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SUPPLEMENTARY NOTE 1: UNIVERSALITY AND IMPLEMENTING QUANTUM CHANNELS

It is known (see e.g. [1]) that a neural network composed of classical perceptrons can represent any function. Hence,
it is desirable to have the same feature for quantum neural networks.

In order to show universality, we construct a particular network that is capable of universal quantum computation.
QNNs turn out to be universal even if each neuron corresponds to just one qubit. However, for more qubits per neuron
the construction simplifies and we present separate proofs for single- and dual-rail qubit neurons as well as the most
general neurons.

For the case when the perceptron nodes are single qubits, we show that a fully connected network consisting of 4
neurons—two input and two output—can learn any two-qubit unitary V . One possible solution is: the unitary that
corresponds to the first output neuron is V on the Hilbert space of input qubits followed by a SWAP on the Hilbert
space of the first input and the output qubit, the unitary that corresponds to the second output neuron is a SWAP
on the Hilbert space of the second input and the output qubit (see Supplementary Figure 1).
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Supplementary Figure 1: Two-qubit unitaries. The fully connected network consisting of two input and two output
neurons can learn any two-qubit unitary V .

A QNN built from building blocks of two neurons fully connected to other blocks of two neurons is universal, as
two-qubit gates are universal (see e.g. [2]).

For the case when each neuron corresponds to two qubits, we show that each neuron can represent a two-qubit
unitary. We number neurons by two indices: neuron (l, j) is the jth neuron in lth layer. Let there be ml neurons in lth
layer. Consider a network where the neuron (l, j) is connected to neurons (l−1, j) and

(
l + 1, j + (−1)l mod ml,

)
for

all (l, j) and no other connections exist. Suppose that each neuron corresponds qubits labelled by + and −, initialised
as |00〉 (as shown in the left picture of Supplementary Figure 2). The action of the neural network on one layer has
the form

ρl = trl−1

U l
ρl−1 ⊗

 ml⊗
j=1

|00〉(l,j)〈00|

U l
†

 , (1)

where U l =
∏1
j=ml

U lj is a product of each unitary perceptron acting on layers l and l + 1. For the neuron (l, j),
choose

U lj = V lj SWAP

[
(l − 1, j,−) ,

(
l, j − 1 + (−1)l

2
,+

)]
SWAP

[
(l − 1, j,+) ,

(
l, j +

1− (−1)l

2
,−
)]

,

where the SWAP operators act on one qubit in the l − 1th layer and one qubit that correspond to the neuron (l, j)
and V lj is a unitary that acts on the qubits of the neuron (l, j). For example, the first swap swaps the − qubit in the
neuron (l, j) with the + qubit in neuron (l, j − (1 + (−1)l)/2). Note that for fixed l all swaps commute since they all
act on different pairs of qubits. This neural network is equivalent to the quantum circuit of two-qubit gates V lj that
act on registers number 2j − 1 and 2j at the lth time step. This quantum circuit is universal, as two-qubit gates are
universal (see e.g. [2]) and SWAP is one of them (see Supplementary Figure 2).

Note that one could easily consider different geometries for the network to allow far away qubits to interact, which
may be useful for simulating certain quantum circuits more efficiently.
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Supplementary Figure 2: Universality of the quantum neural network. The + qubit in neuron (0, 1) on the left hand
side diagram corresponds to the qubit labelled by a on the right hand side. Similarly, the (0, 2) − qubit corresponds
to the qubit labelled by b and so on.

It is also straightforward to see that the most general form of a quantum perceptron we allow can implement any
quantum channel on the input qubits (or qudits if we are dealing with more general neurons). To see this, look at
Equation (1), and suppose that 2ml−1 = ml. Then it follows from the Stinespring dilation theorem [3] that, because
the layer l qubits are in a pure state, we can choose U l to implement any completely positive map we like on the l− 1
qubits. Note that the output state lives on the l system as opposed to the l − 1 systems. This is equivalent to the
usual Stinespring protocol by choosing SU l = Ũ l, where Ũ l implements the channel we want on the l − 1 qubits and
S swaps these qubits into the first ml−1 qubits of the l layer. Of course, this is just a proof of principle. In realistic
cases, we would not want to consider generic unitaries U l that act on ml−1 +ml qubits, but rather we want to choose
U l =

∏ml
j=1 U

l
j , where each U lj acts only on a few qubits. This would be much easier to implement in practice. Then

it is an interesting question which channels can be simulated by these more restricted class of perceptrons.

SUPPLEMENTARY NOTE 2: CLASSICAL SIMULATION OF TRAINING THE QNN

In this section, we describe how the simulation of the proposed QNN can be done on a classical computer. The
training algorithm is as follows:

I. Initialise:

I.1 Set s = 0.

I.2 Choose all U lj(0) randomly.

II. Feedforward: For each element
(
|φinx 〉, |φoutx 〉

)
in the set of training data, do the following steps: For every layer

l, do the following:

II.1 Tensor the state of the layer to the output state of layer l − 1, where ρinx = |φinx 〉〈φinx |:

ρl−1x (s)⊗ |0 . . . 0〉l〈0 . . . 0|

II.2 Apply the unitaries in layer l:

U lml(s)U
l
ml−1(s) . . . U l1(s)

(
ρl−1x (s)⊗ |0 . . . 0〉l〈0 . . . 0|

)
U l1
†
(s) . . . U lml−1

†
(s)U lml

†
(s)

II.3 Trace out layer l − 1:

ρlx(s) = trl−1

(
U lml(s)U

l
ml−1(s) . . . U l1(s)

(
ρl−1x (s)⊗ |0 . . . 0〉l〈0 . . . 0|

)
U l1
†
(s) . . . U lml−1

†
(s)U lml

†
(s)
)
.



4

II.4 Store ρlx(s). This step is crucial to efficiently calculate the parameter matrices.

These steps are equivalent to applying the layer-to-layer channels E ls defined in ?? successively to the input
state.

III. Update parameters:

III.1 Compute the cost function:

C(s) =
1

N

N∑
x=1

〈φoutx |ρoutx (s)|φoutx 〉

III.2 Calculate each parameter matrix Kl
j(s). (How to do this is explained below.)

III.3 Update each perceptron unitary via

U lj(s+ ε) = eiεK
l
j(s)U lj(s).

III.4 Update s = s+ ε.

IV. Repeat steps II. and III. until the cost function has reached its maximum.

To perform the algorithm, we need a formula that allows us to compute the parameter matrices Kl
j(s) to update

the perceptron unitaries, which we will derive in the following. For clarity, we omit the superscript that indicates
the layer since there is only one layer of unitaries. Furthermore, for the unitaries we omit the dependence on s for
reasons of clarity. We derive the formula for the parameter matrices Kl

j(s) as follows: Consider the derivative of the
cost function,

dC

ds
= lim
ε→0

C(s+ ε)− C(s)

ε
. (2)

The unitaries always act on the current layers, e.g. U2
1 is actually U2

1 ⊗ I22,3,...m2
. Let ρinx = |φinx 〉〈φinx |. The output

state at step s+ ε is then

ρoutx (s+ ε) = trin,hidden

(
eiεK

out
mout

(s)Uout
mout

(s) eiεK
out
mout−1(s)Uout

mout−1(s) . . . eiεK
1
1 (s)U1

1 (s)
(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s)e−iεK

1
1 (s) . . . Uout

mout−1
†
(s)e−iεK

out
mout−1(s) Uout

mout

†
(s)e−iεK

out
mout

(s)
)

= ρoutx (s) + iε trin,hidden

(
Kout
mout

Uout
mout

. . . U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s) . . . Uout

mout

†
(s)

−Uout
mout

. . . U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s) . . . Uout

mout

†
(s)Kout

mout
(s) + . . .

+Uout
mout

. . .K1
1 (s)U1

1 (s)
(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s) . . . Uout

mout

†
(s)

−Uout
mout

. . . U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s)K1

1 (s) . . . Uout
mout

†
(s)
)

+O
(
ε2
)

= ρoutx (s) + iε trin,hidden

([
Kout
mout

(s), Uout
mout

(s) . . . U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s) . . . Uout

mout

†
(s)
]

+ . . .

+Uout
mout

(s) . . . U1
2 (s)

[
K1

1 (s), U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s)
]
U1
2
†
(s) . . . Uout

mout

†
(s)
)

+O
(
ε2
)
.
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The derivative of the cost function up to first order in ε can then be written as

dC(s)

ds
= lim
ε→0

C(s+ ε)− C(s)

ε

= lim
ε→0

C(s) + iε
N

∑
x〈φoutx | (ρoutx (s+ ε)) |φoutx 〉 − C(s)

ε

=
1

N

∑
x

tr
(
Iin,hidden ⊗ |φoutx 〉〈φoutx |

([
iKout

mout
(s), Uout

mout
(s) . . . U1

1 (s)
(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s)

. . . Uout
mout

†
(s)
]

+ · · ·+ Uout
mout

(s) . . . U1
2 (s)

[
iK1

1 (s), U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s)
]

U1
2
†
(s) . . . Uout

mout

†
(s)
))

=
1

N

∑
x

tr
( [
Uout
mout

(s) . . .
(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
. . . Uout

mout

†
(s), Iin,hidden ⊗ |φoutx 〉〈φoutx |

]
︸ ︷︷ ︸

≡Mout
mout

(s)

iKout
mout

(s) + . . .

+
[
U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s), U1

2
†
(s) . . . Uout

mout

†
(s) (Iin+hidden ⊗ |ψx〉〈ψx|)Uout

mout
(s) . . . U1

2 (s)
]

︸ ︷︷ ︸
≡M1

1 (s)

iK1
1 (s)

)
=

i

N

∑
x

tr
(
Mout
mout

(s)Kout
mout

(s) + . . . +M1
1 (s)K1

1 (s)
)
.

(3)

We will parametrise the parameter matrices as

Kl
j(s) =

∑
α1,α2,...,αml−1

,β

Kl
j,α1,...,αml−1

,β(s)
(
σα1 ⊗ . . . ⊗ σαml−1 ⊗ σβ

)
,

where the αi denote the qubits in the previous layer and β denotes the current qubit in layer l. As described in the
example, to reach the maximum of the cost function as a function of the parameters fastest, we maximize dC

ds . Since
this is a linear function, the extrema are at ±∞. To ensure that we get a finite solution, we introduce a Lagrange
multiplier λ ∈ R. Hence, to find Kl

j we have to solve the following maximization problem:

max
Kl
j,α1,...,β

dC(s)

ds
− λ

∑
αi,β

Kl
j,α1,...,β(s)2


= max
Kl
j,α1,...,β

 i

N

∑
x

tr
(
Mout
mout

(s)Kout
mout

(s) + . . . +M1
1 (s)K1

1 (s)
)
− λ

∑
α1,...,β

Kl
j,α1,...,β(s)2


= max
Kl
j,α1,...,β

 i

N

∑
x

trα1,...,β

(
trrest

(
Mout
mout

(s)Kout
mout

(s) + . . . +M1
1 (s)K1

1 (s)
))
− λ

∑
α1,...,β

Kl
j,α1,...,β(s)2

 .

Note that rest in trrest refers to the complement of {α1, . . . , β}. Taking the derivative with respect to Kl
j,α1,...,β

yields

i

N

∑
x

trα1,...,β

(
trrest

(
M l
j(s)

) (
σα1 ⊗ . . . ⊗ σβ

))
− 2λKl

j,α1,...,β(s) = 0,

hence,

Kl
j,α1,...,β(s) =

i

2Nλ

∑
x

trα1,...,β

(
trrest

(
M l
j(s)

) (
σα1 ⊗ . . . ⊗ σβ

))



6

This yields the matrix

Kl
j(s) =

∑
α1,...,β

Kl
j,α1,...,β(s)

(
σα1 ⊗ . . . ⊗ σβ

)
=

i

2Nλ

∑
α1,...,β

∑
x

trα1,...,β

(
trrest

(
M l
j(s)

) (
σα1 ⊗ . . . ⊗ σβ

)) (
σα1 ⊗ . . . ⊗ σβ

)
=

2nα1,...,β i

2Nλ

∑
x

trrest
(
M l
j(s)

)
,

with

M l
j(s) =

[
U lj(s)U

l
j−1(s) . . . U1

1 (s)
(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s) . . . U lj−1

†
(s)U lj

†
(s),

U lj+1

†
(s) . . . Uout

mout

†
(s)
(
Iin,hidden ⊗ |φoutx 〉〈φoutx |

)
Uout
mout

(s) . . . U lj+1(s)
]
.

Note that in the paper, we have introduced the learning rate η, which is related to lambda by η = 1/λ and referred
to it as the learning rate.

Now we describe how the channel structure of the feedforward process can be exploited to efficiently train the QNN.
Consider a network with L hidden layers and a set of N pairs of training data

(
|φinx 〉, |φoutx 〉

)
. As described in the

previous sections, the general output state of the network at step s is

ρoutx (s) = Eouts

(
ELs
(
. . . E2s

(
E1s
(
ρinx
))
. . .
))

with the channel acting on layer l − 1 and l being

E ls
(
X l−1) = trl−1

(
U lml(s) . . . U

l
1(s)

(
X l−1 ⊗ |0 . . . 0〉l〈0 . . . 0|

)
U l1
†
(s) . . . U lml

†
(s)
)
, (4)

where ml is the number of perceptrons in layer l.
This network structure provides a way to compute the derivative of the cost function that is similar to the back-

propagation algorithm used in classical machine learning. Consider the cost function

C(s) =
1

N

N∑
x=1

〈φoutx |ρoutx (s)|φoutx 〉.

To evaluate the derivative of the cost function, we will translate the formula for dC(s)/ds (to order ε) from (3) to the
channel formalism:

dC(s)

ds
=

i

N

∑
x

tr
(
Iin,hidden ⊗ |φoutx 〉〈φoutx |

([
Kout
mout

(s), Uout
mout

(s) . . . U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s)

. . . Uout
mout

†
(s)
]

+ · · ·+ Uout
mout

(s) . . . U1
2 (s)

[
K1

1 (s), U1
1 (s)

(
ρinx ⊗ |0 . . . 0〉hidden,out〈0 . . . 0|

)
U1
1
†
(s)
]

U1
2
†
(s) . . . Uout

mout

†
(s)
))

=
i

N

N∑
x=1

L+1∑
l=1

ml∑
j=1

tr
(
U l+1
1

†
(s) . . . Uout

mout

†
(s)
(
IL ⊗ |φoutx 〉〈φoutx |

)
Uout
mout

(s) . . . U l+1
1 (s)

U lmj (s) . . . U
l
j+1(s)

[
Kl
j(s), U

l
j(s) . . . U

l
1(s)

(
ρl−1x ⊗ |0 . . . 0〉l〈0 . . . 0|

)
U l1
†
(s) . . . U lj

†
(s)
]
U lj+1

†
(s) . . . U lmj

†
(s)
)

=
i

N

N∑
x=1

L+1∑
l=1

tr
(
F l+1
s

(
. . .Fout

s

(
|φoutx 〉〈φoutx |

)
. . .
)

mj∑
j=1

U lmj (s) . . . U
l
j+1(s)

[
Kl
j(s), U

l
j(s) . . . U

l
1(s)

(
ρl−1x ⊗ |0 . . . 0〉l〈0 . . . 0|

)
U l1
†
(s) . . . U lj

†
(s)
]
U lj+1

†
(s) . . . U lmj

†
(s)


=

1

N

N∑
x=1

L+1∑
l=1

tr
(
σlx(s)Dls

(
ρl−1x (s)

))
,
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where σlx(s) = F l+1
s (. . .Fout

s (|φoutx 〉〈φoutx |) . . . ) and Dls = ∂E ls/∂s is the derivative of the corresponding channel,
calculated by

Dls
(
X l−1) =

mj∑
j=1

U lmj (s) . . . U
l
j+1(s)

[
Kl
j(s), U

l
j(s) . . . U

l
1(s)

(
ρl−1x ⊗ |0 . . . 0〉l〈0 . . . 0|

)
U l1
†
(s) . . . U lj

†
(s)
]
U lj+1

†
(s) . . . U lmj

†
(s)

and F ls being the adjoint channel of E ls. The formula for M l
j(s) in the training algorithm (equation ) simplifies to

M l
j(s) =

[
U lj(s) . . . U

l
1(s)

(
ρl−1x (s)⊗ |0 . . . 0〉l〈0 . . . 0|

)
U l1
†
(s) . . . U lj

†
(s), U lj+1

†
(s) . . . U lml

†
(s)
(
Il ⊗ σlx(s)

)
U lml(s) . . . U

l
j+1(s)

]
.

It will we be useful for the implementation of the network to have an explicit expression of the adjoint channel F ls.
In order to obtain this we write the channel E ls in its Kraus representation, which is for any operator X l−1 on the
(l − 1)th layer

E ls(X l−1) =
∑
α

AαX
l−1A†α.

Here we have omitted the indices s and l for the Kraus operators Aα to make the notation clearer. Note that each of
the Kraus operators Aα is a map from the (l − 1)th layer consisting of ml−1 qubits to the lth layer consisting of ml

qubits. The adjoint channel F ls is then by definition given by

F ls(X l) =
∑
α

A†αX
lAα, (5)

for any operator X l on the lth layer.
We are now seeking for an explicit formula of the Kraus operators Aα. Let {|α〉}α be an orthonormal basis in the

(l − 1)th layer. Moreover, let |m〉 , |n〉 be any vectors in the (l − 1)th layer and |i〉 , |j〉 any vectors in the lth layer.
Then the action of E ls can be calculated using (4) and the shorthand notation U l(s) = U lml(s) . . . U

l
1(s) for the whole

unitary of the layer l, which gives〈
i
∣∣ E ls (|m〉 〈n|)

∣∣j〉 =
〈
i
∣∣∣ trl−1 (U l(s) (|m〉 〈n| ⊗ |0 . . . 0〉l〈0 . . . 0|l)U l

†
(s)
) ∣∣∣j〉

=
∑
α

〈
α, i
∣∣U l(s) (|m〉 〈n| ⊗ |0 . . . 0〉l〈0 . . . 0|l)U l

†
(s)
∣∣α, j〉

=
∑
α

〈
α, i
∣∣U l(s)∣∣m, 0 . . . 0〉〈n, 0 . . . 0∣∣U l†(s)∣∣α, j〉.

Therefore, defining Aα via 〈i|Aα |m〉 =
〈
α, i
∣∣U l(s)∣∣m, 0 . . . 0〉 this gives a set Kraus operators for E ls. Using this

definition and (5) we obtain

〈m| F ls(|i〉 〈j|) |n〉 =
∑
α

〈m|A†α |i〉 〈j|Aα |n〉 =
∑
α

〈
m, 0 . . . 0

∣∣U l†(s)∣∣α, i〉〈α, j∣∣U l(s)∣∣n, 0 . . . 0〉
=
〈
m, 0 . . . 0

∣∣U l†(s) (Il−1 ⊗ |i〉 〈j|)U l(s)
∣∣n, 0 . . . 0〉

=
〈
m
∣∣∣ trl (Il−1 ⊗ |0 . . . 0〉l〈0 . . . 0|lU l†(s) (Il−1 ⊗ |i〉 〈j|)U l(s)

) ∣∣∣n〉.
From this we already know the action of F ls on a general operator X l, which is

F ls(X l) = trl

(
Il−1 ⊗ |0 . . . 0〉l〈0 . . . 0|lU l

†
(s)
(
Il−1 ⊗X l

)
U l(s)

)
.

SUPPLEMENTARY NOTE 3: NOISY NEURONS

Current NISQ devices are by definition noisy. Moreover, the fidelity and, consequently, cost function can be
measured only with finite precision. Thus, it is important to examine if the QNN can still be useful if implemented
on realistic devices.
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We model the noise in the network by evolving the state with a random time-dependent Hamiltonian H(τ) before
and after each operation. As a result the noisy unitary that corresponds to jth neuron in lth layer is

U lj(t) = R(t)U ljR̃(t), (6)

R(t) and R̃(t) are two different realisations of a random unitary generated by the same probabilistic process. The
update rule is also modified as

U lj(t)→ R(t)
(
eiεK

l
jU lj

)
R̃(t). (7)

The evolution with H(τ) can be constructed via a quantum Brownian circuit [4, 5]. Let us consider a family of
Hamiltonians {Hj = H(j∆τ)}nj=1, ∆τ = T/n, every Hj is Hermitian and its entries are Gaussian distributed with
zero mean and a standard deviation of 2π~ν√

2mn
. The noise strength is captured by a dimensionless parameter t = νT .

We model both R(t) as

R(t) =

n∏
j=1

exp(iHj∆τ/~) . (8)

By Itô’s calculus, there exists H(t) such that

R(t) = T exp

(
i/~
∫ T

0

H(τ) dτ

)
+O

(
1√
n

)
, (9)

where T is the time ordering operator. We have used n = 20 for the calculations depicted in the main paper.
In Fig.2 in the main paper, the results of training a noisy QNN are depicted. We trained it for the task of

generalisation and have also studied the robustness of the noisy network to corrupted data as described in the main
paper. We studied this for variable noise strengths. We observe that results are close to the ideal QNN for small
enough noise, moreover, learning is even more successful if a large fraction of input data is noisy. Fidelities required
for successful learning are within reach of current quantum computers (see Supplementary Figure 3 and compare with
[6, 7]).

Noise parameter t

Fidelity

0.002 0.004 0.006 0.008 0.010
.994

.995

.996

.997

.998

.999

1• • • • • • • • • • • • • • • • • • • • •

Supplementary Figure 3: The relation between fidelity and noise strength. The fidelity is computed for a single
perceptron that maps a state to itself under the influence of noise. We have used a training set of 500 pairs for this
calculation.

SUPPLEMENTARY NOTE 4: QUANTUM ALGORITHM FOR QUANTUM TRAINING OF THE
NEURAL NETWORK

In this section we explain how our algorithm can be implemented on a quantum computer. To begin we want to
clarify what operations a quantum computer is assumed to be able to do in our case:

1. Partial trace.

2. Initialize a qubit in |0〉 state.
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3. Apply cnot, T , H (and therefore perceptrons) easily. (The Solovay-Kitaev theorem says that any 2-qubit
unitary can be built out of O(logc( 1

ε )) gates, where ε is the accuracy [2]).

4. Measuring in computational basis.

From now on we have two tasks. We need to compute the cost function as well as work out the derivative of the cost
function on a quantum computer. We label/describe these two tasks as subroutine 1 and subroutine 2, respectively.

Subroutine 1. In this subroutine we use the “SWAP trick" to estimate the fidelity of a pure state |φ〉 with a mixed
state ρ. Our input is the state |φ〉 in a register of m qubits and ρ in another register of m qubits. In total we have 2m
qubits, however, we require an additional ancillary qubit for the following process. We estimate F (|φ〉 , ρ) = 〈φ|ρ|φ〉
as a probability exploiting the following quantum circuit.

•

...
...

...
...

bigswap

H H measuring 0 or 1|0〉

|φx〉 in m qubits

ρ in m qubits

σafter

Supplementary Figure 4: Quantum circuit for computing the cost function.

To explain our subroutine we assume m = 1 for simplicity.

1a. Initialization: We initialize the 2m+ 1 qubits in the state

|0〉 〈0| ⊗ |φ〉 〈φ| ⊗ ρ.

1b. Hadamard: In the next step we apply the Hadamard gate and end up with the state

1

2
(|0〉+ |1〉)(〈0|+ 〈1|)⊗ |φ〉 〈φ| ⊗ ρ.

1c. CSWAP: We use cswap := |0〉 〈0| ⊗ 1 + |1〉 〈1| ⊗ swap and the result is

cswap†
(

1

2
(|0〉+ |1〉)(〈0|+ 〈1|)⊗ |φ〉 〈φ| ⊗ ρ

)
cswap

=
1

2
|0〉 〈0| ⊗ |φ〉 〈φ| ⊗ ρ+

1

2
|1〉 〈0| (swap(|φ〉 〈φ| ⊗ ρ)) +

1

2
|0〉 〈1| ((|φ〉 〈φ| ⊗ ρ) swap)

+
1

2
|1〉 〈1| (swap(|φ〉 〈φ| ⊗ ρ) swap) .

1d. Hadamard: After applying the Hadamard gate a second time we have the following expression:

σafter =
1

4
(|0〉+ |1〉)(〈0|+ 〈1|)⊗ (|φ〉 〈φ| ⊗ ρ) +

1

4
(|0〉 − |1〉)(〈0|+ 〈1|)⊗ (swap(|φ〉 〈φ| ⊗ ρ))

+
1

4
(|0〉+ |1〉)(〈0| − 〈1|)⊗ ((|φ〉 〈φ| ⊗ ρ) swap) +

1

4
(|0〉 − |1〉)(〈0| − 〈1|)⊗ (swap(|φ〉 〈φ| ⊗ ρ) swap) .
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1e. Measuring: In this last step we measure the first control qubit and get 0 with probability p0:

p0 = tr(|0〉 〈0| ⊗ 1⊗ 1× σafter)

=
1

4
tr(|0〉 〈0|

(
(|0〉+ |1〉)(〈0|+ 〈1|)

)
) tr(|φ〉 |φ〉 ⊗ ρ)

+
1

4
tr(|0〉 〈0|

(
(|0〉 − |1〉)(〈0|+ 〈1|)

)
) tr (swap(|φ〉 〈φ| ⊗ ρ))

+
1

4
tr(|0〉 〈0|

(
(|0〉+ |1〉)(〈0| − 〈1|)) tr ((|φ〉 〈φ| ⊗ ρ) swap)

+
1

4
tr(|0〉 〈0|

(
(|0〉 − |1〉)(〈0| − 〈1|)) tr (swap(|φ〉 〈φ| ⊗ ρ) swap)

=
1

4
+

1

4
tr(swap |φ〉 〈φ| ⊗ ρ) +

1

4
tr(|φ〉 〈φ| ⊗ ρ swap) +

1

4

=
1

2
+

1

2
tr(swap |φ〉 〈φ| ⊗ ρ).

Using the definition swap =
∑2
j,k=1 |jk〉 〈kj| we obtain:

1

2
+

1

2
tr(swap |φ〉 〈φ| ⊗ ρ) =

1

2
+

1

2

∑
j,k

tr(|jk〉 〈kj| (|φ〉 〈φ| ⊗ ρ)

=
1

2
+

1

2

∑
j,k

〈k|φ〉 〈j|ρ|k〉 〈φ|j〉

=
1

2
+

1

2

∑
j,k

〈φ|j〉 〈j|ρ|k〉 〈k|φ〉

=
1

2
+

1

2
F (|φ〉 , ρ) .

At this point we encounter quantum projective noise, i.e., we get 0 or 1 randomly and need to repeat this measurement
N times to reduce the fluctuations arising from the binomial probability distribution. We get

#0s
N

= p0 + δp0

#1s
N

= p1 + δp1

with fluctuations δpi =
√

pi(1−pi)
N ≈

√
pi
N . Our resource usage so far amounts to:

• 2N Hadamards,

• N copies of |φ〉,

• N copies of ρ, and

• N cswaps.

In addition to that we need m qubits for the operation

cswap = |0〉 〈0| ⊗ 1⊗ 1 + |1〉 〈1| ⊗ bigswap,

where

bigswap =
∑

j1,...jm;k1,...,km

|j1, . . . , jm; k1, . . . , km,〉 〈k1, . . . , km; j1, . . . , jm| .
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a

b

m

...
...

...
...

Supplementary Figure 5: Depiction of gates. (a) shows the SWAP gate, (b) shows the BIGSWAP gate.

For bigswap m2 swaps are needed if we arrange the qubits on a line, or m swaps otherwise. This concludes the
description of our first subroutine.

To complete the description of our quantum algorithm we need to estimate the derivative of the cost function.
This can be achieved by exploiting the following subroutine.

Subroutine 2. Subroutine 2 implements the channel E l. This part of the algorithm takes as input ml−1 qubits in
the state ρl−1, where ml−1 is the number of qubits in layer l − 1. The output is ρl = E l(ρl−1).

2a. Initialization
Tensor ml qubits in state |0〉 with the input:

ρl−1 → ρl−1 ⊗ |0〉 〈0| ⊗ . . .⊗ |0〉 〈0|︸ ︷︷ ︸
ml

.

Recources: In this step ml−1 +ml qubits are required.

2b. Perceptrons
Apply the perceptrons in layer l:

ρl−1 ⊗ |0 . . . 0〉 〈0 . . . 0| →

(
nl∏
k=1

U lk

)
ρl−1 ⊗ |0 . . . 0〉 〈0 . . . 0|

(
nl∏
k=1

U lk

)†
= ρ̃l−1,l.

Resources: We require ml−1 +ml qubits and nl gates.

2c. Partial trace
Take the partial trace over layer ml−1:

ρ̃l−1,l
tr−→ ρl.

Resources: In this step we go from ml−1 +ml qubits to ml qubits without any gates.

To get ρout from ρin we need to repeat Steps 2a to 2c a total of L times. The total number of qubits required to
carry out this subroutine is given by max{m1 +m2,m2 +m3, . . . ,mL +mout}. We need to apply n1 + n2 + . . .+ nL
perceptrons, where ni is the number of perceptrons in layer i.

Algorithm for calculating the cost function. Putting it all together we can estimate the cost function via
three steps:

1. Prepare 2 copies of the state |φx〉 with probability 1
N .

2. Do subroutine 2 on the last m qubits.

3. Do swap trick.

4. Repeat Steps 1,2, and 3 a total of M times for same value of x to estimate 〈φx|ρ|φx〉. (The choice of M affects
the accuracy of the latter; the bigger M the more accurate we get.)
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•

...
...

...
...

bigswap

H H measuring 0 or 1|0〉

|φx〉 in m qubits

|φx〉 in m qubits

σafter

Subroutine 2

Step 1 Step 2 Step 3

Supplementary Figure 6: Steps 1 to 3 of the algorithm for calculating the cost function.

Choose x randomly N times and employ this algorithm each time to compute the expectation value over x and thus
the cost function C = 1

N

∑
x 〈φx|ρ|φx〉. The total number of gates and perceptrons required is N ×M(

∑L
i=1 ni + 3) .

The number of qubits required is ≤ 2×W +m+ 1, where W is the width of the QNN, i.e., W = max{m1, . . . ,mout}.

Algorithm for calculating the derivative. To work out the derivative dC
ds of the cost function we compute δC

δyµ ,
where yµ is the vector of all the parameters. For a single three-qubit perceptron U = eik with k =

∑
kα,β,γσ

α⊗σβ⊗σγ
we write

yµ =



k000
k001
k002
k003
k010
...




= 64 parameters.

For a four-qubit QNN with two three-qubit perceptrons, see Fig. ??, we have

yµ =



k1000
...

k1333
k2000
...

k2333




= 2× 64 parameters. (10)

Now we need to work out δC
δyµ ≈

C(y+εµ)−C(y)
ε , where

εµ =



0
...
0
ε
0
...
0


,

i.e. ε is the αth entry and µ = 1, . . . , (#perc)× 64, where #perc denotes the numbers of perceptrons.
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Suppose we know C(y) and work out δC
δyµ , Q = (#perc)× 64 times. This gives us

y =


δC
δy1
δC
δy2

...
δC
δyQ

 .

All that is left to do is the gradient ascent step, with

ynew = yold +
1

2λ


δC
δy1
δC
δy2

...
δC
δyQ

 .

Using this and Taylor’s theorem, we obtain an expression for the cost function at ynew:

C(ynew) = C(yold +
1

2λ

δC

δy
)

= C(yold) +

Q∑
µ=1

1

2λ

(
δC

δyµ
(yold)

)2

+O(1/λ2)

Choosing now λ big enough, this shows that updating the parameters in the above way always makes the cost funtion
larger, i.e.

C(ynew)− C(yold) ≥ 0.

SUPPLEMENTARY NOTE 5: IMPLEMENTATION DETAILS

Here, we compare our QNN training method with that of executing full state tomography of the intermediate states
of the network, and then classically calculating the K matrices.

First, we need to estimate the numper of copies required by the quantum algorithm. The number of copies Ncopies

of each pair in the training set used in each round is large, as can be seen from the following formula:

Ncopies = nproj × nparams. (11)

Here nproj is the factor coming from repetition of measurements to reduce projection noise (i.e., estimate expectation
values via measurement), and nparams is the total number of parameters in the network given by

nparams =

L+1∑
l=1

ml∑
j=1

# parameters(U lj)

=

L+1∑
l=1

ml∑
j=1

(4(ml−1+1) − 1)

=

L+1∑
l=1

ml × (4(ml−1+1) − 1).

(12)

U lj are the perceptron unitaries, and the index L+ 1 refers to the outgoing layer (i.e., Uout
j ). To get the second line,

we used that the number of parameters in the perceptrons in this work is given by 4(ml−1+1) − 1. Recall that ml is
the number of perceptron unitaries acting on perceptrons in layer l − 1 and layer l, and the −1 term occurs because
the overall phase of the unitaries is unimportant.

As an example, let us ask how many copies of each training pair we would need to perform the quantum training of
the network in Fig.2 in the paper. In that case, nparams = 699, and there were 300 rounds of training with 100 pairs.
(Note that we actually need much fewer training pairs to train the network. The point in that part of the discussion
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was to test how robust the training is when some pairs are noisy. For our purposes 8 will suffice.) Then we have that
the total number of copies needed for training is

Ntotal copies = nproj × nparams × npairs × nrounds
= 500× 699× 8× 300

= 838, 800, 000.

(13)

Here we chose nproj = 500 to reduce the projection noise below ∼ 0.03. This used the bound on fluctuations discussed
in appendix G1: the measurement used to estimate the fidelity estimates probabilities p with fluctuations given by√
p(1− p)/nproj ≤ 1/

√
2nproj.

This estimate of Ntotal copies is overkill to a large extent. If we wanted to actually trial such a process on a quantum
computer, we wouldn’t train for 300 rounds, and, especially for noisy systems without error correction, there would
be less need to choose nproj so large. This is because the system would be noisy anyway. The interesting point in
that case would be to test how much the circuit can learn on a noisy system more as a proof of principle.

Another straightforward way to reduce the required resources is to exploit sparsely connected QNNs.

We now look at a few ideas using state tomography to improve the training of our QNN.
(i) One option along these lines, is to use state tomography to find σlx and ρl−1x for a given l. From that we can find
M l
j , which will allow us to do the update. To do that we would need to simulate the evolution of ρl−1x ⊗|00...0〉l〈00...0|

and Il−1 ⊗ σlx under the unitaries for those layers. However, the neural network should hopefully be useful in a
regime where it cannot be easily classically simulated, so this would probably not be a feasible strategy.

(ii) We can consider an alternative use of the state tomography idea: to do the unitary updates in the sec-
ond equation in point 3a and then do tomography to find the states, e.g.,

∏1
α=j U

l
α(ρl−1x ⊗ |00...0〉l〈00...0|)

∏j
α=1 U

l†
α .

But then we would still have to classically calculate the commutator, which would be a difficult task for such large
matrices.

Still, we can count how many copies N tom
copies of each pair in the training set (per round of training) we would need

in this case.

N tom
copies = nproj ×

L+1∑
l=1

ml × 2[(dl × dl−1)2 − 1]. (14)

Here nproj is again the factor coming from repetition of measurements to reduce projection noise (i.e., estimate
expectation values via measurement), which we also need when doing measurements for state tomography. Then we
sum over the layers with the summand ml×2[(dl×dl−1)2−1]. Here dl×dl−1 arises because the states we look at live
in dl × dl−1-dimensional Hilbert spaces. The power of two follows from the usual reasoning that state tomography
requires O(d2 − 1) measurements to characterize a state on a d-dimensional Hilbert space. The factor of 2 comes
from the fact that we are doing this for two states, and finally the factor of ml comes from the fact that there are
ml matrices M l

j that we need to calculate for a given layer. Note that, if there were some additional information, we
might be able to reduce the cost of the state tomography via, e.g., compressed sensing.

So the question now is how this value (N tom
copies) compares to our value for Ncopies from our usual approach. To make

things simple, let’s assume a network of qubits with constant width ml = m for all l. To compare N tom
copies and Ncopies

we can ignore factors of nproj and just look at the summands (as the sums are over the same ranges: all layers). Then,
because

ml × 2[(dl × dl−1)2 − 1] = 2m(4m − 1)2, (15)

is bigger than

(4m+1 − 1)×m (16)

for m ≥ 2, we see that N tom
copies ≥ Ncopies, so the state tomography trick doesn’t help us in this case. A caveat is that

with some useful ansatz about the states, some more specialized forms of state tomography may give us an advantage
and N tom

copies ≤ Ncopies, which could aid with training specialized networks. This is highly interesting and would be a
good point for future work.

(iii) A final possibility is to use a modified version of a trick from [8]. In that case, we can encode the com-
mutator of two states into the state of the system. Let’s see how this works. Given two states ρA and σB of the
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same dimension, we evolve the state of A and B, i.e., ρA ⊗ σB , via the unitary exp(−iSπ/4), where S is the swap
operator. Then we trace out system A:

trA[e−iSπ/4ρA ⊗ σB eiSπ/4] =
ρB + σB

2
− i

2
[ρB , σB ], (17)

where we used that e−iSt = cos(t)− i sin(t)S, which follows because S2 = I.
So we see that the commutator is encoded into the state of the B system. The update matrices Kl

j may be obtained
from this expression by taking the partial trace, i.e., by measuring some local observables. To eliminate (ρB + σB)/2
we need to compute ρB and σB though. It might well be possible to make this approach coherent and eliminate
completely the requirement that we have access to many copies of the training data; we will investigate this in a
future paper. of the neural network, nparams can be reduced significantly.
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