Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

The authors propose an architecture for a feed-forward quantum neural network (QNN) that works
with quantum data. Neurons are defined as qudits, and perceptrons (the mechanism to update the
state of output neurons based on the state of input neurons) are modelled by arbitrary unitary
operations acting on m+1 quantum systems (m inputs and 1 output). The propagation of
information through the network can be understood as a sequence of completely positive maps
from one layer of neurons through the next. This structure, which is quite generic, allows for a
rather straightforward quantum formalization of the backpropagation algorithm used for training
classical feed-forward neural networks. In addition, because the process of updating the state of
one layer only depends on the state of the previous layer, one would not need to have
simultaneous control of all neurons in the network in an experimental implementation. This is a
nice feature that permits reusing quantum degrees of freedom from already processed layers as
new upcoming layers reinitialized in a |0> state. Moreover, the authors show how their QNN is
capable of universal quantum computation.

To demonstrate the functioning of their QNN, the authors consider the problem of learning a
random unitary transformation V given access to quantum training data in the form of pairs
(]psi_in,x>,V|psi_in,x>). The QNN is trained by maximizing the fidelity between the state of the
output layer |psi_out,x> with the true output state V|psi_in,x>. This is done via backpropagation
by updating the parameters of all unitaries (perceptrons) over many rounds per training state. The
authors show that the QNN is able to successfully learn the unknown unitary, with notable
generalization performance, and in a way that is very robust against corrupted training data
(random pairs of uncorrelated states). They show this by numerical simulations of their QNN with a
small number of neurons, which are taken to be qubit systems.

The results are scientifically sound, and the paper is very well presented. I believe that this is an
important contribution for the QML and quantum algorithms community, specially since ML
algorithms capable of dealing with quantum data are not abundant. Another potentially strong
aspect of these results is that, at least in the experiments that the authors carried out, there
seems to be no ‘barren plateau’ (a phenomenon where the training algorithm is incapable of
driving the network to its optimal state for successful learning, if the network is initialized at
random). If this would be a generic feature of the proposed architecture, it would significantly
make it stand out among other proposed QNNs based on variational quantum circuits. Because of
these reasons, I would recommend the publication of the manuscript in Nature Communications,
provided the authors address satisfactorily the following comments.

1) The manuscript is missing some references that I deem relevant to set the work in context. In
relation to the problem of learning an unknown quantum unitary transformation, this was first
studied in PRA 81, 032324 (2010). The setting is seemingly different, but it actually contains the
problem the authors address here: the unitary is given as a black box that can be used a finite
number of times N. If the black box would be applied over a set of states |psi_in,x>, output states
V|psi_in,x> would be obtained, reproducing the training set that the authors of the manuscript
consider. In this work, emphasis is put in the limitation of resources. That is, what is the most
general form of (entangled) probes and circuit to test the black box for a given N, such that we
learn as best as possible how to mimic the action of V on a new state. This is analogous to the



QNN reproducing V on the test states. This resource-centred perspective on learning unitaries has
been recently generalized in PRL 122, 170502 (2019) to include probabilistic protocols.

2) To my knowledge, the CQ, QC, QQ terminology was first discussed in Aimeur, Brassard, Gambs,
“Machine learning in a quantum world”, Advances in Artificial Intelligence, volume 4013 of Lecture
Notes in Computer Science, 431-442 (2006). It is not original from the wikipedia article.

3) In relation to references on the QQ category. Quantum generalizations of ML-type problems
that use “quantum data” as training information, i.e., quantum systems in specific states, had
been already explored in several works prior to 2017. A selection of relevant ones could be:

Template matching: PRA 66, 022303 (2002)

Supervised learning: Sci. Rep. 2, 708 (2012), PRL 118, 190503 (2017), arXiv:0809.0444
Unsupervised classification: arXiv:1903.01391

Reinforcement learning: PRL 117, 130501 (2016)

A good review on the topic can be found in Rep. Prog. Phys. 81, 7 (2018).

4) In most of the above works, an emphasis is given to what can be done with a limited amount of
quantum data. This makes sense, since the crucial difference between quantum and classical data
is that the former cannot be cloned perfectly, or processed an arbitrary number of times without
degrading it. Thus, ML algorithms are bound to incorporate this restriction in scenarios where
resources are limited, and their design becomes highly nontrivial. The resulting algorithms have, in
many cases, a radically different structure than their classical counterparts. In this manuscript, the
authors simply say that enough copies of the training states are needed to “overcome projection
noise” and properly train the QNN. This number is then not regarded as an important parameter of
the problem. In particular, the report on numerical simulations provides the size of the training
set, the number of rounds of the backpropagation algorithm, the learning rate, and the step size in
the updates of the perceptron unitaries, but not the number of copies of the training set used in
each round of training. This is a crucial parameter for any prospective experimental
implementation of the QNN and should be reported.

My fear is that this number might be extremely high. According to appendix G, the derivative of
the cost function is computed for each tunable parameter (and there are sum_| 4~(m_{I-1}+1) x
(#percin ). Each such evaluation will need a number of copies of each state in the training set,
and that is for a single training round. Is that correct? If so, the experimental implementation of
the proposed QNN might just be infeasible for practical purposes for networks of more than a few
neurons and layers. I want to clarify, though, that in any case this does not hinder the theoretical
value of the work.

5) Building on the above point. In the appendices, the optimization of the cost function at each
step is solved implicitly and the solution for updating the perceptron unitaries, the matrices K_j~I,
is expressed in terms of the commutator M_j~I. This commutator is further simplified in a form
that only depends on the states rho_x~{l-1} (propagated from the input) and sigma_x~I (back-
propagated from the true output). I wonder if there is a way to directly evaluate this commutator
and hence avoid computing a derivative for each parameter of the perceptron unitary U_j~I. For
instance, imagine that for a given x we do state tomography in layer I-1 to obtain the density
matrix rho_x~{I-1%}, and in layer | to obtain sigma_x”I, and then compute classically M_j~I with
the results. Could it be possible that such protocol is more efficient in terms of the number of
copies of the pair (|phi_x>,V|phi_x>)? What would be the overall effect of finite statistics in the
learning process?

6) A nuance. In appendix B it is mentioned that classical training data consists in instances of an
unknown probability distribution, and that the natural quantization of probability distributions are
density matrices. I agree with this reasoning. However, in their notion of quantum data, the



authors replace the classical instances by quantum states, not the underlying probability
distribution itself. The example of learning a unitary transformation is not a good one to illustrate
this point, as it is genuinely quantum. The distinction is clearer in a classification setting. Let two
sets of N classical data points, labelled by 1 and 2, come from two different underlying probability
distributions p_1 and p_2. The quantization of this training set could be either two sets of N
different quantum states that have been sampled from two different probability distributions over
the Hilbert space, or N copies of a quantum state |p_1> and N copies of |p_2> (this is the
approach followed in some of the references of point 3, see above). The latter quantization would
be in line with the reasoning laid out appendix B, that is, quantizing the underlying probability
distribution. I think it would be beneficial if these distinct notions of “quantum data” would be
discussed in the manuscript.

7) The last sentence of appendix C mentions that it would be interesting to see which channels can
be simulated by the QNN with perceptrons acting on m+1 qubits. Do you have an idea about how
restrictive is such QNN with respect to an arbitrary quantum circuit of the same depth, at least
intuitively? I think this is a very interesting point which would be nice to elaborate, if possible.

8) How would this QNN architecture work in a classification scenario? In the simplest case of two
classes the output layer would be a single qubit, and the network should try to tailor its state
towards either |0> or |1>, depending on the class of the input. I'm aware that studying the
behavior of the QNN for a classification problem probably implies quite some work, so I want to
make clear that this is not a requisite for recommending publication. However, if it is easy or the
authors have an idea of whether the same results (learning, generalization, and robustness) would
hold also in a classification problem, it would be a nice addition to the paper.

9) On the above point. It could be that the good generalization performance that the QNN exhibits
is a particularity of the problem of learning unitaries. The intuition is that a few random states are
enough to pin down the action of the unknown unitary, leaving not much room for overfitting the
training data. This could be very different in e.g. a classification problem, where the possible
classes of states can be defined in an arbitrary or even pathological way, thus a particularly bad
training set might be far away from representing faithfully the classes. Would you agree with this?

10) This is my personal opinion, but I think the title “Efficient learning of deep quantum neural
networks” might be somewhat misleading. The efficiency, as I understand that the authors mean,
comes from the necessary nhumber of coherent qubits to control at each step of the algorithm.
However, efficiency is also measured in terms of the number of training rounds, and (in the case
of quantum data) in terms of the number of copies required, I would say. From these perspectives,
the proposed algorithm is not so efficient.

11) By the end of the main text, the absence of a “"barren plateau” is mentioned. This observation
stems from the numerical simulations carried out by the authors. However, one could argue that
the simulations performed are over rather small networks, where a barren plateau phenomenon
might not yet manifest. On the other hand, if this absence would be a general feature of the
proposed architecture, I would put a lot more emphasis in this point. Could you elaborate in this
direction?

12) In a number of places a “sequel” is mentioned. I don’t know what this means. You do refer to
the present manuscript and not to an upcoming second paper, right?

13) Appendix A.3, there is a mislabeled reference.
14) Appendix D.2, point II.2 and equations below: m(l) should be m_I, for consistency.

15) Below equation (D.2). I think it would add clarity to define explicitly what “rest” means in the
partial trace.



16) Above line 445, equation for M_j~I(s). It is strange that the state in the first term of the
commutator, ignoring the unitaries, is defined only over layers “in” and 1, but the state in the
second term includes all layers with the identity I_in,hidden. It caused me some confusion for a
bit. Maybe there is a better way of writing this.

17) When M_j~l is simplified (above line 448). “The formula for M_j~I(s) in the training algorithm
simplifies to...”. It would be good to refer here to said formula with a reference.

18) Below line 457. “With probability 1...” This is not strictly true. It is with probability approaching
or tending to 1.

19) At the bottom of page 16. “[...] we exploit the identity” That identity is derived (at least) from
Schur lemma. It would be nice to the reader to mention it. Also, a reminder that the average is
taken uniformly with respect to the Haar measure does not harm.

20) Appendix F.1. What is the dimension of the Hilbert space used for these numerics? It is not
mentioned, should be.

21) Appendix F.3. Intuitively, adding layers increases the expressivity of the QNN. Can you see
this in some way in your simulations? Is it actually wise to add intermediate layers for the problem
of learning a unitary?

22) Appendix G.1. Point c. CSWAP. Some kets should be bras.

23) Appendix G.4. The notation x~alpha is extremely confusing. Before, x was the label for the
states in the training. Also, alpha becomes a superindex of a Pauli operator in the same line.
Furthermore, the x becomes X below G1 without warning. #perc should be properly defined too.
Please change all this.

24) Appendix G.4. Could you clarify the argument why the cost function is always larger? In other
words, I don't quite follow the step from 1st line to 2nd line in the equation in page 24.

Reviewer #2:

Remarks to the Author:

The authors propose a very natural definition of a quantum perceptron and derive a quantum
neural network that can coherently learn unknown dynamics from labeled training data. The
authors prove several results about their QNN framework, including an explicit derivation of the
gradient for training purposes, and bolster their claims with numerical simulations that
demonstrate some amount of robustness to corruption of the training labels. This is a very nice
and simple result, and I'm a little surprised that someone hasn't suggested this definition sooner! I
think it will certainly appeal to the broad readership of Nature Communications. The results are all
correct as far as I have checked them.

I have a couple of optional comments for the authors to consider.

The cost function that the authors use is essentially one minus the average fidelity of the learned
channel to the true channel. However, this measure can vary quite considerably from other
metrics such as the diamond distance. In fact, it is possible to have a cost of epsilon and a
diamond distance of order the square root of epsilon. Do the authors have any insights about 1)
using a ' "stronger' cost function such as one based on the diamond norm, or 2) would the results
differ significantly using such a cost function? It might be worth a few sentences in the appendix
somewhere to touch on this point since for quantum channels the diamond distance is very often



used as the canonical measure of distance between channels.

The notion of noise that the authors consider is natural if one has a functioning quantum computer
with perfect logical qubits, but imperfect training data. However, the authors cite NISQ devices as
some of the motivation for their work. In the context of NISQ devices, it is really the noise in the
samples from the device that will decrease the contrast of the signal that will hurt the performance
of the proposed QNN.

Consider the following example. The authors consider a model where instead of samples from
labeled pairs (in, out), we sometimes get the pair (in, fake) instead. They show robustness in this
case. Now instead we get samples from (in, out), but the random variable at the measurement is
corrupted by noise with some probability p. Now the samples are accurate, but the signal is
convolved through the noisy measurement channel. I don't think that the QNN will be robust to
this type of noise because there is no way to distinguish noise in the unknown channel from the
noisy measurements. In fact, this is a limitation of all of the proposed schemes for QML. I find it
particularly annoying when QML and NISQ are uttered in the same breath and yet no one seems to
care about noisy measurements leading to systematic bias in the results. I would greatly
appreciate if the authors could find something intelligent to say about this in their article, even if it
is only to acknowledge that this is presently a failure mode for their scheme, just to get some
people aware of this issue.

typo: "To evaluate the benchmark the performance"



REPLY TO REVIEWERS

Authors: We thank each of the reviewers for carefully reading our manuscript
and are especially grateful that they have committed so much of their time to
reviewing this work. We greatly appreciate that they have made the effort to
give comprehensive and constructive suggestions and are extremely grateful for
their insightful comments and useful feedback. This has given us the oppor-
tunity to significantly improve the quality and the clarity of the paper. We
address each of the reviewers’ points below and describe the changes made to
the manuscript based on their recommendations.

(The quoted text below from the reviewers is identical to their reports, except
that mathematics has been put into latex form.)

Reviewer 1

1) The manuscript is missing some references that I deem relevant to set the
work in context. In relation to the problem of learning an unknown quantum
unitary transformation, this was first studied in PRA 81, 032324 (2010). The
setting is seemingly different, but it actually contains the problem the authors
address here: the unitary is given as a black box that can be used a finite number
of times N. If the black box would be applied over a set of states |1in,..), output
states V|¢in o) would be obtained, reproducing the training set that the authors
of the manuscript consider. In this work, emphasis is put in the limitation of
resources. That is, what is the most general form of (entangled) probes and
circuit to test the black box for a given N, such that we learn as best as possible
how to mimic the action of V on a new state. This is analogous to the QNN
reproducing V on the test states. This resource-centred perspective on learning
unitaries has been recently generalized in PRL 122, 170502 (2019) to include
probabilistic protocols.

Authors: We are very grateful to the referee for bringing these ref-
erences to our attention. We have added these references to the
paper and explained their relevance. Although the problem the au-
thors address in these papers is the same, there are some interesting
differences to our work. In these papers, the goal is to learn an
unknown quantum channel by accessing it a finite number of times
and storing it in a state of a quantum memory such that it can be
retrieved when needed. A crucial contrast to our setting is that we
do not need a quantum memory to store the learned unitary, rather
the parameters that characterize the unitary are stored in a classical
register. Once these parameters have been learned, the unitary can
be prepared and applied an arbitrary number of times.

2) To my knowledge, the CQ, QC, QQ terminology was first discussed in Aimeur,
Brassard, Gambs, “Machine learning in a quantum world”, Advances in Arti-
ficial Intelligence, volume 4013 of Lecture Notes in Computer Science, 431-442
(2006). It is not original from the wikipedia article.



Authors: We thank the referee for pointing this out and have in-
cluded the corresponding reference.

3) In relation to references on the QQ category. Quantum generalizations of ML-
type problems that use “quantum data” as training information, i.e., quantum
systems in specific states, had been already explored in several works prior to
2017. A selection of relevant ones could be:

Template matching: PRA 66, 022303 (2002)

Supervised learning: Sci. Rep. 2, 708 (2012), PRL 118, 190503 (2017), arXiv:0809.0444
Unsupervised classification: arXiv:1903.01391

Reinforcement learning: PRL 117, 130501 (2016)

A good review on the topic can be found in Rep. Prog. Phys. 81, 7 (2018).

Authors: Many thanks for providing these important contributions
to the literature: we have included these references.

4) In most of the above works, an emphasis is given to what can be done
with a limited amount of quantum data. This makes sense, since the crucial
difference between quantum and classical data is that the former cannot be
cloned perfectly, or processed an arbitrary number of times without degrading it.
Thus, ML algorithms are bound to incorporate this restriction in scenarios where
resources are limited, and their design becomes highly nontrivial. The resulting
algorithms have, in many cases, a radically different structure than their classical
counterparts. In this manuscript, the authors simply say that enough copies of
the training states are needed to “overcome projection noise” and properly train
the QNN. This number is then not regarded as an important parameter of the
problem. In particular, the report on numerical simulations provides the size of
the training set, the number of rounds of the backpropagation algorithm, the
learning rate, and the step size in the updates of the perceptron unitaries, but
not the number of copies of the training set used in each round of training. This
is a crucial parameter for any prospective experimental implementation of the
QNN and should be reported.

Authors: First of all, we thank the referee for highlighting this very
important point. Regarding the numerical simulations in our work,
it has to be clarified that they are classical simulations of the training
of the QNN, they are not performed on a quantum computer. Hence,
we can easily access many copies of the training set and do not
have to worry about quantum projection noise. However, we agree
with the referee that, for the quantum implementation, this is an
important issue; we deal with this point below.

My fear is that this number might be extremely high. According to appendix
G, the derivative of the cost function is computed for each tunable parameter
(and there are S, 4(mi—1+1) x (f#perc in 1)). Each such evaluation will need
a number of copies of each state in the training set, and that is for a single
training round. Is that correct? If so, the experimental implementation of the
proposed QNN might just be infeasible for practical purposes for networks of
more than a few neurons and layers. I want to clarify, though, that in any case



this does not hinder the theoretical value of the work.

Authors: The reviewer is indeed correct that the number of copies
Neopies Of each pair in the training set used in each round is large
(we quantify this below). We obtain numbers on the order of 800
million copies. Admittedly this number is rather large. However,
firstly, this is an extremely pessimistic overestimate, and, secondly,
it is worth comparing this figure with the number of quantum circuit
repetitions employed in a recently reported experiment involving the
“Sycamore” quantum computer (see F. Arute et al., Nature 574,
505-510 (2019)). Here it was reported that the experiment was
repeated one million times taking 200s. This is only two orders of
magnitude away from the requirements of our method.

The number of copies Neopies Of €ach pair in the training set used in
each round can be obtained from the following formula:

Ncopics = Nproj X Nparams- (1)

Here np,0j is the factor coming from repetition of measurements to
reduce projection noise (i.e., estimate expectation values via mea-
surement), and Mparams iS the total number of parameters in the
network given by

L+1 my
Nparams = Z Z # parameters(U;)

1=1 j=1
L+1 my

- Z Z(4(mz71+1) —-1) (2)
1=1 j=1
L+1

= Z my X (4(ml71+1) _ 1)

=1

Ujl. are the perceptron unitaries, and the index L + 1 refers to the
outgoing layer (i.e., U]‘?ut). To get the second line, we used that the
number of parameters in the perceptrons in this work is given by
4(mi—1+1) _ 1 Recall that m; is the number of perceptron unitaries
acting on perceptrons in layer [ — 1 and layer [, and the —1 term
occurs because the overall phase of the unitaries is unimportant.
(This is the same as the formula given by the referee, except for the
-1.)

As an example, let us ask how many copies of each training pair
we would need to perform the quantum training of the network in
figure 2(b) in the paper. In that case, nparams = 699, and there were
300 rounds of training with 100 pairs. (Note that we actually need
much fewer training pairs to train the network. The point in that
part of the discussion was to test how robust the training is when
some pairs are noisy. For our purposes 8 will suffice.) Then we have



that the total number of copies needed for training is

Ntotal copies — Tlproj X Nparams X Npairs X Nrounds

=500 x 699 x 8 x 300 (3)
= 838,800, 000.

Here we chose npy05 = 500 to reduce the projection noise below ~
0.03. This used the bound on fluctuations discussed in appendix G1:
the measurement used to estimate the fidelity estimates probabilities
p with fluctuations given by /p(1 — p)/nproj < 1/4/2npr0j-

This estimate of Niotal copies is overkill to a large extent. If we wanted
to actually trial such a process on a quantum computer, we wouldn’t
train for 300 rounds, and, especially for noisy systems without error
correction, there would be less need to choose ny.0; so large. This
is because the system would be noisy anyway. The interesting point
in that case would be to test how much the circuit can learn on a
noisy system more as a proof of principle.

Another important point to bear in mind is that, in networks where
we make an ansatz allowing reduced connectivity of the neural net-
work, Nparams can be reduced significantly.

Nevertheless, the reviewer is absolutely correct that the number of
copies of the training data needed to train the network may be large,
something which should be highlighted, so we have included this in
the text (around line 176):

Furthermore, the number of copies per training round needed grows
quickly with the number of neurons (linearly with the number of net-
work parameters), i.e., Nproj X Nparams, Where Nproj s the factor
coming from repetition of measurements to reduce projection moise,
and Nparams @5 the total number of parameters in the network given

by ZlL:ll(él(ml—l“) —1) xmy, where my is the number of perceptrons
acting on layers | — 1 and layer 1, and the —1 term appears because
the overall phase of the unitaries is unimportant. This means that in
the near term, for large networks, only sparsely connected networks
may be practical for experimental purposes. An exception would be
if the problem being considered is such that the training data is easy
to produce, e.q., if the output states are produced by allowing input
states to thermalize by simply interacting with environment, thus
producing the output states. Furthermore we add a detailed discus-
sion in the new Appendix H.

5) Building on the above point. In the appendices, the optimization of the
cost function at each step is solved implicitly and the solution for updating the
perceptron unitaries, the matrices K é, is expressed in terms of the commutator
M ]z This commutator is further simplified in a form that only depends on the
states p,~! (propagated from the input) and ¢!, (back-propagated from the true
output). I wonder if there is a way to directly evaluate this commutator and
hence avoid computing a derivative for each parameter of the perceptron unitary
U jl For instance, imagine that for a given x we do state tomography in layer
I — 1 to obtain the density matrix p)~!, and in layer [ to obtain ¢, and then
compute classically M jl with the results. Could it be possible that such protocol

4



is more efficient in terms of the number of copies of the pair (|¢s), V]dz))?
What would be the overall effect of finite statistics in the learning process?

Authors: This is an interesting idea, and there could be multiple
ways to implement it. In the following, we discuss a few ideas. There
could of course be better strategies that are not obvious to us. (Here,
it’s useful to look at point 3a in Figure 2 in the manuscript.)

(i) One option along these lines, is to use state tomography to find
ol and pi~! for a given [. From that we can find M }, which will al-
low us to do the update. To do that we would need to simulate the
evolution of pL=1 ®00...0);(00...0| and I;_; ® o, under the unitaries
for those layers. However, the neural network should hopefully be
useful in a regime where it cannot be easily classically simulated, so
this would probably not be a feasible strategy.

(i) We can consider an alternative use of the state tomography
idea: to do the unitary updates in the second equation in point 3a
and then do tomography to find the states, e.g., H(ly:j Ul(pht

100...0);(00...0)) [T/,_, U. But then we would still have to classi-
cally calculate the commutator, which would be a difficult task for
such large matrices.

Still, we can count how many copies Niom . of each pair in the
training set (per round of training) we would need in this case.

L+1
Ntom Nproj X Z my x 2[(d; x dl,1>2 —1]. (4)

copies
=1

Here np,0j is again the factor coming from repetition of measure-
ments to reduce projection noise (i.e., estimate expectation values
via measurement), which we also need when doing measurements for
state tomography. Then we sum over the layers with the summand
my X 2[(dy x d;—1)? — 1]. Here d; x d;_ arises because the states we
look at live in d; x d;_i-dimensional Hilbert spaces. The power of
two follows from the usual reasoning that state tomography requires
O(d? — 1) measurements to characterize a state on a d-dimensional
Hilbert space. The factor of 2 comes from the fact that we are do-
ing this for two states, and finally the factor of m; comes from the
fact that there are m; matrices M ]l that we need to calculate for a
given layer. Note that, if there were some additional information,
we might be able to reduce the cost of the state tomography via,
e.g., compressed sensing.

So the question now is how this value (N5 ) compares to our value
for Ngopies from the previous answer. To make things simple, let’s
assume a network of qubits with constant width m; = m for all [.
To compare N and Neopies We can ignore factors of 7,05 and
just look at the summands (as the sums are over the same ranges:
all layers). Then, because

my x 2[(d; x dj_1)* — 1] = 2m(4™ — 1)?, (5)

5



is bigger than

(4™t — 1) xm (6)
for m > 2, we see that thgg;es > Neopies; 50 the state tomography
trick doesn’t help us in this case. A caveat is that with some useful
ansatz about the states, some more specialized forms of state tomog-
raphy may give us an advantage and N . < Neopies, which could
aid with training specialized networks. This is highly interesting and
would be a good point for future work.

(iii) A final possibility is to use a modified version of a trick from S.
Lloyd, M. Mohseni and P. Rebentrost, Nat. Phys. 10, 631 (2014).
Here, the idea is to encode the commutator of two states into the
state of the system. Let’s see how this works. Given two states pa
and op of the same dimension, we evolve the state of A and B, i.e.,
pA®0op, via the unitary exp(—iSm/4), where S is the swap operator.
Then we trace out system A:

—iSn/4 iSw/4] _ pp+op i

- 7[vao'B]7 (7>

trale 5 5

pa®ope

where we used that e~*5*
S? =1.

So we see that the commutator is encoded into the state of the
B system. The update matrices KJZ- may be obtained from this
expression by taking the partial trace, i.e., by measuring some local
observables. To eliminate (pp 4+ 05)/2 we need to compute pp and
op though. It might well be possible to make this approach coherent
and eliminate completely the requirement that we have access to
many copies of the training data; we will investigate this in a future
paper.

We have added all of this discussion to the new appendix in the
paper.

= cos(t) —¢sin(t)S, which follows because

6) A nuance. In appendix B it is mentioned that classical training data con-
sists in instances of an unknown probability distribution, and that the natural
quantization of probability distributions are density matrices. I agree with this
reasoning. However, in their notion of quantum data, the authors replace the
classical instances by quantum states, not the underlying probability distribu-
tion itself. The example of learning a unitary transformation is not a good one
to illustrate this point, as it is genuinely quantum. The distinction is clearer in
a classification setting. Let two sets of N classical data points, labelled by 1 and
2, come from two different underlying probability distributions p; and ps. The
quantization of this training set could be either two sets of N different quantum
states that have been sampled from two different probability distributions over
the Hilbert space, or N copies of a quantum state |[p; > and N copies of |py >
(this is the approach followed in some of the references of point 3, see above).
The latter quantization would be in line with the reasoning laid out appendix
B, that is, quantizing the underlying probability distribution. I think it would
be beneficial if these distinct notions of “quantum data” would be discussed in
the manuscript.



Authors: We add around line 165:

There are two notions of ”quantum data”: Two sets of N classical
data points come from two different underlying probability distribu-
tions p1 and ps. The quantisation of this training set could be either
two sets of N different quantum states that have been sampled from
two different probability distributions over the Hilbert space, or N
copies of a quantum state. We assume the second version.

7) The last sentence of appendix C mentions that it would be interesting to see
which channels can be simulated by the QNN with perceptrons acting on m+1
qubits. Do you have an idea about how restrictive is such QNN with respect
to an arbitrary quantum circuit of the same depth, at least intuitively? I think
this is a very interesting point which would be nice to elaborate, if possible.

Authors: With regard to qubits vs. qudits, we recently discovered
that qubit perceptrons are also universal for quantum computation.
This argument has been included in Appendix C.

In recent investigations of the quantum neural network we have de-
veloped a training algorithm which is able to train the QNN with
respect training data with non-pure output states. This algorithm
is very similar to the one presented in the paper and is based the
cost function being an average of Hilbert-Schmidt norms, i.e. for
(piz“, pg“t)zzl,,__,N a set of training pairs and Eqnn being the chan-
nel corresponding to the QNN this cost function is given by

N
=" 102" — Equn(M]f5 -
=1

Using this new training algorithm we were able train the network
with respect training sets (p;n, T(p;n))I:17___7N, with T being a ran-
domly generated channel. From the numerics we have done so far the
training seems to be successful as the network was able to perfectly
learn with respect to such training sets.

8) How would this QNN architecture work in a classification scenario? In the
simplest case of two classes the output layer would be a single qubit, and the
network should try to tailor its state towards either |0) or |1), depending on
the class of the input. I'm aware that studying the behavior of the QNN for
a classification problem probably implies quite some work, so I want to make
clear that this is not a requisite for recommending publication. However, if
it is easy or the authors have an idea of whether the same results (learning,
generalization, and robustness) would hold also in a classification problem, it
would be a nice addition to the paper.

Authors: The referee is proposing an interesting application of our
quantum network architecture, which is one that we are actually
currently studying. In our investigations, we have found that for
the simple task that the referee is proposing, namely having two
classes of states which we want to distinguish, the network is indeed
able to train to the optimal value of the cost function. We have



added a more detailed explanation and a plot of the training behavior
of the network to Appendix F.4. A much deeper investigation of
how the network performs in classification tasks is part of a future
publication.

9) On the above point. It could be that the good generalization performance
that the QNN exhibits is a particularity of the problem of learning unitaries.
The intuition is that a few random states are enough to pin down the action of
the unknown unitary, leaving not much room for overfitting the training data.
This could be very different in e.g. a classification problem, where the possible
classes of states can be defined in an arbitrary or even pathological way, thus a
particularly bad training set might be far away from representing faithfully the
classes. Would you agree with this?

Authors: We agree with the intuition proposed by the referee that
a few random states are enough to pin down the action of the un-
known unitary (this will be the subject of an upcoming paper on a
quantum generalisation of the no free lunch theorem). About gen-
eral classification problems: we have investigated the optimality of
such schemes both via SDPs and QNNs. We have found (in prepara-
tion), somewhat surprisingly, that in practice QNNs give competitive
results. We added a section in Appendix F.4.

10) This is my personal opinion, but I think the title “Efficient learning of
deep quantum neural networks” might be somewhat misleading. The efficiency,
as I understand that the authors mean, comes from the necessary number of
coherent qubits to control at each step of the algorithm. However, efficiency is
also measured in terms of the number of training rounds, and (in the case of
quantum data) in terms of the number of copies required, I would say. From
these perspectives, the proposed algorithm is not so efficient.

Authors: We thank the reviewer for pointing out the misleading
title and changed it to "Training deep quantum neural networks’.

11) By the end of the main text, the absence of a “barren plateau” is mentioned.
This observation stems from the numerical simulations carried out by the au-
thors. However, one could argue that the simulations performed are over rather
small networks, where a barren plateau phenomenon might not yet manifest.
On the other hand, if this absence would be a general feature of the proposed
architecture, I would put a lot more emphasis in this point. Could you elaborate
in this direction?

Authors: We are grateful to the referee for emphasising this point.
There are two key reasons we believe that our QNNs will not ex-
hibit a barren plateau. According to J. R. McClean, S. Boixo, V. N.
Smelyanskiy, R. Babbush, and H. Neven, Nat. Commun. 9, 4812
(2018), “The gradient in a classical deep neural network can vanish
exponentially in the number of layers [...], while in the a quantum
circuit is exponentially small in the number of qubits,” This point
does not apply to our QNNs because the gradient of a weight in the



QNN doesn’t depend on all the qubits but rather only on the num-
ber of paths connecting that neuron to the output, just as it does
classically. (This is best observed in the Heisenberg picture.) Thus,
indeed, the gradient vanishes exponentially in the number of layers,
but not in the number of qubits, just as it does classically. Secondly,
our cost function differs from that of (J. R. McClean, S. Boixo, V.
N. Smelyanskiy, R. Babbush, and H. Neven, Nat. Commun. 9, 4812
(2018).): they consider energy minimisation of a local hamiltonian,
whereas we consider a quantum version of the risk function. Our
quantity is not local, and this means that Levy’s lemma-type argu-
mentation doesn’t directly apply.

We have added this discussion to the paper around line 274.

12) In a number of places a sequel is mentioned. I don’t know what this means.
You do refer to the present manuscript and not to an upcoming second paper,
right?

Authors: We replaced the word with synonyms for better under-
standing.

13) Appendix A.3, there is a mislabeled reference.
Authors: Thanks for spotting this error, we have removed this.

14) Appendix D.2, point I1.2 and equations below: m(l) should be m;, for
consistency.

Authors: We changed m(l) to m; for consistency everywhere.

15) Below equation (D.2). I think it would add clarity to define explicitly what
rest means in the partial trace.

Authors: Added the sentence: Note that rest in tr,es refers to the
complement of {a1,...,5}.

16) Above line 445, equation for M (s). It is strange that the state in the first
term of the commutator, ignoring the unitaries, is defined only over layers “in”
and 1, but the state in the second term includes all layers with the identity

Iin hidden- It caused me some confusion for a bit. Maybe there is a better way
of writing this.

Authors: This is indeed confusing and the way it is written in the
equation is actually not quite correct. The state in the first term of
the commutator should actually be a state of all the hidden layers
and the output layers. We changed this accordingly.

17) When Mjl is simplified (above line 448). The formula for Mjl (s) in the
training algorithm simplifies to.... It would be good to refer here to said formula

with a reference.

Authors: We added the reference to the equation for M jl(s)
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18) Below line 457. With probability 1... This is not strictly true. It is with
probability approaching or tending to 1.

Authors: We thank the reviewer for mentioning that this part is
not written clearly enough and can lead to confusion. The intuition
one needs for this part is that two randomly chosen vectors never
point in the same direction. Therefore, we changed the part in the
paper to the following:

With probability 0 any randomly chosen subset of D of the states
|p) will be linearly dependent. Thus the first n < D states |¢z)
span, with probability 1, an n-dimensional subspace K C H = CP
which is unitarily mapped by V onto an n-dimensional subspace L.

19) At the bottom of page 16./...] we exploit the identity That identity is derived
(at least) from Schur lemma. It would be nice to the reader to mention it. Also,
a reminder that the average is taken uniformly with respect to the Haar measure
does not harm.

Authors: Many thanks for pointing this out. Bases on the sugges-
tion we added the following sentence:

Note that this is derived from Schur lemma and the average is taken
uniformly with respect to the Haar measure.

20) Appendix F.1. What is the dimension of the Hilbert space used for these
numerics? It is not mentioned, should be.

Authors: Thank you for pointing out that this information is miss-
ing. The dimension that is used for these numerics is 2", where n is
the number of input (respectively, output) qubits. We have added
this information to the figures.

21) Appendix F.3. Intuitively, adding layers increases the expressivity of the
QNN. Can you see this in some way in your simulations? Is it actually wise to
add intermediate layers for the problem of learning a unitary?

Authors: Many thanks for addressing this important point. For
the problem of learning a unitary it was always sufficient to have
just one input and one output layer and no hidden layer to perfectly
learn (i.e. cost function equal to one) with respect to a given train-
ing set. However, although using additional hidden layers was not
necessary for this particular task, bigger networks also did not cause
any problems for perfectly learning a unitary.

From recent investigations of the learning capability of the presented
QNN we however know that there are tasks where deeper networks
perform better than smaller ones. This often occurs when the dimen-
sion of the output space is bigger than the dimension of the input
space, e.g. if you want to learn an isometry. Here one will often only
get perfect training if one chooses a right network architecture with
certain hidden layers. Similar effects can be observed when one uses
the network to learn random channels as mentioned above (point 7).
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We added additional thoughts around line 427.
Investigating these observations is work in progress and will be pre-
sented in future publication.

22) Appendix G.1. Point c. CSWAP. Some kets should be bras.
Authors: Thanks for noticing this, we have corrected the equation.

23) Appendix G.4. The notation z® is extremely confusing. Before, x was the
label for the states in the training. Also, alpha becomes a superindex of a Pauli
operator in the same line. Furthermore, the x becomes X below G1 without
warning. #perc should be properly defined too. Please change all this.

Authors: We are grateful to the referee for pointing out this pos-
sible point of confusion. We have revised the notation to improve
clarity and changed z® and X% to y* and also explained #perc in
an additional sentence.

24) Appendix G.4. Could you clarify the argument why the cost function is
always larger? In other words, I don’t quite follow the step from 1st line to 2nd
line in the equation in page 24.

Authors: We changed the formulas in that argument to make it
more explicit that the cost function always gets larger because the
dominating term in the Taylor expansion is non-negative as it is
quadratic.

Reviewer 2

The authors propose a very natural definition of a quantum perceptron and
derive a quantum neural network that can coherently learn unknown dynam-
ics from labeled training data. The authors prove several results about their
QNN framework, including an explicit derivation of the gradient for training
purposes, and bolster their claims with numerical simulations that demonstrate
some amount of robustness to corruption of the training labels. This is a very
nice and simple result, and I’'m a little surprised that someone hasn’t suggested
this definition sooner! I think it will certainly appeal to the broad readership
of Nature Communications. The results are all correct as far as I have checked
them.

I have a couple of optional comments for the authors to consider.

The cost function that the authors use is essentially one minus the average
fidelity of the learned channel to the true channel. However, this measure can
vary quite considerably from other metrics such as the diamond distance. In
fact, it is possible to have a cost of epsilon and a diamond distance of order
the square root of epsilon. Do the authors have any insights about 1) using a
“stronger’ cost function such as one based on the diamond norm, or 2) would the
results differ significantly using such a cost function? It might be worth a few
sentences in the appendix somewhere to touch on this point since for quantum
channels the diamond distance is very often used as the canonical measure of
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distance between channels.

Authors: We thank the referee for emphasising this important point.
We do agree that the diamond norm is operationally better suited
for many quantum information processing tasks. Unfortunately we
do not know of an efficient quantum approach to simulating this
norm, and were unable to simulate learning according to this norm.
We could simulate learning via the diamond norm classically using
convex programming techniques (Ben-Aroya, Avraham, and Am-
non Ta-Shma. ”On the complexity of approximating the diamond
norm.” arXiv preprint arXiv:0902.3397 (2009).), but this does not
easily extend to the quantum setting. Our justification for the cost
function we use is that it is a direct generalisation of the risk function
considered in training classical deep networks and we can efficiently
simulate it. We have updated the paper to clarify this.

The notion of noise that the authors consider is natural if one has a functioning
quantum computer with perfect logical qubits, but imperfect training data.
However, the authors cite NISQ devices as some of the motivation for their
work. In the context of NISQ devices, it is really the noise in the samples
from the device that will decrease the contrast of the signal that will hurt the
performance of the proposed QNN.

Consider the following example. The authors consider a model where instead
of samples from labeled pairs (in, out), we sometimes get the pair (in, fake)
instead. They show robustness in this case. Now instead we get samples from
(in, out), but the random variable at the measurement is corrupted by noise with
some probability p. Now the samples are accurate, but the signal is convolved
through the noisy measurement channel. I don’t think that the QNN will be
robust to this type of noise because there is no way to distinguish noise in the
unknown channel from the noisy measurements. In fact, this is a limitation of
all of the proposed schemes for QML. I find it particularly annoying when QML
and NISQ are uttered in the same breath and yet no one seems to care about
noisy measurements leading to systematic bias in the results. I would greatly
appreciate if the authors could find something intelligent to say about this in
their article, even if it is only to acknowledge that this is presently a failure
mode for their scheme, just to get some people aware of this issue.

Authors: We agree with the referee that we have not addressed this
problem adequately in our paper. We now shortly mention that one
would have to consider this kind of noise within the network itself
for NISQ devices in the introduction and discuss it further near the
end of the paper (around line 319): We have also performed exten-
sive additional simulations of learning under more realistic noise and
found that the QNN still learns.

A crucial problem that has to be taken into account with regard to
NISQ devices is the inevitable noise within the device itself. Inter-
estingly, we have obtained numerical evidence that, for approrimate
depolarising noise, QNNs are robust (see inset of Fig. 3).

12



typo: ”To evaluate the benchmark the performance”

Authors: We have corrected the typo.
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Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

All my comments have been addressed by the authors satisfactorily, hence I recommend
publication. I would only suggest the authors to implement the following two changes:

- Ref. [24] has been publised in the meantime. Please update to Phys. Rev. X 9, 041029 (2019).

- Regarding the different notions of quantum data. I'm not sure the added paragraph adds much
clarity. In my report I used the example of classification with two probability distributions just as
an illustration. In general, it need not be two distributions. The crucial point is which element of a
classical scenario is identified with a quantum state: either each classical sample of an unknown
underlying probability distribution is replaced by a different quantum state (hence in the quantum
scenario the underlying distribution will be a distribution over quantum states), or the distribution
itself is the quantum state (in this case, it is justified to say that N samples will correspond to N
identical quantum states). I suggest the authors to improve the phrasing of this argument.

Reviewer #2:

Remarks to the Author:

The authors have addressed all of my comments and I think that this manuscript is now suitable
for publication in Nature Commes.



REPLY TO REVIEWERS
Reviewer 1

1) Ref. [24] has been publised in the meantime. Please update to Phys. Rev.
X 9, 041029 (2019).

Authors: We thank the referee for pointing this out and have up-
dated the corresponding reference.

2) Regarding the different notions of quantum data. I'm not sure the added
paragraph adds much clarity. In my report I used the example of classification
with two probability distributions just as an illustration. In general, it need not
be two distributions. The crucial point is which element of a classical scenario
is identified with a quantum state: either each classical sample of an unknown
underlying probability distribution is replaced by a different quantum state
(hence in the quantum scenario the underlying distribution will be a distribution
over quantum states), or the distribution itself is the quantum state (in this case,
it is justified to say that N samples will correspond to N identical quantum
states). I suggest the authors to improve the phrasing of this argument.

Authors: We thank the referee for clarifying this and have revised
the paragraph about quantum data, which now says:

Now that we have an architecture for our QNN we can specify the
learning task. Here, it is important to be clear about what part of
the classical scenario we quantize. One possibility is to replace each
classical sample of an unknown underlying probability distribution
by a different quantum state. Hence, in the quantum setting, the
underlying probability distribution will then be a distribution over
quantum states. The second possibility is to identify the distribution
itself with a quantum state, which we assume in this work, in which
case it is justified to say that N samples correspond to N identical
quantum states.



