was covered by the selected regions. No residues of terbuthylazine and desethylterbuthylazine were detected in any of the ground water monitoring samples analysed. Small residues of GS 28620 (MT14) and GS 23158 (MT13) were found in water samples taken from ground water monitoring wells at two locations. The residues of GS 28620 (MT14) occurred in May-July 2003 and ranged from 0.05-0.06 μ g/l. The residues of GS 23158 (MT13) were detectable but not quantifiable (i.e. < 0.05 but $> 0.02 \mu g/l$). In addition, the lysimeters metabolites LM3, LM5 and LM6 were detected at 19 of the 25 locations, confirming the linkage to terbuthylazine treated areas in the catchment. Residues of the metabolite CSCD648241 (LM6) in 29 samples from 25 individual sampling points were determined to be between $< 0.05 \mu g/l$ and 0.66 $\mu g/l$. Residues of the metabolite GS16984 (MT23, LM5) in 29 samples from 25 individual sampling points, were determined to be between $< 0.05 \,\mu g/l$ and 0.98 $\mu g/l$. The metabolite CSCD692760 (LM3) was detected at 19 (10 above the LOQ and 9 below the LOQ) of the 25 locations. Quantifiable residues ranged from 0.06-0.69 $\mu g/l$.

e) In 1997, a monitoring study was carried out in four maize cultivated areas in the plain of the river Po in Italy to evaluate the degree of contamination of the groundwater table. No residues of terbuthylazine were detected above 0.1ug/l in the 1997 study. A follow-up study was conducted in 2006 in the same areas identified in the previous monitoring study. The majority of superficial wells sampled were over 20 m deep, with deep wells often greater than 50m. In these follow-up studies 8 out of approximately 100 wells were found to contain residues of terbuthylazine or its metabolites desethyl-terbuthylazine and hydroxy-terbuthylazine above 0.1 μ g/l. However the average age of the wells was over 30 years and characterised by degraded materials, rust, holes or cracks etc and as a whole, the 90th percentile terbuthylazine and metabolite residues were all $<0.05 \mu g/l$ on the basis of this monitoring

f) A retrospective monitoring study was conducted in four regions of Portugal from 1999 to 2007. As a retrospective study, only limited details on the history of pesticide use in the upstream areas was available. However throughout the eight year duration of the study, 773 water samples were taken and analysed for terbuthylazine and desethyl-terbuthylazine from 68 different sampling sites, generating a total of 1546 data points. Sampling sites covered a relatively wide variety of sales history, cropping density, depth to groundwater

and nitrate concentration (this last parameter used as general indicator for the vulnerability of an aquifer to agricultural practices). Although terbuthylazine has not been in widespread use in two of the monitored regions, it has been extensively used in vineyards in the Oeste and the Douro valley at a rate of 490 g/ha (1400 g/ha in row). Neither terbuthylazine nor desethyl-terbuthylazine residues exceeded 0.05 μ g/l at the 90th percentile of the population. Overall the RMS considered that the additional data from the Portuguese monitoring programs did provide useful information. However it should be noted that the monitoring is only of partial relevance in the regions where prior use of terbuthylazine is known to be extensive, and also taking into account that the use covers applications to vineyards rather than the extensive use on maize as investigated in the German and Italian studies. Taking these caveats into account, the RMS considers that the data should be viewed as providing supporting information alongside the monitoring data from other regions, as well as taking into account the results of the standard first tier FOCUS groundwater exposure assessments.

g) Retrospective monitoring studies were conducted in 3 regions of Spain covering use of terbuthylazine on olive crops in Andalucia (2000 to 2003), use on maize and citrus crops in South Eastern Spain (2000 to 2001) and use on maize and vineyards in Northern Spain (2000-2001). As retrospective studies, only limited details on the history of pesticide use in the upstream areas was available. In addition in many cases, the relatively large distance between the discharge point and the upland aquifer made it difficult to relate monitored residues back to a specific product use pattern. However throughout each study sampling sites were selected using local knowledge of cropping density, regional product sales data, hydrogeological information and information pertaining to the integrity of the respective sampling sites. In three regions the 90th percentile concentration was less than 0.1 μ g/l for both terbuthylazine and metabolite desethyl-terbuthylazine (the only metabolite However it should be noted that monitored for). methods of analysis were unvalidated and the LOQ was only reported to be 0.1µg/l in the studies conducted in South Eastern Spain. In Andalucia, following extensive use of terbuthylazine on olive crops, the 90th percentile concentration of terbuthylazine was 0.14 µg/l. However the majority of detections in this region came from springs discharging groundwater into lagoons, troughs or drainage canals that were not protected from direct contamination. Overall the RMS considered that the additional data from the Spanish monitoring programs did provide limited useful information. However it should be noted that the monitoring is only of partial relevance in the regions where prior use of terbuthylazine is known to be extensive, and also taking into account that the monitoring covers areas where terbuthylazine may be applied to olive crops, citrus and vineyards in addition to use on maize in two of the three

regions investigated. In addition, the sampling of groundwater from springs discharging to surface water bodies meant that the influence of direct contamination (rather than conventional leaching) could not be excluded. Taking these caveats into account, the RMS considers that the data should be viewed as providing limited supporting information only alongside the monitoring data from other regions, as well as taking into account the results of the standard first tier FOCUS groundwater exposure assessments.

Air (indicate location and type of study)

None

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Candidate for chronic (long term) aquatic hazard

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹ (mg/L)
Laboratory tests ‡				
Fish				
Oncorhynchus mykiss	a.s.	96 hr (static)	Mortality, nomLC ₅₀	2.2 mg a.s./L (SYN)
Oncorhynchus mykiss	a.s.	90 d (flow- through)	Early life cycle mmNOEC	0.09 mg a.s./L (SYN)
Oncorhynchus mykiss	Preparation: 'Gardo Gold' (A-9476 C)	96 hr (static)	Mortality, mmLC50	8.32 mg formulation/ L (1.58 mg a.s./L) (SYN)
Oncorhynchus mykiss	Preparation: 'Terbuthylazin e 500 g/L SC'	96 hr (static)	Mortality, mmLC ₅₀	12 mg formulation/ L (6.6 mg a.s./L) (OXON)
Oncorhynchus mykiss	Metabolite MT1 (GS 26379, desethyl- terbuthylazine)	96 hr (static)	Mortality, nomLC50	18 mg/L (SYN)
Oncorhynchus mykiss	Metabolite MT13 (GS 23158, 2- hyrdoxy- terbuthylazine)	96 hr (static)	Mortality, mmLC ₅₀	>2.5 mg/L (SYN)
Oncorhynchus mykiss	Metabolite MT26 (GS 14260, terbutryn)	96 hr (static)	Mortality, mmLC ₅₀	1.1 mg/L (SYN)
Aquatic invertebrate				
Daphnia magna	a.s.	48 h	Mortality, EC ₅₀	No definitive endpoint available ²

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹ (mg/L)
Daphnia magna	a.s.	21 d (semi- static)	Reproduction, _{nom} NOEC	0.019 mg a.s./L (SYN)
Daphnia magna	Preparation: 'Gardo Gold' (A-9476 C)	48 h (static)	Mortality, EC ₅₀	No definitive endpoint available ³
Daphnia magna	Preparation: 'Terbuthylazin e 500 g/L SC'	48 h (static)	Mortality, EC ₅₀	No definitive endpoint available ³
Daphnia magna	Metabolite MT1 (GS 26379, desethyl- terbuthylazine)	48 h (static)	Mortality, nomEC ₅₀	42 mg/L (SYN)
Daphnia magna	Metabolite MT13 (GS 23158, 2- hyrdoxy- terbuthylazine)	48 h (static)	Mortality, nomEC50	>2.8 mg/L (SYN)
Sediment dwelling org	anisms			
Chironomus riparius	a.s.	27 d (static)	nomNOEC (water phase)	0.5 mg a.s./L (SYN)
Chironomus riparius	Metabolite MT13 (GS 23158, 2- hydroxy- terbuthylazine)	28 d (static)	nomNOEC 400 mg (sediment phase) (sedim (SYN)	
Chironomus riparius	Metabolite MT26 (GS 14260, terbutryn)	28 d (static)	nomNOEC 16 mg/kg (sediment phase) (sediment	
Algae				
Blue green algae (Microcystis aeruginosa)	a.s.	72 h (static)	Biomass: mmEbC50	0.016 mg a.s./L (OXON)
			Growth rate: $_{mm}E_rC_{50}$	0.102 mg a.s./L (OXON)

www.efsa.europa.eu/efsajournal

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹ (mg/L)	
Pseudokirchneriella subcapitata	a.s.	72 h (static)	Biomass: mmEbC50	0.012 mg a.s./L (OXON)	
			Growth rate: ${}_{mm}E_{r}C_{50}$	0.028 mg a.s./L (OXON)	
Desmodesmus subspicatus	Preparation: 'Gardo Gold' (A-9476 C)	72 h (static)	Biomass: nomEbC50	0.108 mg formulation/ L (0.0205 mg a.s./L) (SYN)	
			Growth rate: $_{nom}E_rC_{50}$	0.211 mg formulation/ L (0.0401 mg a.s./L) (SYN)	
Pseudokirchneriella subcapitata	Preparation: 'Terbuthylazin e 500 g/L SC'	72 h (static)	Biomass: mmEbC50	0.039 mg formulation/ L (0.021 mg a.s./L) (OXON)	
			Growth rate: $_{mm}E_{r}C_{50}$	0.073 mg formulation/ L (0.040 mg a.s./L) (OXON)	
Selenastrum capricornu tum	Metabolite MT1 (GS 26379, desethyl- terbuthylazine)	72 h (static)	Biomass: mmEbC50	0.14 mg/L (SYN)	
			Growth rate: $_{mm}E_rC_{50}$	0.38 mg/L (SYN)	
Desmodesmus subspicatus	Metabolite MT13 (GS	72 h (static)	Biomass: nom EbC50	>3.96 mg/L (OXON)	
Selenastrum capricornu tum	23158) 2- hydroxy- terbuthylazine)		Growth rate: $_{mm}E_rC_{50}$	>3.8 mg/L (SYN)	
Pseudokirchneriella subcapitata	Metabolite MT26(GS	72 h (static)	Biomass: mmEbC50	0.0017 mg/L (SYN)	
	14260) terbutryn)		Growth rate: mmErC50	0.0036 mg/L (SYN)	

Group	Test substance	Time-scale	End point	Toxicity ¹	
		(Test type)		(mg/L)	
Pseudokirchneriella subcapitata	Metabolite LM3	72h (static)	Growth rate: ${}_{nom}E_{r}C_{50}$	80	
			Yield: nomEyC50	39	
			Biomass: nomEbC50	39	
Pseudokirchneriella subcapitata	Metabolite LM5	72h (static)	Growth rate: $_{nom}E_rC_{50}$	>100	
			Yield: nomEyC50	>100	
			Biomass: nomEbC50	>100	
Pseudokirchneriella subcapitata	Metabolite LM6	72h (static)	Growth rate: $_{nom}E_rC_{50}$	>100	
			Yield: nomEyC50	>100	
			Biomass: nomEbC50	>100	
Higher aquatic plants				1	
Lemna gibba	a.s.	14 d (static)	Frond number: $_{nom}$ $E_{fn}C_{50}$	0.0128 mg a.s./L (OXON)	
			Growth rate: $_{nom}$ E _r C ₅₀	0.412 mg a.s./L (OXON)	
			Biomass: nom EbC50	0.0133 mg a.s./L (OXON)	
Lemna gibba	Metabolite MT26 (GS 14260, terbutryn)	14 d (static)	Frond density: mm EC ₅₀	ensity: _{mm} 0.025	
Myriophyllum aquaticum	Metabolite MT26 (GS 14260, terbutryn)	14 d (static)	Root fresh weight: $_{nom} EC_{50}$ 2.0 mg (sedim		

Higher tier data are available, but insufficient information is currently available to derive an endpoint.

¹ nominal (nom) or mean measured concentrations (mm).

 $E_{fn}C_{50}$: effect concentration on frond number

In the case of preparations indicate whether end points are presented as units of preparation or a.s.

 2 As discussed in Section B.9.2.4.3.1 of the DAR no definitive acute toxicity endpoint was derived from the submitted aquatic invertebrate studies as neither of the submitted studies used a suitable method to determine the amount of terbuthylazine in solution. However, the studies were considered to be of adequate quality to clearly demonstrate that terbuthylazine is of less toxicity to aquatic invertebrates than other aquatic species and therefore the risk assessment for fish is deemed to cover the aquatic invertebrate risk assessment.

³ As discussed in Section B.9.2.4.5 of the DAR no definitive toxicity endpoint for aquatic invertebrates was determined for either of the submitted aquatic invertebrate studies. However, as for the a.s. both studies were considered suitable to clearly demonstrate the formulations are of less toxicity to aquatic invertebrates than other aquatic species and therefore the risk assessment for fish is deemed to cover the aquatic invertebrate risk assessment.

Groundwater

Metabolite TERs for aquatic organisms when groundwater becomes surface water calculated for the Piacenza scenario, assuming a 0.844 kg a.s./ha application of terbuthylazine in Southern Europe. Metabolites LM3 and LM5 calculated from the Hamburg scenario with an application rate of 850 g/ha. Metabolite LM6 calculated from the Thiva scenario with an application rate of 850 g/ha.

Organism	-	-	Diluted ground water PEC µg/L ²	TER	Annex VI trigger value
l-terbuthylazine)					
Fish	LC ₅₀	18000	0.1429	125962	100
Aquatic invertebrate	EC ₅₀	42000	0.1429	293912	100
Algae	E_bC_{50}	140	0.1429	980	10
oxy-terbuthylazine)					
Fish	LC ₅₀	>2500	1.283	>1949	100
Aquatic invertebrate	EC ₅₀	>2800	1.283	>2182	100
Algae	E_rC_{50}	>3800	1.283	>2962	10
yl-hydroxy-terbuthyla	zine, GS 2	8620)			
Fish	LC ₅₀	15000^{1}	0.3627	41356	100
Aquatic invertebrate	EC ₅₀	15000^{1}	0.3627	41356	100
Algae	E_bC_{50}	15000^{1}	0.3627	41356	10
-					
Algae	E_bC_{50}	39000	3.88	100515	10
			1	1	1
Algae	E_bC_{50}	100000	4.62	216450	10
			1	1	1
Algae	E_bC_{50}	100000	9.24	108225	10
	I-terbuthylazine) Fish Aquatic invertebrate Algae roxy-terbuthylazine) Fish Aquatic invertebrate Algae yl-hydroxy-terbuthyla Fish Aquatic invertebrate Algae Algae	OrganismI-terbuthylazine)Fish LC_{50} Aquatic invertebrate EC_{50} Algae E_bC_{50} Toxy-terbuthylazine)Fish LC_{50} Aquatic invertebrate EC_{50} Algae E_rC_{50} yl-hydroxy-terbuthylazine, GS 2Fish LC_{50} Aquatic invertebrate EC_{50} yl-hydroxy-terbuthylazine, GS 2Fish LC_{50} Aquatic invertebrate EC_{50} Algae E_bC_{50} Algae E_bC_{50}	$\mu g/L$ I-terbuthylazine) Fish LC ₅₀ Aquatic invertebrate EC ₅₀ Algae EbC ₅₀ Algae EbC ₅₀ Fish LC ₅₀ Soxy-terbuthylazine) Fish LC ₅₀ Aquatic invertebrate EC ₅₀ Aquatic invertebrate EC ₅₀ Algae ErC ₅₀ yl-hydroxy-terbuthylazine, GS 28620) Fish LC ₅₀ Isoloo ¹ Aquatic invertebrate EC ₅₀ Jooloo ¹ Algae EbC ₅₀ Algae EbC ₅₀ Algae EbC ₅₀ Algae EbC ₅₀	Organism Toxicity endpoint $\mu g/L$ ground water PEC $\mu g/L^2$ I-terbuthylazine) I-terbuthylazine) 0.1429 Aquatic invertebrate EC ₅₀ 18000 0.1429 Aquatic invertebrate EC ₅₀ 42000 0.1429 Algae E _b C ₅₀ 140 0.1429 oxy-terbuthylazine) V V V Fish LC ₅₀ >2500 1.283 Aquatic invertebrate EC ₅₀ >2800 1.283 Algae E _r C ₅₀ >3800 1.283 yl-hydroxy-terbuthylazine, GS 28620) V V Fish LC ₅₀ 15000 ¹ 0.3627 Aquatic invertebrate EC ₅₀ 15000 ¹ 0.3627 Algae E _b C ₅₀ 39000 3.88 Algae E _b C ₅₀ 100000 4.62	$\begin{array}{ c c c c c c } \hline Organism & Toxicity endpoint \\ \mu g/L & ground \\ water \\ PEC \\ \mu g/L^2 & TER \\ \hline \end{array}$

¹ The study authors proposed the acute fish and *Daphnia magna* L/EC₅₀ for MT14 was >100 mg/L and the EC₅₀ to algae to be 30.7 mg/L. However, these values are greater than the water solubility of MT14 (18 mg/L) and therefore the Rapporteur has reservations in accepting quantified toxicity endpoints. The water solubility of MT14 is 18 mg/L and therefore to assume the saturation level (the amount of MT14 in solution under the conditions of the study) of 15 mg

a.s./L is not unreasonable. Assuming the acute fish LC_{50} , acute *Daphnia magna* EC_{50} and the algae EC_{50} are 15 mg/L a TER of 2617.3 is calculated which clearly demonstrates that metabolite MT14 does not pose a high risk to fish, aquatic invertebrates and algae

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	Terbuthylazine
water	Terbuthylazine, metabolite MT26 (terbutryn), desethyl terbuthylazine,
sediment	Terbuthylazine
groundwater	None

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

Active substance

No current Annex VI entry. RAC opinion (June 2015): Aquatic Acute 1 (H400) with an M-factor of 10 Aquatic Chronic 1 (H410) with an M-factor of 10.