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Here we provide additional information on the following topics discussed in the main paper:432

• Classic Inspection Game433

• Quantal Response Equilibrium (QRE) solution434

• Foresight for subordinate435

• Phase plane analysis of the foresight model436

• Errors in foresight437

• Reinforcement learning dynamics438

• Selective imitation dynamics439

Classic Inspection Game440

In the classic Inspection Game, there is a worker who works for a principal26. The worker can choose to shirk or work, where441

working costs the worker g and produces output of value v for the principal. The principal can either inspect or not inspect. The442

act of inspecting costs the principal h but is allows the principal to determine if the worker shirked or not. Now the principal443

is set to pay the worker a wage of w unless they have evidence that the worker shirked. Additional assumptions are that444

w > g > h > 0. This yields the game as described in Table S1. This game has no pure-strategy equilibrium, but does have a445

mixed Nash equilibrium at (x,y) =
(w−h

w , g
w

)
, where x is the probability that the worker shirks, and y is the probability that the446

principal inspects.447

Principal

Worker
Inspect Don’t Inspect

Works w−g, v−w−h w−g, v−w
Shirks 0, −h w, −w

Table S1. Payoff matrix for the classic Inspection Game26.

Quantum Response equilibrium (QRE) solution448

Figure S1 shows the impact of the precision parameter λ on the QRE values (p∗,q∗) as found numerically by solving equation ()449

of the main text. For λ = 0, play is perfectly random so that p∗ = q∗ = 1
2 , as we would expect. As we increase λ , play converges450

to the single Nash equilibrium at (0,0), again as we would expect.451

Foresight for subordinate452

Assume that the subordinates cares about the future payoff and predicts that the leader will use the best response. Because453

the leader’s best response is always 0, the subordinate predicts that there will be no monitoring and punishment and thus will454

choose not to contribute.455

Phase plane analysis in the foresight model456

Let p and q be the probabilities of making an effort (i.e., the mixed strategies) for the subordinate and leader. Their expected
utilities are

US = ((1−θ)b− c)p−dq(1− p) (S1a)
UL = (1−ω)(−h+ k(1− p))q)+ωθbq (S1b)

This corresponding derivatives are given by

∂pUS = ((1−θ)b− c)+dq (S2a)
∂qUL = (1−ω)(−(h+ k(1− p)))+ωθb. (S2b)
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Figure S1. Effect of the precision parameter λ on the Quantal Response Equilibrium values p∗ and q∗. Parameters:
b = 1,c = 2,d = 2,h = 0.1,k = 1, and θ = 0.5.

As discussed in the main text, ∂qUL < 0 whenever p < q∗∗ = 1+ 1
k

(
h− ωθb

1−ω

)
, and ∂qUL > 0 whenever p > q∗∗, and ∂puS < 0457

whenever q < qc =
c−(1−θ)b

d and ∂puS > 0 whenever q > qc. This yields the expected flow on the phase plane (p,q) as outlined458

in Figure S2.459
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Figure S2. Flow associated with equations (S1a. Parameters: b = 1,c = 2,d = 3,k = 1,h = .25,θ = 0.5, and ω = 0.6. Red
dots mark Nash equilibria two of which are stable (0,0 and (1,1)) and one unstable at (q∗∗,qv).

Errors in foresight460

Here we incorporate errors into the leader’s predictions of the actions of the subordinate. We can interpret this error in one of461

two ways. First, it can be that the leader makes mistakes when attempting to decide what the subordinate will do. Second, it462

can be that the leader anticipates that the subordinate will make mistakes and takes this into account. Either way, we define the463

probability p(y) the leader will predict the subordinate contributes given the leader inspects with probability q as464

p(y) =
1

1+ exp[λ (πS(0,y)−πS(1,y))]
=

1
1+ exp[λ (−dy−b(1−θ)+ c]

.
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That is, we allow for logit errors with precision parameter λ as above.465

Using the same approach as in the main text, we write the leader’s utility as

UL(yprev,y) = (1−ω)× (−[h+ k(1− p(yprev))]y)+ω× (θbp(y))

where yprev and y are two subsequent values of the leader’s y. Then, for a leader using strategy q, the expected utility is

U(q) = (1−q)2UL(0,0)+q(1−q)UL(0,1)+q(1−q)UL(1,0)+q2UL(1,1).

From the above equation we can find the critical value q∗ such that for initial values of q above q∗, q is expected to evolve to466

1. Figure S3 illustrate the dependence of q∗ on λ and ω . This Figure shows that increases ω increases decreases q∗ and thus467

increases the range of conditions leading to production and inspection. As λ → ∞, the predicted value of q∗ converges to that468

one found in the main text.469

Figure S3. The critical value q∗ in the model with errors in the leader’s foresight for different values of precision parameter λ .
The three curves correspond to 0 = 0.75,0.5 and 0.25 (from top to bottom). Other parameters:
b = 1,c = 2,d = 2,h = 0.25,k = 1, and θ = 0.5.

Reinforcement learning dynamics470

The system of differential equations (11) in the main text has four equilibria: (0,0),(1,0),(0,1) and (1,1). Standard stability471

analysis shows that the only locally stable equilibrium is (0,0). For example, the eigenvalues of the Jacobian matrix at this state472

are uS(1,0)−uS(0,0) and uL(0,1)−uL(0,0), which are always negative by our assumptions. The corresponding eigenvalues473

of state (1,1) are uS(0,1)−uS(1,1) and uL(1,0)−uL(1,1), which are always positive by our assumptions.474

Numerical simulations show that the system may spend very long time in a neighborhood of each of the other three475

equilibria, that is, the dynamics are characterized by long transients63. For example, Figure S4 shows the stochastic trajectories476

in the reinforcement learning model for a range of random initial conditions. With small precision λ , fluctuations in p and q477

persist for a long time. Even with large λ some subordinate-leader pairs can stay close to state (1,1) for a long time.478

Selective Imitation479

Consider first the case where both leaders and subordinates update their actions x and y via selective imitation. Figure S5 shows480

the trajectories associated with a range of random initial conditions drawn from the uniform distribution over [0.1,0.9]. We see481

that regardless of the initial condition, the system eventually settles into the equilibrium of (0,0).482

Next consider the case where leaders update via selective imitation, but subordinates update via myopic optimization.483

Figure S6 shows the trajectories associated with a range of random initial conditions drawn from the uniform distribution over484

[0.1,0.9]. With small precision λ the system may vocationally end up at (0,0) state. [This is analogous to fixing a deleterious485

allele by random genetic drift in population genetics.] With increasing precision λ , the system always evolves to (1,1) state.486
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(a) λ = 1 (b) λ = 5 (c) λ = 10

Figure S4. Time-series in the case of reinforcement learning for different values of λ . The graphs show 100 independent runs
with initial conditions drawn from the uniform distribution over [.1, .9]. The thin lines represent the individual runs while the
thick lines represent the mean over all runs with the red corresponding the the leader and the blue to the subordinate.
Parameters: b = 1,c = 2,d = 2,k = .5,h = .25, and θ = 0.5.
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Figure S5. Time-series in the case of selective imitation in both players. The thin lines represent the individual runs while the
thick lines represent the mean over all runs with the red corresponding the the leader and the blue to the subordinate. Note that
all trajectories tend toward the equilibrium (0,0). Parameters: b = 1,c = 2,d = 2,k = .5,h = .25,θ = 0.5, and λ = 1.
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(a) λ = 1

20 40 60 80 100 120 140 160 180 200

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
, 
q

(b) λ = 5
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(c) λ = 10

Figure S6. Time-series in the case of myopic optimization in the subordinate and selective imitation in the leader for different
values of λ . The results summarize 100 independent runs with initial conditions drawn from the uniform distribution over
[0.1,0.9]. The thin lines represent the average over all 1000 groups while the thick lines represent the mean over all runs with
the red corresponding the the leader and the blue to the subordinate. Parameters: b = 1,c = 2,d = 2,k = .5,h = .25, and
θ = 0.5.
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