Cell Reports, Volume 29

Supplemental Information

Viral Fitness Landscapes in Diverse Host

Species Reveal Multiple Evolutionary Lines

for the NS1 Gene of Influenza A Viruses

Raquel Muñoz-Moreno, Carles Martínez-Romero, Daniel Blanco-Melo, Christian V. Forst, Raffael Nachbagauer, Asiel Arturo Benitez, Ignacio Mena, Sadaf Aslam, Vinod Balasubramaniam, Ilseob Lee, Maryline Panis, Juan Ayllón, David Sachs, Man-Seong Park, Florian Krammer, Benjamin R. tenOever, and Adolfo García-Sastre

Figure S1, related to Figure 1. Reproducible barcode-based abundance is achieved after infecting *in vitro, in ovo* and *in vivo* systems with a small NS1 recombinant library. (a) Schematic representation of WT NS segment (top) and split NS segment (bottom) with modified splicing mechanism that allows the expression of NS1 and NEP in different open reading frames, flanking a short neutral barcode. (b) Replication comparison of a WT PR8 virus and a recombinant NS-split PR8 virus. MDCK cells were infected at a MOI of 0.001 pfu/cell. Error bars depict the standard deviation (SD) of three independent experiments. (c) Viral progression diagrams (Matlab) depicting the relative viral abundance present in a "proof-of-principle" library relative to the total number of barcode reads. Each color represents the relative proportion of a specific barcode within the viral population. "Input" indicates the proportion within the initial inoculum at the time of infection. 10-day-old chicken embryonated eggs (upper panels), MDCK cells (middle panels) and 8-week-old WT C57BL/6 mice (lower panels) were infected in triplicates with the viral library by adding either 50 pfu/virus or 100 pfu/virus and samples were collected 48 hours post infection.

Figure S2, **related to Figure 2**. **Different NS1 selection profiles upon MDCK or A549 cells library infection.** Phylogenetic tree containing selected NS1 sequences within the library was assembled following Bayesian analysis (BEAST). Heat map displaying the relative abundance of barcode reads for each recombinant virus within the library upon infection of MDCK or A549 cells. Viral RNA samples were isolated at 48 hours post infection and further analyzed. Average of the triplicates are listed in columns and expressed as the log₂-fold induction over the initial relative proportion of barcode reads found in the initial viral mix (input). Red and green colors indicate high or low barcode representation versus the input, respectively. Additional information of each specific NS1 is available in **Table 1**.

Figure S3, related to Figure 3. Viral library profile dynamics can be reproduced in singlevirus experiments in A/Vietnam/1203/04 (H5N1 HALo) background. Same NS1 variants as in Figure 3 were rescued in a H5N1 HALo background and single-virus infections were conducted in triplicates using 10-day-old chicken embryonated eggs (a) MDCK cells (b) and 8-week-old C57BL/6 mice (c). Viral replication was quantified at different time points post infection. Body weight loss of infected mice was daily monitored (d). Error bars depict the standard deviation (SD). *, p<0.05.

Figure S4, related to Figure 5. NS1 library selection profile depends on the type-I IFN response. (a) Experimental layout of library infection in 129S wild type (WT) and 129S $Stat1^{-/-}$ mice (n=4). (b) Mouse lung viral titers were determined by plaque assay on MDCK cells at days 1, 3 and 4 post-infection. (c) Body weight loss and (d) survival rates were daily monitored during the infection. Error bars depict the standard deviation (SD).

Figure S6, related to Figure 5. NS1 library selection profile is early host adaptive immune response independent. (a) Experimental layout of library infection in C57BL/6 wild type (WT) and C57BL/6 $Rag1^{-/-}$ mice. (b) Lung tissue from infected mice (n=3) were collected and homogenized at the indicated timepoints. Viral titers were determined by plaque assay on MDCK cells. Additionally, weight loss (c) and survival rates (d) were daily monitored during the infection. (e) Circular bar graph comparing results obtained from infecting WT or $Rag1^{-/-}$ at day 4 post infection and expressed as the relative barcode-fold increase percentage over the input. Error bars depict the standard deviation (SD).

DATA S1

а

b

Data S1, related to Figure 2. Validating the reproducibility of our NS1 recombinant viral library *in vitro* and *in vivo*. Two independent viral library sets (100 pfu/virus) were used to infect 8-week-old female BALB/c mice (a) and MDCK cells (b) in triplicates. Relative barcode abundance was analyzed at 48 hours post-infection. Results are expressed as the fold-induction percentage over the initial relative proportion of barcode reads found in the initial viral mix (input, red dotted line). Scatter plots expressing the fold induction (%) over the input after infecting BALB/c mice (c) and MDCK cells (d) in triplicates with two different pools of library (Library Mix 1 or 2). Error bars depict the standard deviation (SD). Two-tailed paired t tests between independent library mixes were used to obtain Pearson correlation coefficients (r), with linear regression analysis.

DATA S2

Cluster 4

Cluster 4

+ - A.Singapore.2011

~

log2(Expl)

log2(Expr)

e Data Mean

2

3 Time (Days)

- Data Mean

A.Canterbury.01.2002

2

e Data Mean

2 3

log2(Expr) -2

Time (Days)

Cluster 4 * - A.Geneva.5366.1991

4

5

Time (Days)

∞ Data Mean 3 Time (Days) 4

* - ARotterdam.577.1980 e Data Mean

Cluster 4

3 4 Time (Days)

Data S2, related to Figure 6. Time course analysis of clusters in Figure 6. Barcode reads for each recombinant virus within clusters 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f) and 7 (g) at days 2, 3, 4 and 5 post-infection were plotted (black arrows). Each panel highlights a data set of a particular virus (green) and the average values of the whole cluster (red).

List of barcode sequences used in the viral library			
Barcode #	Sequence	NS1 strain	
BC1	ATTTATATAAGCAGCTAACTGT	A/Udorn/1972	
BC2	ATATTGATTAACAAACTAGCCA	A/Puerto Rico/8/1934	
BC3	ATAGCTTACCGGACTCGGTGCC	A/Puerto Rico/8/1934 R38A/K41A	
BC4	TAAAATTGCGATTCACTGGCCT	A/Shanghai/02/2013	
BC5	TACAGTTAGCATAAGATGTGAG	A/Udorn/1972	
BC6	TTTGTTTATATTTAACAGTGTG	A/Puerto Rico/8/1934	
BC7	TTTCAGCATGAGAATCTCCTTC	A/Puerto Rico/8/1934 R38A/K41A	
BC8	CTGCTCTTTGGCTGAATGGGCC	A/Shanghai/02/2013	
BC9	AATTAATTTCATTGACTTCGGC	Akita/1/2009	
BC10	ATAACCTGAAAGTACATATGCT	Akita/1/2009	
BC11	ATAATGTCCCTCAATGTCGGCC	A/Alaska/01/2010	
BC12	ATTTGGGCTGCCATGTCCAGGA	A/Alaska/01/2010	
BC13	TATACAAATTATATTATGTCCG	A/Albany/20/1978	
BC14	TTCTGTTAGAACTGCAGCATAT	A/Albany/20/1978	
BC15	TTCAATCAATATCCAATTCCTC	A/Anhui/2/2005	
BC16	CTTCAAAGTCTTCTAAGATCCG	A/Anhui/2/2005	
BC17	AATAATCTCCACAGCCATCCAT	A/Athens/2010	
BC18	TAAATCCATTATGTACTTGGTC	A/Athens/2010	
BC19	TTTAACCCATTAATAATATGCA	A/Auckland/2000	
BC21	TTTGGTGATGAATGACGCTGGC	A/Beijing/1/1968	
BC22	ATTGATTTATTCAGTAACCGGA	A/Beijing/1/1968	
BC23	AATATCAACAAGTAGTCCCGCT	A/Bilthoven/334/1975	
BC24	TTAAACTTTCTGGGAGATGGCC	A/Bilthoven/334/1975	
BC25	TTAAGCCAGCTAATAAAGAGTC	A/Blue winged teal/Guatemala/2010	
BC26	TTATATAAACTCAGGACCGCCA	A/Blue winged teal/Guatemala/2010	
BC27	TTACACCACTACATTGAAGGAT	A/Boston/6/2009	
BC28	TTTGGTTTGCCTGGAGATGCCA	A/Boston/6/2009	
BC31	TATATCTGTGTTTGTCGGAGAC	A/Broiler_duck/korea/2014	
BC32	TTAAATTCTCCACTCAGGTGGA	A/Broiler_duck/korea/2014	
BC33	ACAATTCCCTTCTGCAAGCGGT	A/California/07/2009	
BC34	TTCATCAAAGATATTCTTGGTG	A/California/07/2009	
BC35	ATTTCAAATAACAGATTAAGTT	A/Camel/Mongolia/2012	
BC36	TTCATATGGCCCGTGCTTAGCC	A/Camel/Mongolia/2012	
BC37	TATAGTGATGCCGTTGTCAGTG	A/Canine/Colorado/2006	
BC38	ATAACCCTTATGTTCAAATGGA	A/Canine/Colorado/2006	
BC39	TTAACTTCTCTTCTTGTAAGGC	A/Canterbury/01/2002	
BC40	TTCTGTAATAATATTCCAGGCC	A/Canterbury/01/2002	
BC41	AATGTTGAACACAAGGTTGCTC	A/Canterbury/204/2005	
BC42	TTCTTAAATAAGAATAAGAGCC	A/Canterbury/204/2005	
BC43	GTCTAATACGATAATAAGCCGG	A/Moscow/2007	
BC44	TTTCTCGTGATACTTCAATGGG	A/Moscow/2007	
BC47	TTTGGCGATGATAATTGTAGGG	A/ Rizhao/2013	
BC48	ATAAACAAGAATTAGATATCTT	A/ Rizhao/2013	
BC49	TTAATGGAGAGCTGGCTGGCCT	A/Cottbus/1964	
BC50	TAGCTCATAGATGTAGTGTCGT	A/Cottbus/1964	
BC51	TATATTTCAGCATGACAGACCA	A/Cygnus olor/2005	
BC52	TTTCTGGATGGATCACTGGGTG	A/Cygnus olor/2005	

BC53	ATTCATTAATCTTTACAGTGCG	A/Fujian/2007
BC54	TATTGTGTTAATTATGGATGAA	A/Fujian/2007
BC55	TATACCTCTGAGGTTTCTTCCA	A/Guangdong/2004
BC56	TTAACGTAGACTTTCAGCTGCA	A/Guangdong/2004
BC57	ATCATCTGACTCATGATAGGTC	A/Equine/Berlin/1989
BC58	TTACTTCATTCACTTGTGTGTT	A/Equine/Berlin/1989
BC59	ATTCGTCATAATTCATGATCTT	A/Equine/Uruguay/1976
BC60	TTATTATCTTGGATAAGGAGGC	A/Equine/Uruguay/1976
BC61	TAACAGTTACTTATCTAATCCC	A/Equine/Xinijang/2007
BC62	TTTCTGGTAATGACGAAGGGTC	A/Equine/Xinjiang/2007
BC63	TACAATCTCGATCTTACTGCGA	A/Finland/2003
BC64	CATTCATCTCCATTGCATTGGA	A/Finland/2003
BC65	TAGTGAAGCCACAGATGTA	A/Finland/95
BC66	ATATTACATAAATTTATCATGC	A/Finland/95
BC69	TAATTGTGGATGGATTGGAGAT	A/Geneva/1991
BC70	TTTCCGATCATCCTGAAGAGGC	A/Geneva/1991
BC71		A/Hong Kong/1974
BC72	ATAATCTTCCTGCGAATGTGGG	A/Hong Kong/1974
BC75	TTGCTTTAAATCTCTCCTTGGA	A/Malaysia/54
BC77	TTTCTAAGTAACCAACATAGCC	A/Ren Georgia/2011
BC78	ATCTGATATGGCAATCTTTCCT	A/Ren Georgia/2011
BC79	TAAGTCCAAACTCCTTAACAGC	A/Memphis/1983
BC80	TTAATATGTCAAATCCATATTG	A/Memphis/1983
BC81		A/Nemphis/1903
BC82		
BC82		A/Petterdam/1080
BC84		A/Rotterdam/1080
BC85		A/Scotland/2003
BC86		A/Scotland/2003
BC89	TTTCCAGTCACTTTTGTCTGCT	A/Shorehird/Delaware/2009
BC90	TTAGAGTAATCTCCAATCAGCT	A/Shorebird/Delaware/2009
BC91	TTGAAATTTCCTGTAGGAGATT	A/Singapore/2011
BC92	TTAGCGCTGGAGCCCAGGTGAC	A/Singapore/2011
BC93	TTACTTAAAGCCCGGTGGTGCCG	A/South Australia/2000
BC93	TTCCACTTACTTATCTCACCC	A/South Australia/2000
BC05	TAATAGCTAAGTTATTACAGGC	A/Stockholm/85
BC95		A/Stockholm/85
BC90	TTGCCATGGATAAGTAATTGGT	A/Stockholm/05
BC08		A/Manitoba/2007
BC101		A/Thailand/2005
BC102	TTAGTTCCTGCCTGCTTGAGGT	A/Thailand/2005
BC102	TTAATAATTCATTTAGGAGCCG	$\Delta/1 \text{ Impa}/92$
BC104		A/Umea/92
BC105		A/Black Duck/New Brunswick/2010
BC106	ATAAGTTCGTCATAACTCGCC	A/Black Duck/New Brunswick/2010
BC107	TTCCACGTTACATACGACTCCC	A/Diack Duck New Vork/21211/2005
BC108	TAATGCCAGGTGAAATTCTCTC	A/Duck New York/21211/2005
BC100	TTGTGCCTACTGCCTCGGAATT	A/Duck new TOIN/21211/2003
BC110	TTATCTTCTCAGCCAGATCCGT	$A/T_{asmania}/2007$
BC111	TTOTOTTAAAGGGGCAGTGTCAG	A/Duck/Vanazhou/02/2005
BC112	TATGAGAATAAGGATGAGAGGT	A/Duck/Yangzhou/02/2005
BC112	ΤΔΩΔΔΤΩΔΤΔΔΩΔΔΩΔΔΩΩΔΟΟΛ	A/Mallard/California/1154/2010
BC114		A/Mallard/California/1154/2010
00114		7/19/aiiai/u/Caiii011ia/1134/2010

BC115	AAGTCGCCCTACGGCGGGTGCC	A/green-winged teal/1985
BC116	TTTCATATATGGGTTCTCACAG	A/green-winged teal/1985
BC117	AATAGTCCAGAATTTCACTGGC	A/Mallard/Netherlands/2010
BC118	TTAATAGCATCGTATTTGTCCT	A/Mallard/Netherlands/2010
BC120	TTACCACAAGAAATAAAGACCA	A/Mallard/Nova Scotia/2010
BC121	TTAAGATAAACAGGATTCAGCC	A/Mallard/Sweden/2008
BC123	ATAGAGGTCAGAGAGTCGTCCC	A/Elephant Seal/California/1/2010
BC124	GACATTCATAACAGCAAATGGC	A/Elephant Seal/California/1/2010
BC125	TATTAGTCATACATCTTCCTTG	A/Hong Kong/97/98
BC127	TTTCTCAAACAGCTGGTAACGC	A/Vietnam/1203/2004
BC128	AATATAAGTATCTTTAGCGGCG	A/Vietnam/1203/2004

Table S1, related to STAR Methods. List of barcode sequences used in the viral library.

List of primers used for the deep-sequencing analysis				
Primer Name	Sequence			
3-Ambi-NS	GATCGCTCTTCTGGGAGCaAAAGCAGGgtgac			
5-SAP-NS	CATCGCTCTTCTATTAGTAGAAACAAGGgtgtt			
llummina_mir30_F	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGTGAAGCCACAGATGTA			
Ilummina_mir30_R_1	CAAGCAGAAGACGGCATACGAGATaaaatcGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			
Ilummina_mir30_R_2				
Ilummina_mir30_R_3	CAAGCAGAAGACGGCATACGAGATacgttaGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			
Ilummina_mir30_R_4	CAAGCAGAAGACGGCATACGAGATagagagGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			
Ilummina_mir30_R_5	CAAGCAGAAGACGGCATACGAGATagtagaGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			
Ilummina_mir30_R_6				
Ilummina_mir30_R_7				
Ilummina_mir30_R_8	CAAGCAGAAGACGGCATACGAGATcataatGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			
Ilummina_mir30_R_9				
Ilummina_mir30_R_10				
Ilummina_mir30_R_11				
Ilummina_mir30_R_12				
Ilummina_mir30_R_13	CAAGCAGAAGACGGCATACGAGATgcctgtGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			
Ilummina_mir30_R_14				
Ilummina_mir30_R_15				
Ilummina_mir30_R_16				
Ilummina_mir30_R_17	CAAGCAGAAGACGGCATACGAGATtaccttGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			
Ilummina_mir30_R_18				
Ilummina_mir30_R_19	CAAGCAGAAGACGGCATACGAGATtcaacaGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			
Ilummina_mir30_R_20	CAAGCAGAAGACGGCATACGAGATtctgtgGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCAAAGTGATTTAATTTATACCATTTTA			

Table S2, related to STAR Methods. List of primers used for the deep-sequencing analysis.