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Table S1. Phenolic characterization of blueberry extract and polyphenolic fractions 28 

 29 

 30 

Polyphenols content (mg/100 g dry weight) 

 Crude extract Polyphenolic fractions 

Polyphenol type WBE  F1 F2 F3 

Anthocyanins 840.1 ± 24.8  5248.2 ± 427.0  29.2 ± 0.8  ND 

Delphinidin 3-galactoside  9.6 ± 0.6  57.7 ± 5.5  0.7 ± 0.1  ND 

Delphinidin 3-glucoside  28.4 ± 4.6  262.2 ± 47.8  2.2 ± 0.1  ND 

Cyanidin 3-galactoside  18.5 ± 2.4  66.5 ± 57.9  1.0 ± 0.1  ND 

Delphinidin 3-arabinoside  10.3 ± 2.6  12.7 ± 0.2  0.9 ± 0.2  ND 

Cyanidin 3-glucoside  68.8 ± 3.4  612.3 ± 49.3  3.2 ± 0.1  ND 

Petunidin 3-galactoside  14.6 ± 1.5  83.1 ± 5.3  0.7 ± 0.3  ND 

Cyanidin 3-arabinoside  25.5 ± 2.4  25.8 ± 1.3  1.6 ± 0.03  ND 

Petunidin 3-glucoside  53.0 ± 3.3  512.8 ± 40.2  2.4 ± 0.2  ND 

Peonidin 3-galactoside  10.3 ± 1.5  48.5 ± 3.4  0.3 ± 0.03  ND 

Petunidin 3-arabinoside  14.3 ± 2.3  8.3 ± 0.2  0.7 ± 0.1  ND 

Peonidin 3-glucoside  56.5 ± 2.9  554.2 ± 33.8  1.2 ± 0.1  ND 

Malvidin 3-galactoside  74.0 ± 5.1  526.7 ± 52.9  1.2 ± 0.2  ND 

Malvidin 3-glucoside  207.8 ±4.8  2397.5 ± 198.8  6.8 ± 0.1  ND 

Malvidin 3-arabinoside  52.2 ± 4.4  32.3 ± 4.4  ND ND 

Delphinidin 3-(6"-acetoyl) glucoside  11.4 ± 0.5  13.8 ± 1.3  ND ND 

Cyanidin 3-(6"-acetoyl) glucoside  27.0 ± 2.5  7.2 ± 2.1  1.2 ± 0.1  ND 

Malvidin 3-(6"-acetoyl) galactoside  26.0 ± 3.1  ND ND ND 

Petunidin 3-(6"-acetoyl) glucoside  24.0 ± 1.6  ND 1.1 ± 0.2  ND 

Peonidin 3-(6"-acetoyl) glucoside  19.2 ± 1.2  7.9 ± 3.2  1.6 ± 0.05  ND 

Malvidin 3-(6"-acetoyl) glucoside  88.5 ± 4.1  18.7 ± 3.5  2.2 ± 0.1  ND 

Proanthocyanins  3290.4 ± 89.3  670.2 ± 83.4  7047.7 ± 242.2  5520.3 ± 294.2  

Monomers  322.0 ± 8.6  121.4 ± 5.5  1074.4 ± 41.7  27.8 ± 2.2  

Dimers  1544.9 ± 24.9  141.1 ± 5.8  4676.1 ± 137.5  89.3 ± 6.5  

Trimers  449.3 ± 3.7  27.0 ± 4.1  924.3 ± 35.9  162.5 ± 7.4  

Tetramers  255.9 ± 0.5  11.0 ± 1.1  163.9 ± 8.8  412.5 ± 16.1  

Pentamers  143.5 ± 3.0  7.3 ± 1.1  ND 296.1 ± 8.7  

Hexamers  99.7 ± 4.8  10.4 ± 1.1  ND 210.0 ± 3.7  

Heptamers  46.6 ± 3.2  ND ND 68.2 ± 0.7  

Octamers  34.0 ± 1.0  ND ND 43.2 ± 6.3  

Nonamers  26.1 ± 2.5  ND ND 35.1 ± 5.7  

Decamers  16.6 ± 2.5  ND ND ND 

Polymers >10  351.6 ± 65.1  352.0 ± 64.7  209.0 ± 18.3  4175.5 ± 236.8  



 31 
Results are expressed as mean of triplicate ± SD. ND, not detected. DP, Degree of polymerisation. 32 
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Polyphenols content (mg/100 g dry weight) 

 Crude extract Polyphenolic fractions 

Polyphenol type WBE F1 F2 F3 

Flavonols, flavan-3-nols and phenolic 
acids  

4389.5 986.06 18531.6 86.04 

Catechin 97.7 ± 3.6  1.7 ± 1.8  298.2 ± 1.0  5.7 ± 3.4  

Epicatechin  75.5 ± 3.1  0.9 ± 0.8  214.1 ± 27.4  8.9 ± 4.3  

Gallic acid 115.3 ± 2.2  34.1 ± 2.6  650.2 ± 21.1  1.1 ± 0.2  

Protocatechuic acid 355.9 ± 1.6  295.8 ± 9.0  1330.0 ± 80.1  6.6 ± 0.8  

P-coumaric acid 116.2 ± 13.3  ND 41.0 ± 7.0  ND 

Caffeic acid 134.3 ± 5.3  4.6 ± 0.9  598.7 ± 24.4  ND 

Ferulic acid 15.4 ± 2.1  ND 3.2 ± 1.1  ND 

3-caffeoylquinic acid 23.8 ± 1.9  0.5 ± 0.5  81.8 ± 11.9  1.4 ± 0.3  

4-caffeoylquinic acid 28.4 ± 1.4  0.4 ± 0.2  327.3 ± 8.5  5.3 ± 1.5  

5-caffeoylquinic acid 1363.3 ± 42.7  13.0 ± 1.7  4015.3 ± 257.2  27.5 ± 1.5  

Quercetin  739.1 ± 17.7  630.9 ± 13.4  4424.1 ± 196.8  11.4 ± 0.8  

Quercetin-glucoside  414.5 ± 11.1  0.4 ± 0.4  2273.2 ± 91.0  7.5 ± 1.4  

Quercetin-galactoside  135.7 ± 5.3  1.26 ± 0.45  760.7 ± 29.4  2.0 ± 0.6  

Quercetin-rhamnoside  250.3 ± 13.0  ND 1422.9 ± 63.3  3.6 ± 2.3  

Quercetin-xyloside  133.8 ± 10.6  ND 726.8 ± 64.0  1.1 ± 0.7  

Quercetin-arabinoside  101.6 ± 4.2  ND 344.1 ± 8.0  0.4 ± 0.5  

Rutin 288.7 ± 3.8  2.5 ± 0.4  1020.0 ± 27.9  3.5 ± 0.6  



 54 
Figure S1. Body weight gain in treated mice are not affected by the administration of a WBE and BPF.  C57BL/6J mice 55 
were fed an HFHS diet and treated with the vehicle (water), the WBE or a BPF: Fraction rich in anthocyanin and phenolic acids 56 
(F1), oligomeric PACs, phenolic acids and flavonols (F2) and polymeric PACs (F3) enriched fractions for 8 weeks. A) Body weight 57 
gain; B) weight gain curves; C) energy intake; D) visceral adipose tissue weight. One-way ANOVA with a Dunnett post hoc test 58 
was applied to calculate the significance of the differences between groups. Two-way repeated measures RM-ANOVA with a 59 
Dunnett post hoc test was applied to calculate the significance between groups at different time points. Values are expressed as the 60 
mean ± SEM (n = 12).  *p < 0.05 compared to HFHS; Chow vs HFHS # p<0,05 ### p<0,001, #### p<0.0001. 61 
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 69 
Figure S2. Effects of WBE and BPF on colonic mucin secretion and tight junction integrity of HFHS-fed mice. Relative gene 70 
expression determined by RT-qPCR were evaluated in colon tissues of HFHS and BPF fed mice. A) mRNA levels for Tight junction 71 
protein 1 (Tjp1) and B) Occludin (Ocln) (n=10-12 per group). Ordinary one-way ANOVA a Dunnett post hoc test was performed, 72 
mean +/- SEM. p<0.01## compared to Chow.  73 
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Figure S3. Rarefaction curves graphing within-sample using alpha Chao1 and Shannon diversity measures on mouse fecal 76 

bacterial communities. A) Chao1 alpha diversity indicated HFHS-fed mice had reduced species richness than Chow controls. 77 

Curves are shown for samples treated with WBE and BPF: anthocyanin and phenolic acids (F1), oligomeric PACs, phenolic acids 78 

and flavonols (F2) and polymeric PACs (F3). Kruskal-Wallis test with Benjamini multiple comparison correction were conducted 79 

to compare diversity between groups after 8 weeks of dietary treatment. Significant differences were not found between groups 80 

(P >0.05 at all sampling depth) B) Shannon diversity considering the abundance and richness showed curves similar depth of 81 

sequences among HFHS-fed mice and polyphenols treated mice. 82 
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 83 

Figure S4. Alpha diversity indices. The effect of HFHS-diet and the supplementation with WBE and BPF: anthocyanin and 84 

phenolic acids (F1), oligomeric PACs, phenolic acids and flavonols (F2) and polymeric PACs (F3) on the microbial alpha diversity 85 

were studied. A) Richness: the number of bacterial species assigned by OTUs detected in the samples was obtained using Chao1 86 

index. B) Shannon’s diversity index: Incorporates both richness and evenness. Kruskal-Wallis test with Benjamini multiple 87 

comparison correction were conducted to compare diversity between diets after 8 weeks of feeding. Mean values ±SEM are plotted, 88 

no significant differences were found.  89 
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Figure S5. LEfse analysis of fecal microbial functional profiles between HFHS-fed mice and wild blueberry polyphenols 91 

treated mice. LDA scores for the bacterial taxa differentially abundant between HFHS-fed mice, WBE and BPF: anthocyanin and 92 

phenolic acids (F1), oligomeric PACs, phenolic acids flavonols (F2) and polymeric PACs (F3). Positive and negative LDA scores 93 

indicate the bacterial taxa enriched in A) WBE-fed mice vs HFHS, B) F1-fed mice vs HFHS, C) F2 vs HFHS and D) F3 vs HFHS. 94 

Only the taxa having a p < 0.05 (Wilcoxon-Mann Whitney rank-sum test) and LDA >2.0 are shown in the figure legend. 95 
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