1	C I	• • • • • • • • • • • • •
1	Supplementary	information

3	Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence
4	glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice

- Maria-Carolina Rodríguez-Daza^{1 2 a}, Laurence Daoust^{1 2 a}, Lemia Boutkrabt¹, Geneviève Pilon^{1 3}, Thibault
- 7 Varin¹, Stéphanie Dudonné¹, Émile Levy¹, André Marette¹³, Denis Roy¹² and Yves Desjardins¹²
- 8

- 9 ¹ Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.
- ² Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada.
- ³ Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung
- 12 Institute, Québec, QC, Canada.
- 13 *^a* These authors contributed equally to this work
- 14
- 15
- 16 **Corresponding Author:**
- 17 Yves Desjardins
- 18 Institute of Nutrition and Functional Foods (INAF)
- 19 Laval University, Québec
- 20 Pavillon des Services, # 2736
- 21 2440, Boulevard Hochelaga, Québec, QC, Canada G1V 0A6
- 22 Telephone: 418-262-0897; email: <u>yves.desjardins@fsaa.ulaval.ca</u>

- 24
- 25
- 26
- 27

Polyphenols content (mg/100 g dry weight)							
	Crude extract	Polyphenolic fractions					
Polyphenol type	WBE 840.1 ± 24.8	F1	F2	F3 ND			
Anthocyanins		5248.2 ± 427.0	29.2 ± 0.8				
Delphinidin 3-galactoside	9.6 ± 0.6	57.7 ± 5.5	0.7 ± 0.1	ND			
Delphinidin 3-glucoside	28.4 ± 4.6	262.2 ± 47.8	2.2 ± 0.1	ND			
Cyanidin 3-galactoside	18.5 ± 2.4	66.5 ± 57.9	1.0 ± 0.1	ND			
Delphinidin 3-arabinoside	10.3 ± 2.6	12.7 ± 0.2	0.9 ± 0.2	ND			
Cyanidin 3-glucoside	68.8 ± 3.4	612.3 ± 49.3	3.2 ± 0.1	ND			
Petunidin 3-galactoside	14.6 ± 1.5	83.1 ± 5.3	0.7 ± 0.3	ND			
Cyanidin 3-arabinoside	25.5 ± 2.4	25.8 ± 1.3	1.6 ± 0.03	ND			
Petunidin 3-glucoside	53.0 ± 3.3	512.8 ± 40.2	2.4 ± 0.2	ND			
Peonidin 3-galactoside	10.3 ± 1.5	48.5 ± 3.4	0.3 ± 0.03	ND			
Petunidin 3-arabinoside	14.3 ± 2.3	8.3 ± 0.2	0.7 ± 0.1	ND			
Peonidin 3-glucoside	56.5 ± 2.9	554.2 ± 33.8	1.2 ± 0.1	ND			
Malvidin 3-galactoside	74.0 ± 5.1	526.7 ± 52.9	1.2 ± 0.2	ND			
Malvidin 3-glucoside	207.8 ± 4.8	2397.5 ± 198.8	6.8 ± 0.1	ND			
Malvidin 3-arabinoside	52.2 ± 4.4	32.3 ± 4.4	ND	ND			
Delphinidin 3-(6"-acetoyl) glucoside	11.4 ± 0.5	13.8 ± 1.3	ND	ND			
Cyanidin 3-(6"-acetoyl) glucoside	27.0 ± 2.5	7.2 ± 2.1	1.2 ± 0.1	ND			
Malvidin 3-(6"-acetoyl) galactoside	26.0 ± 3.1	ND	ND	ND			
Petunidin 3-(6"-acetoyl) glucoside	24.0 ± 1.6	ND	1.1 ± 0.2	ND			
Peonidin 3-(6"-acetoyl) glucoside	19.2 ± 1.2	7.9 ± 3.2	1.6 ± 0.05	ND			
Malvidin 3-(6"-acetoyl) glucoside	88.5 ± 4.1	18.7 ± 3.5	2.2 ± 0.1	ND			
Proanthocyanins	3290.4 ± 89.3	670.2 ± 83.4	7047.7 ± 242.2	5520.3 ± 294.2			
Monomers	322.0 ± 8.6	121.4 ± 5.5	1074.4 ± 41.7	27.8 ± 2.2			
Dimers	1544.9 ± 24.9	141.1 ± 5.8	4676.1 ± 137.5	89.3 ± 6.5			
Trimers	449.3 ± 3.7	27.0 ± 4.1	924.3 ± 35.9	162.5 ± 7.4			
Tetramers	255.9 ± 0.5	11.0 ± 1.1	163.9 ± 8.8	412.5 ± 16.1			
Pentamers	143.5 ± 3.0	7.3 ± 1.1	ND	296.1 ± 8.7			
Hexamers	99.7 ± 4.8	10.4 ± 1.1	ND	210.0 ± 3.7			
Heptamers	46.6 ± 3.2	ND	ND	68.2 ± 0.7			
Octamers	34.0 ± 1.0	ND	ND	43.2 ± 6.3			
Nonamers	26.1 ± 2.5	ND	ND	35.1 ± 5.7			
Decamers	16.6 ± 2.5	ND	ND	ND			
Polymers >10	351.6 ± 65.1	352.0 ± 64.7	209.0 ± 18.3	4175.5 ± 236.8			

	Crude extract WBE 4389.5	Polyphenolic fractions		
Polyphenol type		F1 986.06	F2 18531.6	F3 86.04
Flavonols, flavan-3-nols and phenolic acids				
Catechin	97.7 ± 3.6	1.7 ± 1.8	298.2 ± 1.0	5.7 ± 3.4
Epicatechin	75.5 ± 3.1	0.9 ± 0.8	214.1 ± 27.4	8.9 ± 4.3
Gallic acid	115.3 ± 2.2	34.1 ± 2.6	650.2 ± 21.1	1.1 ± 0.2
Protocatechuic acid	355.9 ± 1.6	295.8 ± 9.0	1330.0 ± 80.1	6.6 ± 0.8
P-coumaric acid	116.2 ± 13.3	ND	41.0 ± 7.0	ND
Caffeic acid	134.3 ± 5.3	4.6 ± 0.9	598.7 ± 24.4	ND
Ferulic acid	15.4 ± 2.1	ND	3.2 ± 1.1	ND
3-caffeoylquinic acid	23.8 ± 1.9	0.5 ± 0.5	81.8 ± 11.9	1.4 ± 0.3
4-caffeoylquinic acid	28.4 ± 1.4	0.4 ± 0.2	327.3 ± 8.5	5.3 ± 1.5
5-caffeoylquinic acid	1363.3 ± 42.7	13.0 ± 1.7	4015.3 ± 257.2	27.5 ± 1.5
Quercetin	739.1 ± 17.7	630.9 ± 13.4	4424.1 ± 196.8	11.4 ± 0.8
Quercetin-glucoside	414.5 ± 11.1	0.4 ± 0.4	2273.2 ± 91.0	7.5 ± 1.4
Quercetin-galactoside	135.7 ± 5.3	1.26 ± 0.45	760.7 ± 29.4	2.0 ± 0.6
Quercetin-rhamnoside	250.3 ± 13.0	ND	1422.9 ± 63.3	3.6 ± 2.3
Quercetin-xyloside	133.8 ± 10.6	ND	726.8 ± 64.0	1.1 ± 0.7
Quercetin-arabinoside	101.6 ± 4.2	ND	344.1 ± 8.0	0.4 ± 0.5
Rutin	288.7 ± 3.8	2.5 ± 0.4	1020.0 ± 27.9	3.5 ± 0.6

Polyphenols content (mg/100 g dry weight)

Results are expressed as mean of triplicate \pm SD. ND, not detected. DP, Degree of polymerisation.

Figure S1. Body weight gain in treated mice are not affected by the administration of a WBE and BPF. C57BL/6J mice were fed an HFHS diet and treated with the vehicle (water), the WBE or a BPF: Fraction rich in anthocyanin and phenolic acids (F1), oligomeric PACs, phenolic acids and flavonols (F2) and polymeric PACs (F3) enriched fractions for 8 weeks. A) Body weight gain; B) weight gain curves; C) energy intake; D) visceral adipose tissue weight. One-way ANOVA with a Dunnett post hoc test was applied to calculate the significance of the differences between groups. Two-way repeated measures RM-ANOVA with a Dunnett post hoc test was applied to calculate the significance between groups at different time points. Values are expressed as the mean \pm SEM (n = 12). *p < 0.05 compared to HFHS; Chow vs HFHS # p<0,05 ### p<0,001, #### p<0.0001.

- 62
- 63
- 64 65
- 66
- 60
- 67

Figure S2. Effects of WBE and BPF on colonic mucin secretion and tight junction integrity of HFHS-fed mice. Relative gene
expression determined by RT-qPCR were evaluated in colon tissues of HFHS and BPF fed mice. A) mRNA levels for Tight junction
protein 1 (Tjp1) and B) Occludin (Ocln) (n=10-12 per group). Ordinary one-way ANOVA a Dunnett post hoc test was performed,

Figure S4. Alpha diversity indices. The effect of HFHS-diet and the supplementation with WBE and BPF: anthocyanin and phenolic acids (F1), oligomeric PACs, phenolic acids and flavonols (F2) and polymeric PACs (F3) on the microbial alpha diversity were studied. A) Richness: the number of bacterial species assigned by OTUs detected in the samples was obtained using Chaol index. B) Shannon's diversity index: Incorporates both richness and evenness. Kruskal-Wallis test with Benjamini multiple comparison correction were conducted to compare diversity between diets after 8 weeks of feeding. Mean values ±SEM are plotted, no significant differences were found.

- 91 Figure S5. LEfse analysis of fecal microbial functional profiles between HFHS-fed mice and wild blueberry polyphenols
- 92 treated mice. LDA scores for the bacterial taxa differentially abundant between HFHS-fed mice, WBE and BPF: anthocyanin and
- 93 phenolic acids (F1), oligomeric PACs, phenolic acids flavonols (F2) and polymeric PACs (F3). Positive and negative LDA scores
- 94 indicate the bacterial taxa enriched in A) WBE-fed mice vs HFHS, B) F1-fed mice vs HFHS, C) F2 vs HFHS and D) F3 vs HFHS.
- 95 Only the taxa having a p < 0.05 (Wilcoxon-Mann Whitney rank-sum test) and LDA >2.0 are shown in the figure legend.