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Allele-Specific QTL Fine Mapping with PLASMA

Austin T. Wang,1,2,3,* Anamay Shetty,3,4 Edward O’Connor,3 Connor Bell,3 Mark M. Pomerantz,3

Matthew L. Freedman,3,5,6 and Alexander Gusev3,5,7,*

Although quantitative trait locus (QTL) associations have been identified for many molecular traits such as gene expression, it remains

challenging to distinguish the causal nucleotide from nearby variants. In addition to traditional QTLs by association, allele-specific (AS)

QTLs are a powerful measure of cis-regulation that are concordant with traditional QTLs but typically less susceptible to technical/envi-

ronmental noise. However, existing methods for estimating causal variant probabilities (i.e., fine mapping) cannot produce valid esti-

mates from asQTL signals due to complexities in linkage disequilibrium (LD). We introduce PLASMA (Population Allele-Specific

Mapping), a fine-mapping method that integrates QTL and asQTL information to improve accuracy. In simulations, PLASMA accurately

prioritizes causal variants over a wide range of genetic architectures. Applied to RNA-seq data from 524 kidney tumor samples, PLASMA

achieves a greater power at 50 samples than conventional QTL-based finemapping at 500 samples, withmore than 17% of loci finemap-

ped to within five causal variants, compared to 2% by QTL-based fine mapping, and a 6.9-fold overall reduction in median credible set

size compared to QTL-based finemapping when applied to H3K27ACChIP-seq from just 28 prostate tumor/normal samples. Variants in

the PLASMA credible sets for RNA-seq and ChIP-seq were enriched for open chromatin and chromatin looping, respectively, at a com-

parable or greater degree than credible variants from existing methods while containing far fewer markers. Our results demonstrate how

integrating AS activity can substantially improve the detection of causal variants from existing molecular data.
Introduction

A major open problem in genetics is understanding the

biological mechanisms underlying complex traits, which

are largely driven by non-coding variants. A widely adop-

ted approach for elucidating these regulatory patterns is

the identification of disease variants that also modify mo-

lecular phenotypes (such as gene expression).1–4 These var-

iants, known as quantitative trait loci (QTLs), are typically

single nucleotide polymorphisms (SNPs) that exhibit a

statistical association with overall gene expression abun-

dance.5–8 Although QTL association analysis is now

mature, it remains challenging for scientists to identify

the precise variants that causally influence the molecular

trait (as opposed to variants in linkage disequilibrium

[LD] with causal variants), a task known as fine map-

ping.9 Because only a small subset of QTL-associated

markers are estimated to be causal,10,11 direct experimental

validation is prohibitive and has motivated statistical fine-

mapping solutions.12 The aim of statistical fine mapping is

to quantify the probability of each marker being causal, al-

lowing one to prioritize the most likely causal markers and

thus formally quantify the effort needed for experimental

validation. Recent statistical fine-mapping methods oper-

ate on summary QTL statistics and can handle multiple

causal variants by modeling the local LD structure.13–16

These models have two outputs to help guide the prioriti-

zation of putative causal SNPs. First, a Posterior Inclusion

Probability (PIP), which corresponds to the marginal prob-

ability of causality for the given marker, is calculated for
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each marker. Second, a n%-confidence credible set is

created: a set of markers with an n% probability of contain-

ing all the causal markers. Although QTL studies have

enough power to identify thousands of associations, they

are typically insufficient for fine mapping below dozens

of credible variants, even for very large studies.5,17 The

need for large studies severely limits QTL analyses of

expensive assays such as ChIP or single-cell RNA-seq or

of difficult-to-collect tissues.

Here, we sought to improve molecular fine mapping by

leveraging an intra-individual allele-specific (AS) signal,

which is ameasure of cis-regulatory activity that is indepen-

dent of total inter-individual variation. For heterozygous

variants residing in expressed exons, it is often possible to

map expressed reads to each allele and quantify the extent

to which molecular activity is allele specific.6,18–21 AS anal-

ysis allows for a precise comparison of the effects onmolec-

ular activity that are specific to each allele (cis-effects), while

controlling for effects affecting both alleles (trans-effects).

Thus, AS data are inherently less noisy than regular QTL

data, which captures total phenotype regardless of source.

Allele-specific data has furthermore been used to quantify

cis-regulation, implying that both AS and regular QTL fea-

tures represent the same underlying cis-regulatory pat-

terns.22 Several methods have recently been developed to

robustly identify asQTLs,19,20,23 but the calculated associa-

tion statistics follow a different distribution thanQTL sum-

mary statistics and cannot be directly integrated into exist-

ing fine-mapping software to produce valid posterior

measures and credible sets.
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Figure 1. Overview of the PLASMA Method
(A) Pre-processing of sequence-based data. First, reads are mapped to the sample’s genotype. Reads intersecting markers are colored.
Then, the sample’s genotype is phased. Reads intersecting heterozygous markers can then be mapped to a particular haplotype. Lastly,
reads across the locus are aggregated in an allele-specific manner. To visualize this data, the expression is represented by a ring chart, and
the genotypes by pedigree symbols. In the ring chart, the diameter signifies the total read count, and the colors signify the proportion of
reads coming from each haplotype. For the pedigree symbols, a white circle signifies a wild-type homozygote, a shaded circle signifies an
alternative homozygote, and a half-shaded circle signifies a heterozygote. In heterozygotes, the direction of shading corresponds to the
direction of heterozygosity (phasing).
(B) Visual representation of QTL and AS statistics under a single causal variant, where the alternative allele increases expression. The total
expression (y) is determined by the allelic dosage (x), whereas the allelic imbalance (w) is determined by the phasing (v). These two sets of
data are used to calculate QTL and AS association statistics (zb and zf).
(C) Diagram of PLASMA’s fine-mapping process. First, QTL and AS statistics are calculated from read data. Then, these statistics, along
with an LD matrix, are used to generate probabilities for causal configurations. By searching through the space of these causal config-
urations, the model produces credible sets and posterior probabilities for each marker.
To combine the established statistical models of QTL

analysis with the power of AS analysis, we introduce

PLASMA (Population Allele-Specific Mapping), a novel

fine-mapping method that gains power from both the

number of individuals and the number of allelic reads

per individual. By modeling each locus across individuals

in an allele-specific and LD-aware manner, PLASMA

achieves a substantial improvement over existing fine-

mapping methods with the same data. We demonstrate

through simulations that PLASMA successfully detects

causal variants over a wide range of genetic architectures.

We applied PLASMA to diverse RNA-seq data and ChIP-

seq data, which showed a significant improvement in po-

wer over conventional QTL-based fine mapping.
Material and Methods

Overview of PLASMA
PLASMA’s inputs are determined from a given individual-level

sequencing-based molecular phenotype (gene or peak) and the

corresponding local genotype SNP data (Figure 1A). For each sam-

ple, we assumed the variant data were phased into haplotypes and

expression reads had been mapped to each variant. Reads inter-

secting heterozygous markers (signified as fSNPs, or feature SNPs,

indicated with green or purple on the figure) were then assigned
The America
to a particular haplotype, indicated as blue or red on the figure.

These reads were then aggregated in a haplotype-specific manner

to produce a total expression phenotype and an allelic imbalance

phenotype. This aggregation of reads is analogous to the way exist-

ing methods such as RASQUAL and WASP calculate allelic

fractions and total fragment counts.19,20 The total expression

phenotype (y) is simply the total number of mapped reads. The

allelic imbalance phenotype (w) is defined as the log read ratio be-

tween the haplotypes. This log-odds-like phenotype has previ-

ously been used to analyze asQTL effect sizes, showing consistency

with conventional QTL analysis.22 To mitigate the effects of map-

ping bias, we ran state-of-the-art mapping bias and QC pipelines

on all RNA-seq and ChIP-seq data prior to analysis.19

PLASMA integrates two statistics computed for each marker to

perform fine mapping: a QTL association statistic (zb) based on

the total phenotype and an AS association statistic (zf) based on

the allelic imbalance phenotype. Figure 1B shows how a causal

marker influences total expression and allelic imbalance and

how this effect influences the statistics for the marker. Here, the

causal marker’s alternative allele causes higher expression

compared to that of the wild-type (WT) allele. Increasing the

dosage (x) of the alternative allele increases the total expression

(y) at the locus. The effect size (b), consistent with a typical QTL

analysis, quantifies the association between a marker’s allelic

dosage and the total expression at the locus with a linear relation-

ship with residuals e:

y¼xibi þ ei (Equation 1)
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From this effect size, PLASMA calculates zb, the QTL association

statistic. Note that this statistic is not dependent on haplotype-

specific data.

On the other hand, looking at the heterozygotes, the haplotype

possessing the alternative allele has a higher expression than

the haplotype possessing the wild-type allele. In other words,

the direction of imbalance of expression (w) is the same as the

phasing (v) of the allele. The f effect size quantifies the associa-

tion between a marker’s phasing with the imbalance of expres-

sion. An important departure from existing methods is that

PLASMA models a linear relationship between the phase of a

causal marker and the log read ratio, rather than directly relating

the genotype to the allelic fraction in a non-linear manner with

residuals z:

w¼vifi þ zi (Equation 2)

To calculate the AS association statistic zf, PLASMA models the

quality of each sample, taking into account each sample’s read

coverage and read overdispersion (Figure 1C).

These QTL and AS association statistics, together with the local

LD matrix, are then jointly used to fine map the locus (Figure 1C).

Since PLASMA models both zb and zf as a linear combination of

genotypes, zb and zf have identical LD (see Supplemental Material

andMethods for proof). PLASMA assumes that the QTL and AS sta-

tistics measure the same underlying cis-regulatory signal and are

thus expected to have the same direction and same causal variants

(but see Discussion for possible model violations). Although they

both measure regulatory effects, the two statistics have indepen-

dent noise because the haplotype-level variance within individ-

uals is considered only in AS analysis, allowing them to be used

jointly in finemapping. Furthermore, PLASMA accepts, as a hyper-

parameter, a correlation between QTL and AS effects, allowing the

two sets of statistics to utilize a joint probability distribution

(though our analyses show that setting this hyperparameter to

zero yields the most power). The distribution is used to assign a

probability to a given causal configuration, a binary vector signi-

fying the causal status of each marker in the locus. Although the

correlation between QTL and AS causal effects can vary based on

the hyperparameter specification, PLASMA assumes that the AS

and QTL phenotypes have the same causal variants. PLASMA

searches through the space of possible causal configurations,

within a constraint on the number of causal variants. This proced-

ure is related to that in CAVIAR, CAVIARBF, and FINEMAP,13–15 but

generalized to the two correlated expression phenotypes. From

these scored configurations, PLASMA computes a posterior inclu-

sion probability (PIP) for each marker, indicating the marginal

probability that a marker is causal, and a r-level credible set con-

taining the causal variant with r probability.

Modeling QTL and AS Summary Statistics
Marginal QTL effect sizes for a given locus are calculated under the

conventional linear model of total gene expression, with the

allelic dosage (x) as the independent variable and the total expres-

sion (y) as the independent variable. Let us consider a QTL

study of a given locus with n individuals and m markers. Let y

be an (n 3 1) vector of total expression across the individuals, re-

centered at zero. Given amarker i, let xi be a zero-recentered vector

of dosage genotypes. The genetic effect bi of marker i on total gene

expression is defined as follows:

y¼xibi þ ei (Equation 3)
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The empirical value of bi is determined with the maximum likeli-

hood estimator, equivalent to the ordinary-least-squares linear

regression estimator:

bbi ¼
�
xu

i xi

��1
xu

i y (Equation 4)

The QTL summary statistic (Wald statistic) for marker i is

defined as:

bzb;i ¼ bbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xu

i xi

��1bs2
y;i

q (Equation 5)

where bs2
y;i is calculated from the residuals.

AS effect sizes are calculated under a weighted linear model,

with the phasing (v) as the independent variable and the allelic

imbalance (w) as the dependent variable. PLASMA models allele-

specific expression under the observation that a cis-regulatory

variant often has a greater influence on the gene allele of the

same haplotype. A marker’s phase v is 1 if haplotype A contains

the alternative marker allele, �1 if haplotype B contains the alter-

native marker allele, and 0 if the individual is homozygous for the

marker. Let w be the log expression ratio between haplotypes A

and B, fi be the AS effect size of variant i, and zi be the residual,

interpreted as the log baseline expression ratio between haplo-

types A and B. Additionally, a sampling error tj ¼ bwj � wj is

defined for each individual, quantifying the quality of data from

the sample. The genetic effect of marker i on allele-specific expres-

sion is as follows:

cw¼vifi þ zi þ t (Equation 6)

Experimentally derived AS data, such as RNA-seq data, yield

reads that are mapped to a particular haplotype. For a given indi-

vidual j, let cA;j be the allele-specific read count from haplotype A.

The allele-specific read count is modeled with a beta-binomial dis-

tribution, given the total mapped read count cj:

cA;j � BB
�
aj; bj; cj

�
(Equation 7)

This beta binomial model is used to estimate the variance of the

sampling error tj:

bs2
c;j ¼

2

cj

�
1þ cosh

�bw�
j

���
1þ re;j

�
cj �1

��
(Equation 8)

where re;j is the overdispersion and w�
j is an adjusted estimator of

wj to reduce the bias of bs2
c;j. (Full derivation in Supplemental Ma-

terial and Methods).

Due to heteroscedasticity among individuals, the AS effect size

fi is estimated in a weighted manner, giving larger weights to in-

dividuals with lower estimated sampling error. Given individual j,

the weight for j is set as the inverse of the estimated sampling error

variance:

uj ¼ 1bs2
c;j

(Equation 9)

Let weight matrix U be a diagonal matrix with Uj;j ¼ uj. We use

the weighted-least-squares estimator for fi:

bfi ¼
�
vu
i Uvi

��1
vu
i Ucw (Equation 10)

With this estimator, the AS association statistic for marker i is

calculated as the AS effect size divided by the estimated variance
y 6, 2020



of the effect size (full derivation in Appendix and Supplemental

Material and Methods):

bzf;i ¼ bfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vu
i Uvi

��2
��

vu
i U2vi

�bs2
w;i þ vu

i Uvi

�r (Equation 11)

In the case of computationally phased data, there may exist

phasing errors that would decrease the accuracy of the estimated

effect sizes (bf). With imperfect phasing, the observed phasing bvi

may differ from the true phasing vi, a modified equation may be

used to calculate the AS z-score given the per-SNP probability of

mis-phasing ji:

bzf;i ¼ bfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�bvu

i Ubvi

��2
��bvu

i U2bvi

��bs2
w;i þ 4jif

2
i

�
þ bvu

i Ubvi

�r
(Equation 12)

Fine-mapping simulation results under imperfect phasing are

presented in SupplementalMaterial andMethods and in Figure S5.

Inference of Credible Sets and Posterior Probabilities
PLASMA defines a joint generative model for total (QTL) and

haplotype-specific (AS) effects on expression. Let bz be the com-

bined vector with dimension 2m of AS association statistics and

QTL association statistics:

bZ¼
� bZfbZb

�
(Equation 13)

Let Rz be the genotype LD matrix, and rbf be a hyperparameter

describing the overall correlation between the QTL and AS sum-

mary statistics calculated across all loci. Let the combined correla-

tion matrix R as:

R¼
�

Rz rbfRz

rbfRz Rz

�
(Equation 14)

The joint z-scores are modeled under a multivariate normal distri-

bution, with covariance R:

bz � N 2mðz;RÞ (Equation 15)

PLASMA utilizes a likelihood function that gives the probability

of statistics bz, given a causal configuration. Let a causal configu-

ration c be a vector of causal statuses corresponding to each

marker, with 1 being causal and 0 being non-causal. PLASMA as-

sume that the causal configuration is the same for the QTL and

AS signals.

Let hyperparameters s2c;f and s2c;b be the variance of AS and QTL

causal effect sizes, respectively. Furthermore, let the jointness

parameter rc;bf be the underlying correlation of the causal QTL

and AS effect sizes. (This is not to be confused with rbf, which

concerns the correlation between the observed association statis-

tics. See Supplemental Material and Methods for a mathematical

relationship between these two hyperparameters.) These three

hyperparameters are closely related to the heritability of gene

expression (see Supplemental Material and Methods). Let Sc be

the covariance matrix of causal effect sizes given a causal

configuration:

X
c
¼
"

diagðcÞs2
c;f diagðcÞrc;bfsc;fsc;b

diagðcÞrc;bfsc;fsc;b diagðcÞs2
c;b

#
(Equation 16)
The America
PLASMA’s likelihood for a causal configuration is defined as:

Lðc; bzÞ¼N 2m

�
0;RþR

X
c
R
�

(Equation 17)

Let g be the prior probability that a single variant is causal and

1� g as the probability that a variant is not causal. The prior prob-

ability of a configuration consisting of m variants is defined as:

PðcÞ¼ P
m

i¼1
gci ð1� gÞ1�ci (Equation 18)

With the prior and likelihood, the posterior probability of a causal

configuration, normalized across the set of all possible configura-

tions, C is calculated as:

Pðc j bzÞ¼ Pðbz j cÞPðcÞP
c�˛CPðbz jc�ÞPðc�Þ (Equation 19)

PLASMA defines the r-level credible set K as the smallest set of

markers with a rc probability of including all causal markers. Let

CK be the set of all causal configurations whose causal markers is

a subset of K, excluding the null set. The credible set confidence

level rc is calculated as the sum of the probabilities of the config-

urations in CK:

rc ¼
X
c˛CK

Prðc j bzÞ (Equation 20)

Additionally, PLASMA defines a marker’s posterior inclusion prob-

ability (PIP) as the probability that a single given marker is causal,

marginalized over all other markers. This probability is calculated

by summing over all configurations containing the marker.

To reduce the number of configurations to evaluate in the case

of multiple causal variants, PLASMA uses the heuristic that config-

urations with significant probabilities tend to be similar to each

other. PLASMA uses a shotgun stochastic search procedure to

find all configurations with a significant probability. For each iter-

ation of the algorithm, the next configuration is drawn randomly

from the neighborhood of similar configurations, weighted by the

posterior probability of each candidate. The search is terminated

under the presumption that all configurations with nonzero prob-

ability have been uncovered.

Given the large number of configurations evaluated, it is

impractical to calculate the best possible credible set satisfying

rc. Instead, PLASMA uses a greedy approximation algorithm. At

each step, before rc is reached, the algorithm adds the marker

that increases the confidence the most.
The Jointness Parameter in PLASMA
Although PLASMA always assumes the same causal variants for

QTL and AS, the correlation between QTL and AS causal effects

can be set in PLASMA-J with a jointness hyperparameter rc;bf. A

high value (near 1) assumes that the QTL and AS causal effects

tend to be consistent in magnitude, while a low value (near

zero) assumes more disparity. Note that this is unrelated to the

choice of causal variants, and PLASMA assumes that QTL and AS

share the same causal variants regardless of the jointness

parameter.

A previous analysis comparing QTL effects with a similar formu-

lation of AS effects has uncovered a highly nonlinear relationship,

especially with QTL effects calculated using untransformed total

expression data.22 As a further complication, this relationship be-

tween QTL and AS effects is shown to be highly dependent on

allele frequency. Thus, even under the assumption that QTL and
n Journal of Human Genetics 106, 170–187, February 6, 2020 173



AS signals share a causal variant, there is no guarantee of a strong

linear correlation between QTL and AS effect sizes. Due to this un-

certainty, the jointness parameter to zero by default, making no

assumption on the relationship between QTL and AS effect sizes.

To empirically evaluate the effect of the jointness parameter on

fine-mapping performance, PLASMA-J was run with different

values of the jointness parameter on simulated loci. Figure S2

shows the distribution of PLASMA-J credible sets with different

values of jointness, ranging from 0 to 0.99. In the one causal

variant case, results are largely invariant to the parameter below

a value of 0.99.
Generation of Simulated Loci
Genotype data were sampled from phased SNP data using the CEU

population in the 1000 Genomes Project. First, a contiguous sec-

tion of markers is randomly chosen. Next, a random selection of

samples are randomly selected from the section. The genotypes

corresponding to the chosen samples yield two haplotype

matrices, denoted as Ha and Hb.

Among the markers, the desired number of causal markers is

randomly selected. In the case of multiple causal variants, each

causal marker is assigned a relative effect size, sampled from a

normal distribution with zero mean and unit variance. For each

individual, the ideal un-scaled gene expression for each haplotype

qa and qb is determined by multiplying the relative effect sizes

with each haplotype matrix.

Read count data are simulated with this haplotype-specific

expression. In real data, only a fraction of the reads can bemapped

to a specific haplotype. Due to this difference between total reads

and mapped reads, the allelic imbalance and the total read count

(QTL) are calculated separately.

To calculate total read count data, the total ideal un-scaled

expression qt is defined as qa þ qb, the sum of the haplotype-spe-

cific un-scaled gene expression. Gaussian-distributed noise is then

added so that the variance of qt is consistent with the total vari-

ance across samples as specified by the QTL heritability. Finally,

this final expression is scaled so that the total expression across

samples is of unit variance. Total read counts are not explicitly

generated, since a multiplicative factor across samples does not in-

fluence the QTL association statistics calculated by themodel. This

is reflective of typical QTL study protocols which aggressively

rank/quantile normalize the data to fit a normal distribution.

To calculate allele-specific read counts, heritability, mean read

coverage, and the total variance of the AS phenotype are taken

into account. The ideal allelic imbalance phenotype is determined

as logitðqa =qbÞ (calculated element-wise). Gaussian-distributed

noise is then added so that the signal-to-noise ratio of the pheno-

type’s variance is consistent with the specified AS heritability. This

noisy phenotype is then scaled to the specified total variance. The

read coverage for each sample is then drawn from a Poisson distri-

bution, given the mean read coverage. Lastly, allele-specific read

counts are generated from these phenotypes, with the counts for

each sample being drawn from a beta-binomial distribution.
Comparison of Existing Models with PLASMA
Our analyses benchmark PLASMA against existing fine-mapping

methods. Two distinct versions of PLASMA are tested, ‘‘PLASMA-J’’

and ‘‘PLASMA-AS.’’ The PLASMA-J (Joint-Independent) version

looks at both AS and QTL statistics, assuming a shared set of AS

and QTL causal variants, and also that the AS and QTL causal ef-

fects are uncorrelated. The ‘‘PLASMA-AS’’ version is restricted to
174 The American Journal of Human Genetics 106, 170–187, Februar
only AS data. As a baseline, we compare PLASMA to a QTL-Only

version of PLASMA and to the CAVIAR method (expected to be

equivalent to PLASMA QTL-Only).13 The behavior and perfor-

mance of CAVIAR is representative of similar QTL-based methods

such as CAVIARBF, FINEMAP, and PAINTOR without functional

annotation data.14–16 The versions of PLASMA are furthermore

compared against the only other publicly released fine-mapping

method (to our knowledge) that integrates AS data described in

the pre-print of Zou et al.24 This unnamed method, denoted as

‘‘AS-Meta,’’ utilizes the association between SNP heterozygosity

and a binary indicator of allelic imbalance. By binarizing allelic

imbalance, AS-Meta is expected to lose power relative to treating

imbalance as a quantitative phenotype but may be more robust

to spurious AS signal. Furthermore, AS-Meta utilizes only indica-

tors of heterozygosity, rather than marker phasing. AS-Meta can

therefore be used with unphased genotypes, but at the expense

of being unable to leverage the direction of the allelic effect. Lastly,

as an additional comparisonwith an AS-basedmethod, we analyze

the performance of RASQUAL, a method for inferring allele-spe-

cific genetic effects using both allelic and total expression signal.

Note that RASQUAL computes allele-specific effect sizes for each

marker only and is not intended to compute credible sets or

posterior marginal probabilities. Traditional fine mapping on

RASQUAL statistics is made possible by converting RASQUAL

chi-square statistics back to quasi-z-scores with sign based on the

direction of the RASQUAL effect-size. These statistics are then

fed into standard QTL-only fine mapping to obtain credible sets

and posterior probabilities. We denote the modification of

RASQUAL as ‘‘RASQUALþ.’’ This process is comparable to fine

mapping using a combined AS/QTL effect, rather than modeling

QTL and AS effects separately.
Quality Control of Genotype Data
For TCGA data, germline genotype calls are downloaded from the

Genomic Data Commons. For PrCa ChIP samples, germline geno-

types are called from blood. Genotypes are then imputed to the

Haplotype Reference Consortium25 using the Michigan Imputa-

tion Server26 and restricted to variants with INFO greater than

0.9 and MAF greater than 0.01. Variants are further restricted to

QC-passing SNPs fromMoyerbrailean et al.1 which represent com-

mon, well-mapped variants from the 1000 Genomes project.
Quality Control of RNA-Seq Data
Raw RNA-seq BAM files are downloaded from the Genomic Data

Commons. Initial RNA-seqmapping and alignment are performed

following TCGA parameters for the STAR aligner.27 Mapping bias

is accounted for by re-mapping using the WASP pipeline19 and

the STAR aligner with the same parameters. Reads are randomly

de-duplicated as recommended by the WASP pipeline.

Somatic copy number calls are downloaded from FireBrowse

and local beta-binomial overdispersion parameters are estimated

for each contiguous region of copy number change.
Quality Control of ChIP-Seq Data
ChIP-seq reads are aligned using bwa and default parameters,28

and peaks are called using MACS2 and default parameters (with

DNA-seq input provided as control).29 Peaks are then unified

across all samples. Mapping bias is accounted for by re-mapping

using the WASP pipeline and the bwa aligner with the same pa-

rameters. Reads are randomly de-duplicated as recommended by

the WASP pipeline. Beta binomial overdispersion parameters are
y 6, 2020



estimated globally for each sample as somatic copy number was

expected to be minimal.
Allele-Specific Quantification
The StratAS algorithm is used to quantify allele-specific signal and

identify initially significant features for fine mapping.23 For each

peak/gene (the feature) and individual, all reads at heterozygous

SNPs in the feature are aggregated to compute the haplotype-spe-

cific read counts and summed across the two haplotypes of each

individual to compute the QTL read counts. Each QC passing

variant within 100 kb of the feature are then tested for an allele-

specific association with the feature and features significant at a

genome-wide false discovery rate (FDR) of 5% are retained for

fine mapping.
Functional Enrichment Analysis
For QTLs fine mapped from RNA-seq, we select regions of acces-

sible chromatin in the most relevant tissue as reference the func-

tional feature, reasoning that high-confidence causal variants

should bemore abundant in accessible regions. For QTLs finemap-

ped from ChIP-seq, we select chromosome looping anchors from

Hi-ChIP in the relevant tissue as the reference functional feature,

reasoning that high-confidence causal variants should be more

abundant in regions that are in conformation with promoters.

Enrichment is then estimated by computing the proportion of

markers in credible sets that intersect with the functional feature.

Controls are calculated as the intersection between all tested

markers and the functional feature. Odds ratios and p values are

computed with Fisher’s exact test.
Results

Simulation Framework

We evaluate PLASMA with a framework that simulates the

expression of whole loci in an allele-specific manner. This

simulation framework jointly simulates total reads and

allele-specific read counts, under given values of the num-

ber of causal variants, the QTL heritability, the AS heritabil-

ity, the variance of the AS phenotype across samples, and

the expected read coverage (see Material and Methods).

The variance and heritability of the AS phenotype are

handled by two separate parameters, where the former de-

scribes the total spread of allelic imbalance and the latter

specifies the fraction of the variance that is due to genetic

effects. This allows us to investigate cases where a signifi-

cant amount of observed imbalance is caused by non-ge-

netic variance in the allelic expression. To quantify the to-

tal variance of the AS phenotype in the population, we

define the ‘‘standard allelic deviation’’ (d) as the standard

deviation of the AS phenotype w, quantified on the

allelic fraction scale (between 0.5 and 1). Importantly,

this quantity is independent of the genetic effect, which

is controlled by the heritability parameter. Simulations

were performed using real phased haplotype data from

the 1000 Genomes Project European samples. Parameter

settings for simulation analyses are shown in Table S1.

As the performance of standard QTL association models

is well established, we first focused on performance of our
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proposed AS statistic. Figure S3A shows how the mean zf
varies as a function of standard allelic deviation and

mean read coverage at a fixed AS heritability of 0.5. Second,

Figure S3B shows how the mean zf varies as a function of

standard allelic deviation and heritability with mean

coverage fixed at 100. The statistic is the greatest at high

read coverage and high heritability, consistent with the de-

gree of experimental and intrinsic signal available to the

model. These results hold even at low AS variance (d ¼
0.6) and show that PLASMA does not conflate high AS vari-

ance (standard allelic deviation) with high signal (coverage

or heritability). This robustness to variance in the AS

phenotype makes the model resistant to false positives

driven by non-genetic sources of allelic variance. At very

high variance (d > 0.8), zf shows a sharp decrease. This

decrease in signal is due to an increase in the sampling er-

ror of the AS phenotype (w) at high overall variance, as

shown in Equation A27 (see Supplemental Material and

Methods for a mathematical relationship between total

variance and sampling error).

Comparison with Existing Methods in Simulation

First, we evaluate how well each PLASMA prioritizes candi-

date causal markers using simulated loci with one causal

variant, compared to existing QTL and AS-based methods.

We define the ‘‘inclusion curve’’ for each model, where

markers are ranked by posterior probability and added

one by one to a cumulative set (note that this set is not

dependent on the definition of a credible set). The x axis

represents the cumulative number of markers chosen,

and the y axis represents the ‘‘inclusion rate,’’ the propor-

tion of true causal markers among the chosen markers. Fig-

ures 2A and 2D show inclusion plots at low and high AS

variance, respectively. As expected, FINEMAP, QTL-Only,

and the CAVIAR methods are indistinguishable and do

not vary with AS variance. Due to this similarity in results,

FINEMAP is used as the primary QTL-based methods

in subsequent analyses. Furthermore, PLASMA-J and

PLASMA-AS perform similarly at both levels of AS variance.

Additionally, AS-Meta’s performance exhibits a depen-

dency on the degree of AS variance. Lastly, RASQUALþ at

high AS variance does significantly improve over QTL-

based methods, but not as well as PLASMA. At low AS vari-

ance (with same amount of signal and noise), RASQUALþ
performs considerably worse, indicating that RASQUALþ
is more sensitive to the genetic architecture of the locus

than PLASMA is.

Second, we evaluate the ability of each model to rule out

likely non-causal markers in simulated loci with one causal

variant. We conduct a direct comparison of the distribu-

tions of the 95% confidence credible sets, with smaller

sets indicating higher specificity. Figures 2A and 2D show

distribution plots at low and high AS variance, respectively.

At low variance, PLASMA-J offers the smallest median cred-

ible 95% set size (3.0), followed by PLASMA-AS (3.0), then

AS-Meta (55.0), and lastly the QTL-based methods:

FINEMAP (89.0), CAVIAR (89.0), and QTL-Only (91.0).
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Figure 2. Comparison of Fine-Mapping Methods on Two Sets of Simulated Loci of 100 Markers and 100 Samples Each
These two sets differ in the variance of the AS phenotype, but with a fixed mean coverage and AS heritability.
(A and D) Inclusion curve at low and high AS variance, respectively (0.6, 0.8 standard allelic deviation). The y axis shows the expected
proportion of markers included in the credible set, and the x axis shows the number of selected markers by posterior probability.
(B and E) Distribution of 95% confidence credible set sizes at low and high AS variance, respectively.
(C and F) Proportions of loci with 95% credible set sizes within given thresholds at low and high AS variance, respectively. Thresholds
used are 1, 5, 20, 40, 70, and 100 markers.
(G) A per-snp fine-mapping comparison between PLASMA-J and FINEMAP across 500 simulated loci with one causal variant each. The
axes denote the posterior log-odds of causality for FINEMAP and PLASMA-J, respectively. The black hexagons represent the joint distri-
bution of all markers, while the red dots represent specifically the causal markers. Univariate histograms for PLASMA-J and FINEMAP are
plotted along the margins.
There is some variation due to differences in calibration

among the methods, but all QTL-based methods have

recall above 0.95. PLASMA appears robust to changes in

AS variance; at high AS variance, medians are 3.0 for

PLASMA-J and 3.0 for PLASMA-AS. In contrast, the perfor-

mance of AS-Meta varies significantly with the degree of AS

variance, even when the underlying signal (coverage and

heritability) is constant, with a median set size of 79.0 at

high variance. This sensitivity may be due to the fact

that AS-Meta does not incorporate marker phasing and

thusmust rely solely on the intensity rather than the direc-

tion of imbalance. Here, RASQUALþ does not generate

meaningful credible sets, with 95% credible set recall being

0.06 and 0.58 for low and high AS variance, respectively.

RASQUALþ is therefore not included in further fine-map-

ping analyses, though we underscore that RASQUAL re-

mains an effective tool for QTL discovery.

Third, we directly compare how PLASMA-J and FINE-

MAP prioritize a common set of variants pooled from

500 loci, each with 100 total markers and one causal

marker. Figure 2C shows a joint histogram of log posterior

marginal odds of these 50,000 variants, with causal vari-

ants highlighted in red. Distributions of posterior log-

odds for each method are shown as univariate histograms

along each axis. As expected, PLASMA and FINEMAP pos-
176 The American Journal of Human Genetics 106, 170–187, Februar
terior log-odds are positively correlated. Comparing the

distribution of the odds of causal variants to those of the

rest, it is furthermore evident that PLASMA more confi-

dently assigns probabilities of causality and can much

more cleanly segregate causal from non-causal variants.

Lastly, we run the AS-based methods across a wide range

of coverage and heritability conditions, recording the

mean 95% confidence credible sets, shown in Figure 3. Fig-

ures 3A–3C showmean credible set sizes as a function of AS

variance and coverage, and Figures 3D–3F show mean

credible set sizes as a function of AS variance and AS heri-

tability. In terms of the range of set sizes, PLASMA-J per-

forms the best (3.2 markers on average at best conditions),

followed by the PLASMA-AS (3.4 at best conditions), and

lastly the AS-Meta method (31 at best conditions). Gener-

ally speaking, all methods show results consistent with

the behavior of zf in Figure S3. Although increasing either

coverage or heritability results in smaller set sizes, in-

creasing coverage beyond 100 gives diminishing returns

as the observed expression levels approach the true expres-

sion levels. As expected, AS-Meta tends to struggle at low

AS variance, especially apparent at a standard allelic devia-

tion of 0.55, with a mean set size of 78 at best. This may be

due to the large majority of samples falling under the

threshold for allelic imbalance at 0.65. To verify that
y 6, 2020
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Figure 3. Comparison of the Mean 95% Confidence Credible Set Sizes across Different AS Fine-Mapping Methods
Each square is the mean set size calculated over 500 simulated loci of 100 markers and 100 samples each, with one causal variant.
(A–C) Mean credible set sizes as a function of standard allelic deviation and mean read coverage, with AS heritability set to 0.4.
(D–F) Mean credible set sizes as a function of standard allelic deviation and AS heritability, with mean read coverage set to 100 reads.
PLASMA is calibrated across the full range of conditions,

Figure S4 shows that the 95% credible set sizes have at least

a 95% chance of including the causal variant.

Inference of Multiple Causal Variants

To demonstrate PLASMA beyond a one-causal-variant

assumption, we fine mapped sets of simulated loci with 2

causal variants with each version of PLASMA. Figure 4A

shows the inclusion curves for each version of PLASMA

along with FINEMAP. For these curves, inclusion is defined

as the expected proportion of causal variants selected,

where an inclusion of 1.0 indicates the identification of

both causal variants. Here, PLASMA-J and PLASMA-AS

deliver an improvement over conventional QTL fine map-

ping. Compared to single causal variant fine mapping, all

methods display a decrease in power, which is consistent

with results in earlier QTL fine-mapping analysis,13,14

where capturing all causal variants becomes increasingly

difficult as thenumberof causal variants increase. The lower

power for fine mapping multiple causal variants may be

due to the stringent requirement that amodelmust identify

all causal variants in a locus for an inclusion of 1.0. To eval-

uate the ability of the models to detect the top causal

variant, we relax this requirement from identifying all

causal variants per locus to at least one causal variant per

locus. Inclusion plots for this scenario are shown in

Figure 4B, with PLASMA greatly improving the prioritiza-

tion of the lead causal variant over existing methods.

We next considered credible set sizes which, unlike the

inclusion curves, require accurate calibration to be compa-

rable. Previous analyses have shown that proper calibra-

tion of fine-mapping methods is more challenging in the
The America
presence of multiple causal variants.30 Unlike the single

causal variant case, where all PLASMA model hyperpara-

meters were inferred from simulation parameters, the

causal variance hyperparameters in this case were manu-

ally calibrated. This need for calibration may be due to

linkage disequilibrium obfuscating the relationship be-

tween causal effect sizes and total heritability at a locus,

and further complicated by the imperfect estimation of

linkage disequilibrium at 100 samples.31 (See Supple-

mental Material and Methods for information about hy-

perparameter estimation.) The PLASMA results shown in

this section are calibrated such that the recall rates for

95% confidence credible sets are 0.95, 0.96 for PLASMA-J

and PLASMA-AS, respectively. This calibration yields me-

dian credible set sizes of 86.0 and 90.0 for PLASMA-J and

PLASMA-AS, respectively. Like PLASMA, FINEMAP requires

user-defined hyperparameters on the prior number of

causal variants and on the causal effect sizes. These

FINEMAP parameters were set to be equivalent to corre-

sponding calibrated PLASMA parameters. Despite this

conservative parameter setting, FINEMAP is overconfident

on this dataset with a recall rate of 0.86, so the generated

credible sets for FINEMAP are not directly comparable to

those of PLASMA.

Fine Mapping of TCGA Kidney RNA-Seq Data

To evaluate our method on real data, we fine mapped gene

expression data from 524 human kidney tumor samples

and 70 matched normal samples collected by TCGA.32

The data were processed through a rigorous QC pipeline

to account for mapping biases based on established best

practices.19,22 Figures 5A and 5C show credible set size
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Figure 4. Comparison of Fine-Mapping Methods on Sets of
Simulated Loci with Two Causal Variants
Each locus is of 100 markers and 100 samples each, with AS heri-
tability set to 0.4, QTL heritability set to 0.05, and mean read
coverage set to 100 reads.
(A) Inclusion curve for including both causal variants.
(B) Inclusion curve for including one or both causal variants.
distribution plots for tumor and normal data, respectively,

under a 1 causal variant assumption. We furthermore

analyze how well often each method is able to narrow

down credible sets under a certain size in simulated loci

with one causal variant, shown in Figures 5B and 5D.

Among the tumor samples (N ¼ 524; 5,652 loci), 27.9%

of loci are fine mapped within 10 variants with PLASMA-J,

while 3.4% of loci are fine mapped within 10 variants with

FINEMAP. Furthermore, 263 of these loci can be fine

mapped down to a single causal variant by PLASMA-J.

PLASMA-J, moreover, achieves a median credible set size

for 32 variants, whereas FINEMAP achieves a median cred-

ible set size of 167 variants. FINEMAP also significantly im-

proves over AS-Meta, which has 6.6% of loci fine mapped

within 10 causal variants, and a median credible set size

of 166. Results for normal samples (n ¼ 70; 2,034 loci)

have a similar trend, with 23.2%, 2.5%, and 1.3% of loci

fine mapped within 10 causal variants, for PLASMA-J, AS-

Meta, and FINEMAP, respectively. Corresponding median

credible set sizes are 32, 248, and 252 variants, for

PLASMA-J, AS-Meta, and FINEMAP, respectively. The some-

what lower power for all models is due to having fewer

normal samples than tumor samples. To show that these

credible set sizes are robust, our choice of heritability hy-

perparameters, fine-mapping analyses were repeated on

the full set of tumor genes with the AS heritability hyper-

parameter set to 0.05 instead of 0.5. A comparison of the

credible set sizes with those from the original parameters

are shown in Figure S6.
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To investigate how themethods perform at lower sample

sizes, we randomly subsample individuals prior to fine

mapping. Figure 5E plots the credible set size distributions

for PLASMA-J, AS-Meta, and FINEMAP at various sample

sizes of kidney tumor data. In terms of loci fine mapped

to credible set sizes within 10 variants, PLASMA with 50

samples (484 loci within 10 causal variants) has signifi-

cantly greater power than FINEMAP with 500 samples

(193 loci within 10 causal variants) or AS-Meta with 500

samples (371 loci within 10 causal variants). Additionally,

in terms of median credible set size, PLASMA with 10 sam-

ples (170 median) has about the same power as FINEMAP

with 500 samples (167 median). At a given sample size,

PLASMA is thus better able to prioritize variants that will

be ranked highly in larger studies. Furthermore, as sample

size increases, PLASMA increases in power relative to other

methods. In tumor samples PLASMA yields a 1.3-fold

decrease in median credible set size over FINEMAP at 10

samples, but a 6.9-fold decrease at 500 samples, indicating

that PLASMA scales more effectively with sample size than

conventional QTL fine mapping. Nevertheless, PLASMA

yields a substantial reduction of credible set sizes even

with sample sizes as low as 10, with a median credible set

size of 170, compared to a median set size of 219 with

FINEMAP. An analogous down-sampling analysis on the

normal data is shown in Figure S7. There, PLASMA has

higher power for normal samples than for tumor samples,

which may be due to the lower variance in the normal

data.

Next, we look at how causal variant prioritization is

impacted by sample size in the down-sampled analysis.

Because the true causal variants in each locus is not known,

we use a proxy of markers with a posterior probability of at

least 0.1 when fine mapped with FINEMAP on all samples.

Note that this will strongly bias the credible set in favor of

FINEMAP and thus do not compare this proxy to FINEMAP

credible sets. In Figure S8, PLASMA is again more effective

than AS-Meta at each sample size at prioritizing causal

variants.

To explore multiple causal variant fine mapping on real

data, we run PLASMA and FINEMAP assuming up to three

causal variants on the full tumor and normal kidney RNA-

seq dataset. Figure S9 shows multiple causal variant fine-

mapping results for kidney tumor and normal RNA-seq

data. As with the simulations, all methods increase in cred-

ible set sizes relative to single-causal-variant fine mapping.

On tumor data, PLASMA-J, PLASMA-AS, and FINEMAP

report a median credible set size of 93, 172, and 150,

respectively, with the caveat of possibly unstable calibra-

tion for multiple causal variants (as seen in simulations).

Interestingly, PLASMA-AS displays a larger power drop

than FINEMAP does. This difference suggests that allelic

imbalance may be less informative when fine mapping

with multiple causal variants. Nevertheless, PLASMA-J per-

forms substantially better than either, suggesting that the

joint model is able to combine power from both QTL

and AS signals. Regardless, it appears that the majority of
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Figure 5. Comparison of the Distribution
of 95% Confidence Credible Set Sizes
across Loci in Kidney Tumor and Normal
Samples, with an Allelic Imbalance False
Discovery Rate of 0.05
Expression was measured as RNA-seq read
counts mapped to phased genotypes. Fine
mapping was conducted with 500 tumor
samples and 70 normal samples. Every
SNP within 100 kb of each locus was
included in the fine-mapping input.
(A and C) Distribution of credible set sizes
for tumor and normal samples, respectively,
under a 1-causal-variant assumption.
(B and D) Proportion of loci fine mapped
to 95% credible sets within given thresh-
olds. Thresholds used are 1, 5, 10, 20, 50,
and 100.
(E) 95% credible set size distributions for
randomly down-sampled kidney tumor da-
tasets with decreasing sample sizes.
loci contain a single causal variant, with FINEMAP esti-

mating this fraction at 68.8%.

Lastly, we look at how PLASMA prioritizes experimen-

tally verified causal variants at GWAS risk loci. Figure 6

shows the strength AS and QTL associations for DPF3

and SCARB1, genes in two kidney GWAS loci that have

verified causal variants.23,33 At each sample size threshold,

the AS statistic generally more confidently identifies the

true causal variant than the QTL statistic. In the case of

DPF3, the AS statistic is able to prioritize the true causal

variant at a substantially lower sample size than the QTL

statistic. Moreover, the 95% credible sets from the

PLASMA-AS model are smaller than those from the QTL-

Onlymodel at a given sample size. By producing amore ac-

curate and confident prioritization of causal variants,

PLASMA can substantially reduce the difficulty of experi-

mentally validating causal variants.

Fine Mapping of Prostate H3k27ac ChIP-Seq Data

To evaluate PLASMA with a different molecular pheno-

type, we fine mapped H3k27ac activity measured by

ChIP-seq from 24 human prostate tumor samples and 24

matched normal subjects. Although this study measures

chromatin activity rather than expression, the nature of

the data is nearly identical to that of RNA-seq and is pro-

cessed analogously by our QC pipeline and by PLASMA.

Instead of fine mapping eQTLs around gene loci, we fine

mapped chromatin QTLs (cQTLs) around chromatin

peaks. Figure 7 shows distribution plots for tumor data

(1,375 peaks) and normal data (908 peaks) under a 1 causal
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variant assumption. Among the tumor

data, 14.5% of peaks are fine mapped

within 50 variants with PLASMA-J,

while 1.9% of loci are fine mapped

within 50 variants with FINEMAP.

Furthermore, PLASMA achieves a me-

dian credible set size of 236, compared
to QTL-Only fine mapping achieving a size of 318.

PLASMA also outperforms AS-Meta, with 1.9% of loci

fine mapped within 50 causal variants (no gain over

FINEMAP) and a median credible set size of 310. Results

from normal samples are comparable, with 5.2%, 2.5%,

and 2.3% of loci fine mapped within 50 causal variants

for PLASMA-J, AS-Meta, and FINEMAP, respectively. These

methods achieve a median credible size of 296, 313, and

319 variants, respectively. Overall, these ChIP fine-map-

ping results are roughly in line with those from RNA-seq

fine mapping.

PLASMA Increases Functional Enrichment of Credible

Set Markers

To evaluate PLASMA’s ability to select markers in func-

tional regions using kidney RNA-seq data, we look for

enrichment of prioritized variants at open chromatin re-

gions measured with DNase-seq in a kidney cell line.34

Since chromatin accessibility is an indicator of transcrip-

tion factor binding and regulation,35 an enrichment of

credible set markers for open chromatin would indicate

that the fine-mapping procedure is prioritizing markers

in functionally relevant regions. For instance, the causal

variant in the DPF3 locus lies within a DNase-seq peak

(Figure 6A). Note that quantifying overlapping with an in-

dependent functional feature such as open chromatin im-

poses no assumptions on the ground truth, in contrast to

comparing to external QTL/GWAS data which may be

biased toward conventional QTL analysis. The null distri-

bution is defined as the credible set markers being located
netics 106, 170–187, February 6, 2020 179
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Figure 6. Comparison of AS and QTL As-
sociations in the Experimentally Verified
Loci, as a Function of Sample Size
Regions of 70 kb are shown around the
causal marker. AS and QTL p values were
calculated using from zf and zb, respec-
tively. Fine mapping was conducted with
the PLASMA-AS and QTL-Only models,
respectively. 95% credible set sizes for the
whole locus are displayed in the top right
of each subplot. Markers in the 95% credible
set are shown in dark blue, while markers
not in the sets are shown in light blue.
The experimentally verified causal marker
is shown in red. Regions of open chromatin
(DNase-seq peaks) are shaded in gray.
(A) Associations in the DPF3 locus.
(B) Associations in the SCARB1 locus.
independently of open chromatin and use Fisher’s exact

test to calculate enrichment as a function of minimum

causal variant probability. Figures 8, S10A, S10C, and

S10D show the odds ratios and p values (computed by

Fisher’s exact test), respectively, as a function of posterior

probability threshold from each fine-mapping method.

The credible set markers produced by PLASMA, for the

most part, display a significantly stronger enrichment

with open chromatin compared to existing methods. For

instance, at the p ¼ 0.1 threshold for tumor samples,

PLASMA’s credible set markers achieve a p value of 9:263

10�52 and an odds ratio of 2.16. In comparison, credible

sets from QTL-Only fine mapping at that threshold

achieves a p value of 2:02310�7 and an odds of 1.62.

This enrichment shows that even with far smaller credible

sets, PLASMA is able prioritize markers that fall in regions

of likely functional significance. The difference between

PLASMA and existing methods is greatest at higher poste-

rior probability thresholds. PLASMA may be assigning a

more meaningful number of markers with such high pos-
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terior probabilities, compared to exist-

ing methods that are rarely so confi-

dent about a marker’s causal status.

Similarly, to validate the credible

sets computed from prostate ChIP-seq

data, we look for enrichment of cred-

ible set markers at chromatin looping

anchors measured by Hi-ChIP in a

prostate cell line. Regulatory elements

overlapping loops are more likely to

be involved in cis-regulation and we

reasoned that they should therefore

be enriched for true causal cQTLs.36,37

Again, we note that this functional

feature is independent of the QTL

signal or locus LD and is not biased to-

ward a QTL or AS model. Figures S10B

and S10E show the odds ratios and

p values, respectively, across models

as a function of posterior probability
threshold (computed by Fisher’s exact test). The credible

set markers produced by PLASMA display a significantly

stronger enrichment with looping anchors compared to

the other methods. For instance, at the p ¼ 0.1 threshold,

PLASMA’s credible sets achieve a p value of 1:05310�6 and

an odds of 1.77. In contrast, credible set markers from

FINEMAP at that threshold achieves a non-significant

p value of 0.80 and an odds of 0.72.
Discussion

We present PLASMA, a statistical fine-mapping method

that utilizes allele-specific expression and phased geno-

types to select candidate causal variants. By modeling

gene expression at a locus in an allele-specific manner,

PLASMA scales in power both across individuals and across

read counts. Through read-count-level simulations of loci,

we show that PLASMA performs robustly across a wide

range of realistic conditions and consistently outperforms
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Figure 7. Comparison of 95% Confidence
Credible Set Sizes for Peaks in Prostate Tu-
mor and Normal Cells, with an Allelic
Imbalance False Discovery Rate of 0.05
Presence of H3k27ac histone marks was
quantified as ChIP-seq read counts mapped
to phased genotypes.
(A and C) Distribution of credible set sizes
for tumor and normal samples, respectively,
under a 1-causal-variant assumption.
(B and D) Proportion of peaks fine mapped
to 95% credible sets within given thresh-
olds. Thresholds used were 20, 50, 100,
200, 300, and 400.
existing statistical fine-mapping methods, including cases

where a significant amount of observed imbalance is

caused by non-genetic factors. We further demonstrate

this increased power on experimental data by applying

PLASMA to a large RNA-seq study, as well as a smaller

ChIP-seq study. In both cases, PLASMA achieves substan-

tially smaller credible set sizes compared to existing fine-

mapping methods, greatly increasing the number of loci

amenable to experimental causal variant validation. Lastly,

we show that even with these greatly reduced (more spe-

cific) credible set sizes, PLASMA achieves an equivalent or

superior degree functional enrichment as existing

methods. These results not only present PLASMA as a

powerful tool for prioritizing causal variants, but also

demonstrate how AS analysis can be directly integrated

into statistical fine mapping. A key benefit of PLASMA is

its ability to utilize existing, conventional sequencing-

based QTL data, such as RNA-seq, CHiP-seq, and ATAC-

seq at low sample size. This allows researchers to gain

significant insight simply by revisiting past QTL studies,

especially those with sample sizes too low for conventional

QTL fine mapping.

Although it is evident that an AS analysis with PLASMA

confers more signal than an equivalently sized QTL anal-

ysis, AS analysis presents additional obstacles and potential

confounders. First, unlike conventional QTL fine-mapping

methods that rely only on allelic dosage, PLASMA addi-

tionally utilizes genotype phasing, making phasing accu-

racy a potential concern. However, since PLASMA focuses

on cis-regulation, the genotypes observed span no more

than several hundred kilobases per locus, well within the

high accuracy range of modern phasing algorithms.38 Sec-

ond, PLASMA depends on having heterozygous individ-

uals in the tested feature and SNP in order to leverage AS

signal. In our analyses we focused on features that were

testable by AS (10,946 of 19,645 total genes, 113,459 of

525,629 total peaks). However, even in the complete

absence of heterozygotes, PLASMA can still conduct con-

ventional fine mapping based on dosage and total expres-
The American Journal of Human Ge
sion. Recent technologies that could

potentially offer greater signal include

RNA-seq with unspliced transcripts39

and direct allele-specific measurement
of expression using single-cell RNA-seq.40 Third, PLASMA

assumes the same causal configuration underlying both

the AS and QTL effects (and is thus able to combine the sig-

nals) but the causal effects may differ due to real biological

confounding. For example, cis effects on gene A followed

by (local) trans effects of gene A on gene B would be iden-

tified as a QTL association, but would not exhibit AS asso-

ciation. This would be a model violation for PLASMA and

produce larger credible set sizes. Although PLASMA can

consider correlations between causal AS and QTL affect

sizes, this parameter is hard to estimate, and we find in

real data that the model with correlation set to zero

(PLASMA-J) exhibited greater power than a non-zero con-

stant. Future work is required to fully elucidate the rela-

tionship between allele-specific and total effects, which

likely differs across genes. Fourth, genomic imprinting

(where either the maternal or paternal copy of the gene

is silenced) or random monoallelic expression would pro-

duce the appearance of allelic imbalance within affected

individuals in the absence of true cis-regulatory signal.20

Although PLASMA does not explicitly model such biases,

a bias that is independent of genotype will only cause a

reduction in power and not produce false positives. A po-

tential extension would be to model such violations or dis-

crepancies between the QTL and AS models directly,

following the lines of methods such as RASQUAL.20 Fifth,

PLASMA currently does not incorporate covariate analysis

in the allele-specific model (though the intra-individual

nature of the test controls for false positives), which could

additionally be used to model environmental confounders

and increase power.41 AS covariate analysis could poten-

tially be achieved through a multivariate likelihood ratio

test as in WASP.19

PLASMA’s approach in combining QTL and AS signals

opens up possible future work in two distinct directions.

The first direction would be to build upon the generative

fine-mapping model to incorporate additional sources of

signal. For example, one can incorporate epigenomic anno-

tation data by setting the priors for causality for each
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Figure 8. Enrichment of PLASMA Kidney RNA-Seq Credible Sets
on Open Chromatin
The x axis represents a minimum posterior probability threshold
on the markers within credible sets, with a higher threshold indi-
cating more confident but fewer markers. The markers in these
thresholded credible sets were intersected with the functional
feature in question. 95% confidence intervals were calculated
with Fisher’s exact test, with a control of all markers in a locus.
marker. Approaches used in existing QTL-based methods

such as PAINTORandRiVIERA-MT16,42 could be transferred

to PLASMAwith relatively little difficulty. Another possibil-

ity would be to conduct N-phenotype colocalization by uti-

lizing additional phenotypes in addition to the AS andQTL

phenotypes. Generalizing from two to multiple pheno-

types would be straightforward and could utilize the coloc-

alization algorithmfirst introduced in eCAVIAR.2 A second,

more general direction would be to adapt QTL-based popu-

lation genetics methods to utilize AS summary statistics.

Since both QTL and AS statistics can be characterized as

linear combinations of haplotype-level genotypes, they

share many distributional properties, including LD, allow-

ing them to be easily interchangeable in many circum-

stances. One such application would be gene expression

prediction for transcriptome-wide association studies

(TWASs),43 where the increased signal of AS statistics could

increase power to identify gene-phenotype relationships.

Broadly speaking, the allele-specific model and association

statistics that PLASMA introduces will be relevant to any

analysis of small sample size or limited tissue.
Appendix A

Modeling Genetic Effects on Total Expression

We calculate marginal effect sizes for a given locus under

the conventional linear model of total gene expression.

Let us consider a QTL study of a given locus with n individ-

uals and m markers. Let y be an ðn31Þ vector of total

expression across the individuals, recentered at zero. Given

a marker i, let xi be an ðn31Þ zero-recentered vector of ge-

notypes.We define bi, the genetic effect ofmarker i on total

gene expression as follows:
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y¼xibi þ ei (Equation A1)

Wemodel the residuals ei as normally distributed with vari-

ance s2y;i.

Calculation of QTL Summary Statistics

We use the maximum likelihood estimator of bi, equiva-

lent to the ordinary-least-squares linear regression

estimator:

bbi ¼
�
xu

i xi

��1
xu

i y (Equation A2)

Under the null model where i is not causal, i does not

explain any amount of variation of the phenotype, and

the variance of y is simply s2y;1. Thus, under the null:

Var
�bbi

�
¼ �xu

i xi

��2
Var

�
xu

i y
�

¼ �xu
i xi

��2�
xu

i xi

�
VarðyÞ

¼ �xu
i xi

��1
VarðyÞ

¼ �xu
i xi

��1
s2
y;i

(Equation A3)

We estimate s2b;i from the residuals:

s2
b;i ¼

eui ei

n� 1
(Equation A4)

We thus define our QTL summary statistic (Wald statis-

tic) for marker i as:

bzb;i ¼ bbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xu

i xi

��1
s2
y;i

q (Equation A5)

We assume that the number of individuals is enough such

that the observed statistic is normally distributed with unit

variance:

bzb;i � Nðzb;i; 1Þ (Equation A6)

In the case where xi is of unit variance, the statistic sim-

plifies to:

bzb;i ¼ bbi

ffiffiffi
n

pffiffiffiffiffiffiffibs2
y;i

q (Equation A7)

Modeling Haplotype-Specific Effects on Expression

We model allele-specific expression under the observation

that a cis-regulatory variant often has a greater influence

on the gene allele of the same haplotype. Under this

model, an individual who is heterozygous for one or

more cis-regulatory markers will show an imbalance in

expression between the alleles.

From a quantitative perspective, let us consider a single

locus in a single individual who is heterozygous for marker

i. Let 0 and 1 represent thewild-type and alternativemarker

alleles, respectively. We define e0 as the expression of the

gene allele on the same phase as marker allele 0 and e1 as
y 6, 2020



the expression of the gene allele on the same phase as

marker allele 1. Let e
0
0 and e

0
1 bebaseline expressionswithout

the effect of marker i. We define di as the cis-regulatory

strength of marker allele 1 over marker allele 0 such that:

e1
e0

¼ di
e
0
1

e
0
0

(Equation A8)

If we define i’s phase, vi, we can arbitrarily assign haplo-

types A and B. The above equation then becomes:

eA
eB

¼ðdiÞvi e
0
A

e
0
B

(Equation A9)

The marker’s phase is 1 if haplotype A contains the alterna-

tive marker allele, �1 if haplotype B contains the alterna-

tive marker allele, and 0 if the individual is homozygous

for the marker.

We now re-write Equation A9 as a linear model. Let w be

the log expression ratio between haplotypes A and B:

w¼ log

	
eA
eb



(Equation A10)

Let fi be the log allelic fold change (logAFC) caused by

variant i:

f¼ logðdiÞ (Equation A11)

Let zi be the log baseline expression ratio between haplo-

types A and B:

zi ¼ log

	
e
0
A

e
0
B



(Equation A12)

With these parameters we rewrite Equation A9 as:

w¼ vifi þ zi (Equation A13)

Given n individuals, this expression becomes:

w¼vifi þ zi (Equation A14)

We assume that zi is drawn from a normal distribution

with variance s2w;i. Note that under this model, fi can be in-

terpreted as the effect size of marker i on allelic imbalance,

with zi as the residuals. Furthermore, assuming no haplo-

type bias, both w and vi are zero-centered in expectation.

Experimentally derived AS data, such as RNA-seq data,

yield reads that are mapped to a particular haplotype.

Given cA and cB, the read counts mapped to haplotypes A

and B, respectively, we define our estimator of w as:

bw ¼ log

	
cA
cB



(Equation A15)

For a given individual j, we define cA;j as the allele-specific

read count from haplotype A. We model the allele-specific

read count as drawn a beta-binomial distribution, given

the total mapped read count cj:

cA;j � BB
�
aj; bj; cj

�
(Equation A16)
The America
We define pj as the expected proportion of read counts

(allelic fraction) from haplotype A:

pj ¼
E
�
cA;j
�

cj
¼ aj

aj þ bj

(Equation A17)

aj and bj can be re-parameterized in terms of pj and the

sampling overdispersion re

re ¼
1

aj þ bj þ 1
(Equation A18)

With this re-paramaterization, the mean and variance of

cA;i is given as follow:

E
�
cA;j
�¼ cjpj (Equation A19)

Var
�
cA;j
�¼ cjpj

�
1�pj

��
1þ re

�
cj �1

��
(Equation A20)

We use this beta binomial model to estimate the variance

of bwi. We scale the distribution by ð1 =ciÞ to get the mean

and variance for the read count proportion:

E

�
cA;j
cj

�
¼pj (Equation A21)

Var

	
cA;j
cj



¼ 1

cj
pj

�
1�pj

��
1þ re

�
cj � 1

��
(Equation A22)

We define w� as the logit-transformed allelic fraction:

w�
j ¼ logit

�
pj

� ¼ log
pj

1� pj

(Equation A23)

dw�
j

dpj

¼ 1

pj

�
1� pj

� (Equation A24)

d2w�
j

dp2
j

¼ 2pj � 1

p2
j

�
1� pj

�2 (Equation A25)

We can thus find the approximate mean and variance of bwj

given bw�
j using Taylor expansions:

E
� bwj

� ¼ E

�
logit

	
cA;j
cj


�

zlogit

	
E

�
cA;j
cj

�

þ 1

2
Var

	
cA;j
cj



d2

dp2
j

logit
�
pj

�

zlogit
�
pj

�1
2

	
1

cj
pj

�
1� pj

��
1þ re

�
cj � 1

��
 2pj � 1

p2
j ð1� p2Þ2

!

zlogit
�
pj

�þ 2pj � 1

2cjpj

�
1� pj

� �1þ re
�
cj � 1

��
zw�

j þ
1

cj
sinh

�
w�

j

��
1þ re

�
cj � 1

��
(Equation A26)
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Var
� bwj

� ¼ Var

	
logit

	
cA;j
cj





zVar

	
cA;j
cj


	
d

dpj

logit
�
pj

�
2

z

	
1

cj
pj

�
1� pj

��
1þ re

�
cj � 1

��
 1

pj

�
1� pj

�!2

z
1þ re

�
cj � 1

�
cjpj

�
1� pj

�
z

2

cj

�
1þ cosh

�
w�

j

���
1þ re

�
cj � 1

��
(Equation A27)

Note that w and w� are not equivalent because

E½logitðcA =cÞ�slogitðE½cA =c�Þ. Equation A26 implies thatbw is a biased estimator of w�, especially at low read counts

and/or high overdispersion. To get an estimator of w� with

reduced bias, we take the approximation that sinhðw�Þz
w� around zero:

bw�
j

bwj

1þ 1
cj

�
1þ re

�
cj � 1

�� (Equation A28)

We use bw�
to find an estimator of s2c;j, the variance of bw:

s2
c;j ¼

2

cj

�
1þ cosh

�bw�
j

���
1þ re

�
cj � 1

��
(Equation A29)

Given our estimator bwj, we quantify the sampling error

tj ¼ bwj � wj, with E½tj� ¼ 0 and VarðtjÞ ¼ s2c;j. Thus, across

individuals:

cw¼vifi þ zi þ t (Equation A30)

Calculation of AS Summary Statistics

Due to heteroscedasticity among individuals, we estimate

the AS effect size fi in a weighted manner, giving larger

weights to individuals with lower expected sampling error.

Given individual j, we define the weight for j as the inverse

of the estimated read count variance:

uj ¼ 1bs2
c;j

(Equation A31)

We define our weight matrix U as a diagonal matrix with

Uj;j ¼ uj.

We use the weighted-least-squares estimator for :

bfi ¼
�
vu
i Uvi

��1
vu
i Ucw (Equation A32)

Under the null model where i is not causal, the variance

of wj is s
2
w;i and the variance of bwj is s

2
w;i þ s2c;j. We assume

that the experimental errors t and biological residuals zi are

uncorrelated. Thus, under the null:
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Var
�bfi

� ¼ E
h�bfi � fi

�2i
¼ �vu

i Uvi

��1
vu
i Uðzi þ tÞðzi þ tÞuUuvi

�
vu
i Uvi

��1

¼ �vu
i Uvi

��2�
vu
i UzuziU

uvi þ vu
i UttuUuvi

�
¼ �vu

i Uvi

��2
�
vu
i UIs2

w;iU
uvi þ vu

i UIvi

�
¼ �vu

i Uvi

��2
��

vu
i U

2vi

�
s2
w;i þ vu

i Uvi

�
(Equation A33)

We now estimate s2w;i from the residuals. Note that

we are estimating the variance of the biological resid-

uals VarðziÞ, which is distinct from the total residuals

are zi þ t, so we cannot directly use the variance of the

total residuals. We instead use the following estimator

for s2w;i:

bs2
w;i ¼

Pn
j¼1

�
uj

�
zi;j þ tj

�2 � 1
�

Pn
j¼1uj

(Equation A34)

We show that this estimator is equal to s2f;i in expectation:

E
hbsi

w;i

i
¼
Xn

j¼1

�
ujE
h�
zi;j þ tj

�2i� 1
�

Xn

j¼1
uj

¼
Xn

j¼1

�
ujVar

�
zi;j þ tj

�� 1
�Xn

j¼1
uj

¼
Xn

j¼1

�
ujVar

�
zi;j
�þ ujVar

�
tj
�� 1

�Xn

j¼1
uj

¼
Xn

j¼1
ujVar

�
zi;j
�Xn

j¼1
uj

¼ VarðziÞ
¼ s2

w;i

(Equation A35)

With this estimator, we define the AS association statistic

for marker i as follows:

bzf;i ¼ bfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vu
i Uvi

��2
��

vu
i U2vi

�bs2
w;i þ vu

i Uvi

�r
(Equation A36)

We assume that the observed statistic is normally distrib-

uted with unit variance:

bzf;i � Lðzf;i; 1Þ (Equation A37)

To gain an intuitive understanding of the association sta-

tistic, let us examine it under simplifying conditions.

We assume that vi is of unit variance, that read count

overdispersion is negligible, and that allelic imbalance

and read coverage are fixed across individuals. Under these
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conditions, letU ¼ ðc=kÞI for coverage c and some constant

k. Equation A36 simplifies to:

bzf;i ¼ bfi

ffiffiffi
n

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibs2
w;i þ

k

c

r (Equation A38)

We can see that under high experimental noise (k=c), the

denominator is dominated by the quality of data (read

coverage). In contrast, when experimental noise is low,

the denominator is dominated by bs2
w;i, determined by the

inherent heritability of the locus’s AS phenotype.

In the case where phasing error is significant, we would

expect the estimated AS effects (bf) to have more deviation

from the true effects. We derive a correction for the AS

z-score, given a per-marker probability of mis-phasing ji.

We define bvi as the imperfect observed phasing for marker

i, and we define the phasing error vector di such that di ¼
vi � bvi. Note that each d is a ternary�2/0/2 indicator, with

each d2 being a binary 0/4 indicator of a phasing error. We

assume that the occurence of a phasing error is indepen-

dent of which haplotype the alternative allele is one, so

that E½di ¼ 0�. We now derive the variance of fi under

imperfect phasing:

bfi � fi ¼
�bvu

i Ubvi

��1bvu

i Ucw � fi

¼ �bvu

i Ubvi

��1bvu

i Uðvifi þ zi þ tÞ � fi

¼ �bvu

i Ubvi

��1bvu

i Uðbvifi þ difi þ zi þ tÞ � fi

¼ �bvu

i Ubvi

��1bvu

i Uðdifi þ zi þ tÞ
(Equation A39)

Var
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� ¼ E
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i

�
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�
(Equation A40)

When calculating VarðbfiÞ, we approximate the f2
i term

with the observed f2
i . We thus define the corrected z-score:

bzf;i ¼ bfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�bvu

i Ubvi

��2
��bvu

i U2bvi

��bs2
w;i þ 4ji

bf2

i

�
þ bvu

i Ubvi

�r
(Equation A41)
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(g) (h) (i)

Figure S1: Comparison of estimators for linkage disequilibrium (LD) at various sample sizes. Esti-
mators used were the dosage estimator, the phasing estimator, and the haplotype-level estimator.
At each sample size, 100 markers from 1000-Genomes data were used to calculate LD using all
three estimators. Plots of LD correlations are shown for each pair of estimators. (a-c) Dosage LD
vs. phasing LD at 50, 200 and 1000 samples, respectively. (d-f) Haplotype-Specific LD vs. dosage
LD at 50, 200 and 1000 samples, respectively. (g-i) Haplotype-Specific LD vs. phasing LD at 50,
200 and 1000 samples, respectively.
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Figure S2: Effect of the jointness hyperparameter in PLASMA on fine-mapping. Fine-mapping
of simulated loci was conducted with PLASMA-J under various values of the jointness parameter.
Each value of the jointness parameter was evaluated using 500 simulated loci with one causal variant
per locus. Plotted are the distributions of the 95% confidence credible sets.

(a) (b)

Figure S3: Mean top AS association statistics (zφ) under various conditions of mean read coverage,
heritability, and standard allelic deviation (a metric of the variance of the AS phenotype). Standard
allelic deviation is defined as the allelic fraction f such that the range between 1−f and f captures
all loci with an AS phenotype within one standard deviation of the mean (balanced expression).
Each square is the mean statistic over 500 simulated loci of 100 markers, with one causal variant. (a)
Mean top zφ as a function of standard allelic deviation and mean read coverage, with AS heritability
set to 0.5. (b) Mean top zφ as a function of standard allelic deviation and AS heritability, with
mean read coverage set to 100 reads.

3



(a) (b)

(c) (d)

(e) (f)

Figure S4: Recall rates for 95% credible sets under various conditions of mean read coverage,
heritability, and standard allelic deviation (intensity of AS variance). Recall rate is defined as
the expected proportion of causal markers included in the credible set. Each square is the mean
statistic over 500 simulated loci of 100 markers, with one causal variant. (a, c, e) Recall rates as a
function of standard allelic deviation and mean read coverage, with AS heritability set to 0.4. (d,
f, h) Recall rates as a function of standard allelic deviation and AS heritability, with mean read
coverage set to 100 reads. 4



(a) (b)

(c) (d)

Figure S5: Impact of imperfect phasing on AS-based methods. Each dataset consists of 500 loci
with one causal variant per locus. (a, b) Recall and 95% confidence credible sets under perfect
phasing. (c, d) Recall and 95% confidence credible sets under imperfect phasing, with a phasing
error z-score correction. The switch error and blip error were set to 0.152% and 0.165%, respectively.
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(a) (b)

(c) (d)

Figure S6: Effect of the AS heritability hyperparameter on 95% credible set sizes with tumor RNA-
Seq data. (a) Set size distribution with the heritability hyperparameter at 50% (b) Cumulative
set size distribution with the heritability hyperparameter at 50% (c) Set size distribution with
the heritability hyperparameter at 5% (d) Cumulative set size distribution with the heritability
hyperparameter at 5%

Figure S7: 95% credible set size distributions for randomly down-sampled kidney normal data with
decreasing sample sizes.
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Figure S8: Inclusion curve for fine-mapped kidney tumor RNA-Seq data for PLASMA and AS-
Meta across sample sizes. Inclusion was evaluated against a gold-standard set of markers, defined
as all markers with at least 0.1 posterior probability under FINEMAP with all samples.

(a) (b)

Figure S9: Fine-mapping of kidney RNA-Seq loci under the assumption of up to three causal
variants. (Note that FINEMAP credible sets may not be calibrated under multiple causal variants.)
(a) 95% confidence credible sets. (b) Proportions of loci with 95% credible set sizes within given
thresholds. Thresholds used were 1, 5, 10, 20, 50, and 100.
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(a) (b)

(c) (d) (e)

Figure S10: Enrichment odds ratios of PLASMA-J credible sets with functional features. The x-
axis represents a minimum posterior probability threshold on the markers within credible sets, with
a higher threshold indicating more confident but fewer markers. The markers in these thresholded
credible sets were intersected with the functional feature in question. 95 % confidence intervals
and p-values were calculated under Fisher’s exact test, with a control of all markers in a locus.
(a) Enrichment odds ratios of fine-mapped credible sets with open chromatin for kidney normal
RNA-Seq data. (b) Enrichment odds ratios of fine-mapped credible sets with chromatin looping for
prostate tumor H3K27ac ChIP-Seq data. (c, d) Enrichment p-values of kidney tumor and normal
credible sets, respectively, with open chromatin. (e) Enrichment of fine-mapped credible sets with
chromatin looping for prostate tumor H3K27ac ChIP-Seq data.
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Table S1: Summary of hyperparameter values used in each set of simulation analyses, referenced
by figure legend. Parentheses indicate multiple values tested.

Parameter Figure 2 Figures 3a-c Figures 3d-f

Number of markers per locus 100 100 100
Number of samples 100 100 100
Mininum minor allele frequency 0.01 0.01 0.01
AS overdispersion (ρe) 0.05 0.05 0.05
QTL Heritability (h2

β) 0.05 0.05 0.05

AS Heritability (h2
φ) 0.4 0.4 (0.1 to 0.6)

Manual PLASMA QTL Heritability Setting N/A N/A N/A
Manual PLASMA AS Heritability Setting N/A N/A N/A
Standard Allelic Deviation (d) (0.6, 0.8) (0.55 to 0.95) (0.55 to 0.95)
Number of causal variants 1 1 1
Mean read coverage 100 (10 to 1000) 100
Min. causal variants in searched configurations 1 1 1
Max. causal variants in searched configs 1 1 1
Search probability closeness threshold 0.001 0.001 0.001
Search iterations convergence threshold 1000 1000 1000
Maximum search iterations 100000 100000 100000
Jointness parameter (rc,βφ) 0. 0. 0.
Phasing switch error 0. 0. 0.
Phasing blip error 0. 0. 0.

Parameter Figure 4 Figure S2 Figure S5

Number of markers per locus 100 100 100
Number of samples 100 100 100
Mininum minor allele frequency 0.01 0.01 0.01
AS overdispersion (ρe) 0.05 0.05 0.05
QTL Heritability (h2

β) 0.05 0.05 0.05

AS Heritability (h2
φ) 0.4 0.4 0.4

Manual PLASMA QTL Heritability Setting 0.02 N/A N/A
Manual PLASMA AS Heritability Setting 0.2 N/A N/A
Standard Allelic Deviation (d) 0.7 0.7 0.7
Number of causal variants 2 1 1
Mean read coverage 100 100 100
Min. causal variants in searched configurations 1 1 1
Max. causal variants in searched configs 3 1 1
Search probability closeness threshold 0.001 0.001 0.001
Search iterations convergence threshold 1000 1000 1000
Maximum search iterations 100000 100000 100000
Jointness parameter (rc,βφ) 0. (0. to 0.99) 0.
Phasing switch error 0. 0. 0.00152
Phasing blip error 0. 0. 0.00165
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1 Supplemental Methods

1.1 Modeling total expression at a locus (QTL)

1.1.1 Modeling genetic effects on total expression

We calculate marginal effect sizes for a given locus under the conventional linear model of total
gene expression. Let us consider a QTL study of a given locus with n individuals and m markers.
Let y be an (n × 1) vector of total expression across the individuals, recentered at zero. Given a
marker i, let xi be an (n× 1) zero-recentered vector of genotypes. We define βi, the genetic effect
of marker i on total gene expression as follows:

y = xiβi + εi (1)

We model the residuals εi as normally distributed with variance σ2
y,i.

1.1.2 Calculation of QTL summary statistics

We use the maximum likelihood estimator of βi, equivalent to the ordinary-least-squares linear
regression estimator:

β̂i =
(
x>i xi

)−1
x>i y (2)

Under the null model where i is not causal, i does not explain any amount of variation of the
phenotype, and the variance of y is simply σ2

y,i. Thus, under the null:

Var
(
β̂i

)
=
(
x>i xi

)−2
Var

(
x>i y

)
=
(
x>i xi

)−2 (
x>i xi

)
Var (y)

=
(
x>i xi

)−1
Var (y)

=
(
x>i xi

)−1
σ2
y,i

(3)

We estimate σ2
β,i from the residuals:

σ̂2
β,i =

ε>i εi
n− 1

(4)

We thus define our QTL summary statistic (Wald statistic) for marker i as:

ẑβ,i =
β̂i√(

x>i xi
)−1

σ̂2
y,i

(5)

We assume that the number of individuals is enough such that the observed statistic is normally
distributed with unit variance:

ẑβ,i ∼ N (zβ,i, 1) (6)

In the case where xi is of unit variance, the statistic simplifies to:

ẑβ,i =
β̂i
√
n√

σ̂2
y,i

(7)
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1.2 Modeling allele-specific expression at a locus (AS)

1.2.1 Modeling haplotype-specific effects on expression

We model allele-specific expression under the observation that a cis-regulatory variant often has a
greater influence on the gene allele of the same haplotype. Under this model, an individual who is
heterozygous for one or more cis-regulatory markers will show an imbalance in expression between
the alleles.

From a quantitative perspective, let us consider a single locus in a single individual who is
heterozygous for marker i. Let 0 and 1 represent the wild-type and alternative marker alleles,
respectively. We define e0 as the expression of the gene allele on the same phase as marker allele
0, and e1 as the expression of the gene allele on the same phase as marker allele 1. Let e′0 and e′1
be baseline expressions without the effect of marker i. We define δi as the cis-regulatory strength
of marker allele 1 over marker allele 0 such that:

e1

e0
= δi

e′1
e′0

(8)

If we define i’s phase, vi, we can arbitrarily assign haplotypes A and B. The above equation then
becomes:

eA
eB

= (δi)
vi
e′A
e′B

(9)

The marker’s phase is 1 if haplotype A contains the alternative marker allele, −1 if haplotype B
contains the alternative marker allele, and 0 if the individual is homozygous for the marker.

We now re-write Equation 9 as a linear model. Let w be the log expression ratio between
haplotypes A and B:

w = log

(
eA
eB

)
(10)

Let φi be the log allelic fold change (logAFC) caused by variant i:

φi = log(δi) (11)

Let ζi be the log baseline expression ratio between haplotypes A and B:

ζi = log

(
e′A
e′B

)
(12)

With these parameters we rewrite Equation 9 as:

w = viφi + ζi (13)

Given n individuals, this expression becomes:

w = viφi + ζi (14)

We assume that ζi is drawn from a normal distribution with variance σ2
w,i. Note that under

this model, φi can be interpreted as the effect size of marker i on allelic imbalance, with ζi as
the residuals. Furthermore, assuming no haplotype bias, both w and vi are zero-centered in
expectation.
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Experimentally-derived AS data, such as RNA-Seq data, yield reads that are mapped to a
particular haplotype. Given cA and cB, the read counts mapped to haplotypes A and B respectively,
we define our estimator of w as:

ŵ = log

(
cA
cB

)
(15)

For a given individual j, we define cA,j as the allele-specific read count from haplotype A. We
model the allele-specific read count as drawn a beta-binomial distribution, given the total mapped
read count cj :

cA,j ∼ BB(αj , βj , cj) (16)

We define πj as the expected proportion of read counts (allelic fraction) from haplotype A:

πj =
E [cA,j ]

cj
=

αj
αj + βj

(17)

αj and βj can be re-parameterized in terms of πj and the sampling overdispersion ρe.

ρe =
1

αj + βj + 1
(18)

With this re-paramaterization, the mean and variance of cA,i is given as follow:

E [cA,j ] = cjπj (19)

Var (cA,j) = cjπj(1− πj)(1 + ρe(cj − 1)) (20)

We use this beta binomial model to estimate the variance of ŵi. We scale the distribution by
1
ci

to get the mean and variance for the read count proportion:

E
[
cA,j
cj

]
= πj (21)

Var

(
cA,j
cj

)
=

1

cj
πj(1− πj)(1 + ρe(cj − 1)) (22)

We define w∗ as the logit-transformed allelic fraction:

w∗j = logit (πj) = log
πj

1− πj
(23)

dw∗j
dπj

=
1

πj(1− πj)
(24)

d2w∗j
dπ2

j

=
2πj − 1

π2
j (1− πj)2

(25)
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We can thus find the approximate mean and variance of ŵj given w∗j using Taylor expansions:

E [ŵj ] = E
[
logit

(
cA,j
cj

)]
≈ logit

(
E
[
cA,j
cj

])
+

1

2
Var

(
cA,j
cj

)
d2

dπ2
j

logit (πj)

≈ logit (πj) +
1

2

(
1

cj
πj(1− πj)(1 + ρe(cj − 1))

)(
2πj − 1

π2
j (1− πj)2

)
≈ logit (πj) +

2πj − 1

2cjπj(1− πj)
(1 + ρe(cj − 1))

≈ w∗j +
1

cj
sinh(w∗j )(1 + ρe(cj − 1))

(26)

Var (ŵj) = Var

(
logit

(
cA,j
cj

))
≈ Var

(
cA,j
cj

)(
d

dπj
logit (πj)

)2

≈
(

1

cj
πj(1− πj)(1 + ρe(cj − 1))

)(
1

πj(1− πj)

)2

≈ 1 + ρe(cj − 1)

cjπj(1− πj)

≈ 2

cj
(1 + cosh(w∗j ))(1 + ρe(cj − 1))

(27)

Note that w and w∗ are not equivalent because E [logit (cA/c)] 6= logit (E [cA/c]). Equation 26
implies that ŵ is a biased estimator of w∗, especially at low read counts and/or high overdispersion.
To get an estimator of w∗ with reduced bias, we take the approximation that sinh(w∗) ≈ w∗ around
zero:

ŵ∗j =
ŵj

1 + 1
cj

(1 + ρe(cj − 1))
(28)

We use ŵ∗ to find an estimator of σ2
c,j , the variance of ŵ:

σ̂2
c,j =

2

cj
(1 + cosh(ŵ∗j ))(1 + ρe(cj − 1)) (29)

Given our estimator ŵj , we quantify the sampling error τj = ŵj − wj , with E [τj ] = 0 and
Var (τj) = σ2

c,j . Thus, across individuals:

ŵ = viφi + ζi + τ (30)

1.2.2 Calculation of AS summary statistics

Due to heteroscedasticity among individuals, we estimate the AS effect size φi in a weighted manner,
giving larger weights to individuals with lower expected sampling error. Given individual j, we
define the weight for j as the inverse of the estimated read count variance:

ωj =
1

σ̂2
c,j

(31)
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We define our weight matrix Ω as a diagonal matrix with Ωj,j = ωj .
We use the weighted-least-squares estimator for φi:

φ̂i =
(
v>i Ωvi

)−1
v>i Ωŵ (32)

Under the null model where i is not causal, the variance of wj is σ2
w,i, and the variance of ŵj is

σ2
w,i + σ2

c,j . We assume that the experimental errors τ and biological residuals ζi are uncorrelated.
Thus, under the null:

Var
(
φ̂i

)
= E

[
(φ̂i − φi)2

]
=
(
v>i Ωvi

)−1
v>i Ω (ζi + τ) (ζi + τ)>Ω>vi

(
v>i Ωvi

)−1

=
(
v>i Ωvi

)−2 (
v>i Ωζ>i ζiΩ

>vi + v>i Ωττ>Ω>vi

)
=
(
v>i Ωvi

)−2 (
v>i ΩIσ2

w,iΩ
>vi + v>i ΩIvi

)
=
(
v>i Ωvi

)−2 ((
v>i Ω2vi

)
σ2
w,i + v>i Ωvi

)
(33)

We now estimate σ2
w,i from the residuals. Note that we are estimating the variance of the biological

residuals Var (ζi), which is distinct from the total residuals are ζi + τ, so we cannot directly use
the variance of the total residuals. We instead use the following estimator for σ2

w,i:

σ̂2
w,i =

∑n
j=1

(
ωj (ζi,j + τj)

2 − 1
)

∑n
j=1 ωj

(34)

We show that this estimator is equal to σ2
φ,i in expectation:

E
[
σ̂2
w,i

]
=

∑n
j=1

(
ωjE

[
(ζi,j + τj)

2
]
− 1
)

∑n
j=1 ωj

=

∑n
j=1 (ωjVar (ζi,j + τj)− 1)∑n

j=1 ωj

=

∑n
j=1 (ωjVar (ζi,j) + ωjVar (τj)− 1)∑n

j=1 ωj

=

∑n
j=1 ωjVar (ζi,j)∑n

j=1 ωj

= Var (ζi)

= σ2
w,i

(35)

With this estimator, we define the AS association statistic for marker i as follows:

ẑφ,i =
φ̂i√(

v>i Ωvi
)−2

((
v>i Ω2vi

)
σ̂2
w,i + v>i Ωvi

) (36)

We assume that the observed statistic is normally distributed with unit variance:

ẑφ,i ∼ N (zφ,i, 1) (37)
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To gain an intuitive understanding of the association statistic, let us examine it under simplifying
conditions. We assume that vi is of unit variance, that read count overdispersion is negligible, and
that allelic imbalance and read coverage are fixed across individuals. Under these conditions, let
Ω = c

kI for coverage c and some constant k. Equation 36 simplifies to:

ẑφ,i =
φ̂i
√
n√

σ̂2
w,i +

k

c

(38)

We can see that under high experimental noise (k/c), the denominator is dominated by the quality
of data (read coverage). In contrast, when experimental noise is low, the denominator is dominated
by σ̂2

w,i, determined by the inherent heritability of the locus’s AS phenotype.

In the case where phasing error is significant, we would expect the estimated AS effects (φ̂)
to have more deviation from the true effects. We derive a correction for the AS z-score, given
a per-marker probability of mis-phasing ψi. We define v̂i as the imperfect observed phasing for
marker i, and we define the phasing error vector δi such that δi = vi − v̂i. Note that each δ is a
ternary -2/0/2 indicator, with each δ2 being a binary 0/4 indicator of a phasing error. We assume
that the occurence of a phasing error is independent of which haplotype the alternative allele is
one, so that E [δi] = 0. We now derive the variance of φ̂i under imperfect phasing:

φ̂i − φi =
(
v̂>i Ωv̂i

)−1
v̂>i Ωŵ − φi

=
(
v̂>i Ωv̂i

)−1
v̂>i Ω (viφi + ζi + τ)− φi

=
(
v̂>i Ωv̂i

)−1
v̂>i Ω (v̂iφi + δiφi + ζi + τ)− φi

=
(
v̂>i Ωv̂i

)−1
v̂>i Ω (δiφi + ζi + τ)

(39)

Var
(
φ̂i

)
= E

[
(φ̂i − φi)2

]
=
(
v̂>i Ωv̂i

)−1
v̂>i Ω (δiφi + ζi + τ) (δiφi + ζi + τ)>Ω>v̂i

(
v̂>i Ωv̂i

)−1

=
(
v̂>i Ωv̂i

)−2 (
v̂>i Ωδ>i δiφ

2
iΩ
>v̂i + v̂>i Ωζ>i ζiΩ

>v̂i + v̂>i Ωττ>Ω>v̂i

)
=
(
v̂>i Ωv̂i

)−2 (
v̂>i Ω

(
I4ψiφ

2
i + Iσ2

w,i

)
Ω>v̂i + v̂>i ΩIv̂i

)
=
(
v̂>i Ωv̂i

)−2 ((
v̂>i Ω2v̂i

) (
σ2
w,i + 4ψiφ

2
i

)
+ v̂>i Ωv̂i

)
(40)

When calculating Var
(
φ̂i

)
, we approximate the φ2

i term with the observed φ2
i . We thus define

the corrected z-score:

ẑφ,i =
φ̂i√(

v̂>i Ωv̂i
)−2

((
v̂>i Ω2v̂i

) (
σ̂2
w,i + 4ψiφ̂2

i

)
+ v̂>i Ωv̂i

) (41)

1.2.3 Emprical Analysis of Imperfect Phasing

We evaluate the AS-based methods, PLASMA and RASQUAL+, on simulated loci with imperfect
phasing. (We do not include AS-Meta, since the method does not depend on phased genotypes.)
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We modelled our imperfect phasing simulation on the EAGLE phasing paper [cite], which quantified
two sources of phasing error: switch error and blip error. Switch error is the probability that the
phasing swaps at a given marker (affecting all downstream markers) and was set to 0.152%. Blip
error is the probability that a given marker is misphased, with downstream markers unaffected,
and was set to 0.165%.

Results for these imperfectly-phased loci are shown in Figure S5, with comparisons to perfectly
phased loci. Comparing the inclusion curves for each method, we see only a very small difference
in power with perfect and imperfect phasing, which is expected given the low error rates reported
by EAGLE. Similarly, we see a small increase in credible set sizes for each model (RASQUAL+ not
included due to non-meaningful sets). However, we do see a modest decrease in recall (0.98 to 0.89
for PLASMA-J, and 0.98 to 0.92 for PLASMA-AS), indicating that imperfect phasing does have
some impact on accuracy. Nevertheless, it appears that the overall effect of imperfect phasing is
small at real-world error rates.

1.3 Inference of causal variants with QTL and AS statistics

1.3.1 Modeling the effects of linkage disequilibrium

PLASMA assumes that the QTL and AS statistics are drawn from the same marker linkage disequi-
librium (LD), a property that we verify under the assumption that the two alleles in an individual
are distributed independently (See following section for proof). This equivalence yields three LD
estimators: using dosage (0/1/2) genotypes x, phasing (-1/0/1 genotpyes v ), or haplotype-specific
(0/1) genotypes. To evaluate each of these three estimators and to emprically demonstrate their
equivalence in expectation, we sample a contiguous block of 100 SNPs from phased 1000-Genomes
genotype data at sample sizes ranging from 50 to 1000. We then calculate LD matrices using each
estimator and compare the estimated correlations for each pair of markers. In Figure S1, we see
that correlation among the estimators increases as a function of sample size, and also that a sam-
ple size of 50 is more than sufficient for high concordance among the three estimators. Since the
haplotype-specific estimator appears to be more correlated to both the dosage estimator and the
phasing estimator than the latter two are to each other, we use the haplotype-specific estimator in
our analyses. We believe that the haplotype-specific estimator is the most accurate of the three
since it as effectively double the sample size as the dosage and phasing estimators.

1.3.2 Equivalence in expectation of QTL and AS estimators of LD

Due to linkage disequilibrium, there exist significant correlations of genotypes among markers.
This correlation is reflected in the correlations in the association statistics. PLASMA models the
QTL (dosage) and AS (phasing) genotypes having an identical LD structure. Here, we show that
the LD calculated from the dosage, phasing, and haplotype-specific genotypes are equivalent in
expectation, under the assumption that the two alleles in an individual are independent.

Let a be a binary genetic marker, and let pa be a random variable for the (0/1) genotype of a
on haplotype I (arbitrarily chosen), and let qa be a random variable for the (0/1) genotype of a on
haplotype II.

We define the dosage genotype of marker a as the sum of the centered haplotypes:

xa = (pa − p̄a) + (qa − q̄a) (42)

Likewise, we define the phasing genotype of marker a as the difference of the centered haplotypes:

va = (pa − p̄a)− (qa − q̄a) (43)
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(Note that since p̄a = q̄a, the phasing is also equivalent to the difference of the uncentered haplo-
types.)

We now calculate the covariance of xa and xb for two markers a and b. Since these variables
are zero-centered, we can express the covariance as E [xaxb]:

E [xaxb] = E [(pa − p̄a + qa − q̄a)(pb − p̄b + qb − q̄b)]
= E [(pa − p̄a)(pb − p̄b)] + E [(qa − q̄a)(pb − p̄b)]
+ E [(pa − p̄a)(qb − q̄b)] + E [(qa − q̄a)(qb − q̄b)]

(44)

We make the assumption that the two alleles in an individual are independent, so that the covariance
of any p and q is zero. The covariance simplifies to:

E [xaxb] = E [(pa − p̄a)(pb − p̄b)] + E [(qa − q̄a)(qb − q̄b)]
= 2E [(pa − p̄a)(pb − p̄b)]

(45)

We calculate the correlation of xa and xb from this correlation, and we see that it is equivalent to
the correlation of pa and pb:

E [xaxb]√
E [xaxa]E [xbxb]

=
2E [(pa − p̄a)(pb − p̄b)]√

2E [(pa − p̄a)(pa − p̄a)] 2E [(pb − p̄b)(pb − p̄b)]

=
E [(pa − p̄a)(pb − p̄b)]√

E [(pa − p̄a)(pa − p̄a)]E [(pb − p̄b)(pb − p̄b)]

(46)

Under the same assumptions, we calculate the covariance of va and vb.

E [vavb] = E [((pa − p̄a)− (qa − q̄a))((pb − p̄b)− (qb − q̄b))]
= E [(pa − p̄a)(pb − p̄b)]− E [(qa − q̄a)(pb − p̄b)]
− E [(pa − p̄a)(qb − q̄b)] + E [(qa − q̄a)(qb − q̄b)]
= E [(pa − p̄a)(pb − p̄b)] + E [(qa − q̄a)(qb − q̄b)]
= 2E [(pa − p̄a)(pb − p̄b)]

(47)

We see that the covariance of va and vb is equal to the covariance of xa and xb, implying that the
correlation of va and vb is equal to the correlatin of xa and xb, and thus pa and pb. Therefore,
under the assumption that the two alleles in an individual are independent, the LD calculated
from dosage genotypes x, phasing genotypes v, and haplotype-specific genotypes p are equivalent
in expectation. (Note that this assumption can theoretically be violated if a marker is under
selection, but we assume that selection is insignificant due to the weak effects of common markers.)

1.3.3 Jointly modeling total and haplotype-specific effects on expression

We define ẑ as the combined vector of AS association statistics and QTL association statistics:

ẑ =

[
ẑφ
ẑβ

]
(48)

Let rβφ be the overall correlation between the QTL and AS summary statistics calculated across
all loci. We define the combined correlation matrix R as:

R =

[
Rz rβφRz

rβφRz Rz

]
(49)

We model the joint distribution as multivariate normal, with covariance R:

ẑ ∼ N2m(z,R) (50)
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1.3.4 Modeling summary statistics given a causal configuration

The goal of this method is to infer the causal markers, given QTL and AS association statistics. To
this end, we introduce a likelihood function that gives the probability of statistics ẑ, given a causal
configuration. We define a causal configuration c as a vector of causal statuses corresponding to
each marker, with 1 being causal and 0 being non-causal.

Let zc,φ and zc,β be the underlying causal AS and QTL effects, respectively, across markers
such that:

zc =

[
zc,φ
zc,β

]
(51)

We define hyperparameters σ2
c,φ and σ2

c,β as the variance of AS and QTL causal effect sizes, respec-
tively rc,βφ as the underlying correlation of the causal QTL and AS effect sizes. (This is not to be
confused with rβφ, which concerns the correlation between the association statistics.) We define
Σc, the covariance matrix of causal effect sizes, given a causal configuration:

Σc =

[
diag(c)σ2

c,φ diag(c)rc,βφσc,φσc,β
diag(c)rc,βφσc,φσc,β diag(c)σ2

c,β

]
(52)

We model the causal effect sizes, given a causal configuration, as drawn from a multivariate normal
distribution:

zc|c ∼ N2m(0,Σc) (53)

Furthermore, we model the expected association statistic for a given marker as a linear combination
of all effects correlated to the marker.

z = Rzc (54)

z|c ∼ N2m(0,RΣcR) (55)

Combining Equations 50 and 55, we get a probability distribution for the observed association
statistics given a causal configuration. This is our likelihood for a causal configuration.

ẑ|c ∼ N2m(0,R + RΣcR)

P (ẑ|c) = N2m(0,R + RΣcR) = L(c; ẑ)
(56)

To get a prior distribution for the causal configuration c, we define the hyperparameter γ as
the prior probability that a single variant is causal and 1 − γ as the probability that a variant is
not causal. The probability of a configuration consisting of m variants thus becomes:

P (c) =
m∏
i=1

γci(1− γ)1−ci (57)

We can view the prior as a regularization term by taking the negative log:

− logP (c) =
m∑
i=1

(−cilogit (γ)− log (1− γ))

= −logit (γ) ‖c‖k −m log (1− γ)

(58)

Since c is a binary vector, ‖c‖k is the same for all positive k. Thus, the prior imposes Lk regular-
ization with λ = −logit (γ). In practice, this regularization favors causal configurations with fewer
causal variants.
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With the prior and likelihood, we define the posterior probability of a causal configuration,
normalized across the set of all possible configurations C:

P (c|ẑ) =
P (ẑ|c)P (c)∑

c∗∈C P (ẑ|c∗)P (c∗)
(59)

This posterior probability can be alternatively expressed with Bayes Factors. We define the
null model as the scenario where all markers are non-causal, so that c = 0. The Bayes Factor for
a particular c would thus be:

BF(c : 0) =
P (ẑ|c)

P (ẑ|0)
(60)

We rewrite Equation 59 with Bayes Factors:

P (c|ẑ) =
BF(c : 0)P (c)∑

c∗∈C BF(c∗ : 0)P (c∗)
(61)

1.3.5 The ρ-level credible set

In practice, due to the large number of possible configurations, the probability of any given config-
uration will likely be small. For more meaningful probabilities, we calculate the total probability
of the possible non-null configurations from a set of markers.

We define K as a set of markers that putatively includes all causal markers. We define CK
as the set of all causal configurations whose causal markers is a subset of K, excluding the null
set. Thus, the probability that K includes all causal markers is the sum of the probabilities of the
configurations in CK.

P (K|ẑ) =
∑
c∈CK

Pr(c|ẑ) (62)

We set this probability as ρc, the confidence level of K. Given a value for ρc, commonly 0.95, we
seek to find K that minimizes the number of causal variants.

1.3.6 The posterior inclusion probability

An alternative way of summarizing the configurations is to calculate a marker’s posterior inclusion
probability (PIP), also known as the posterior probability of association. We define the PIP as the
probability that a single given marker is causal, marginalized over all other markers. We calculate
this probability by summing over all configurations containing the marker.

1.4 Computational optimization and implementation

1.4.1 Shotgun stochastic search across configurations

The computation of the probability of a given configuration requires knowledge of the Bayes Factor
for every possible configuration. As there are 2m possible configurations, traversing this whole
space is intractable. To reduce the number of configurations to evaluate, we use the heuristic that
configurations with significant probabilities tend to be similar to each other.

We use a shotgun stochastic search procedure based on that of FINEMAP to find all con-
figurations with a signifcant probability [1]. Given a selected configuration c, we define Gc, the
neighborhood of c, as follows:

• All configurations resulting from setting a causal marker in c to non-causal
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• All configurations resulting from setting a non-causal marker in c to causal

• All configurations resulting from swapping the casual statuses of two markers in c

For each iteration of the algorithm, the next configuration is drawn randomly from Gc, weighted by
the posterior probability of each candidate. Upon termination, we assume that all configurations
with nonzero probability have been uncovered.

1.4.2 Calculation of the ρ-level credible set

Given the large number of configurations evaluated, it is impractical to calculate the best possible
credible set satisfying ρc. Instead, we use a greedy approximation algorithm utilized in CAVIAR
and CAVIARBF [2, 3]. At each step, before ρc is reached, the algorithm adds the marker that
increases the confidence the most.

1.4.3 Bayes factor evaluation with matrix reduction

Direct calculation of the Bayes Factor for a configuration requires the manipulation of m × m
matrices, resulting in an O(m3) runtime per configuration. We now show that it is sufficient to
evaluate the Bayes Factor using only the elements corresponding to causal SNPs, an optimization
introduced by FINEMAP [1]. This reduces complexity from O(m3) to O(k3), where k is the number
of causal variants.

We expand the MVN probability density functions in equation 60 and use the binomial inverse
theorem:

BF(c : 0) =

|R + RΣcR|−(1/2) exp

(
−1

2
ẑ> (R + RΣcR)−1 ẑ

)
|R|−(1/2) exp

(
−1

2
ẑ> (R)−1 ẑ

)

=

|I + ΣcR|−(1/2) exp

(
−1

2
ẑ> (R + RΣcR)−1 ẑ

)
exp

(
−1

2
ẑ> (R)−1 ẑ

)

=

|I + ΣcR|−(1/2) exp

(
−1

2
ẑ>
(
R−1 − (I + ΣcR)−1 Σc

)
ẑ

)
exp

(
−1

2
ẑ> (R)−1 ẑ

)
= |I + ΣcR|−(1/2) exp

(
1

2
ẑ> (I + ΣcR)−1 Σcẑ

)

(63)

We permute s to separate causal and non-causal SNPs:

ẑ =

[
ẑC
ẑN

]
(64)

We likewise permute the rows and columns of R and Σc such that:

R =

[
RCC RCN

RNC RNN

]
(65)

Σc =

[
Σc,CC Σc,CN

Σc,NC Σc,NN

]
=

[
Σc,CC 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
(66)
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Note that Σc can be nonzero only among causal markers since c is 0 for non-causal markers.
Furthermore:

ΣcR =

[
Σc,CC 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

] [
RCC RCN

RNC RNN

]
=

[
Σc,CCRCC Σc,CCRCN

0(m−k)×k 0(m−k)×(m−k)

]
I + ΣcR =

[
Ik×k + Σc,CCRCC Σc,CCRCN

0(m−k)×k I(m−k)×(m−k)

] (67)

Blockwise inversion yields:

(I + ΣcR)−1 =

[
(Ik×k + Σc,CCRCC)−1 − (Ik×k + Σc,CCRCC)−1 Σc,CCRCN

0(m−k)×k I(m−k)×(m−k)

]
(I + ΣcR)−1 Σc =

[
(Ik×k + Σc,CCRCC)−1 − (Ik×k + Σc,CCRCC)−1 Σc,CCRCN

0(m−k)×k I(m−k)×(m−k)

] [
Σc,CC 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
=

[
(Ik×k + Σc,CCRCC)−1 Σc,CC 0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]
(68)

We can simplify this equation since Σc,CC is of full rank and is thus invertible:

(I + ΣcR)−1 Σc =

[(
Σ−1

c,CC (Ik×k + Σc,CCRCC)
)−1

0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]

=

[(
Σ−1

c,CC + RCC

)−1
0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

]

ẑ> (I + ΣcR)−1 Σcẑ =
[
ẑ>C s>N

] [(Σ−1
c,CC + RCC

)−1
0k×(m−k)

0(m−k)×k 0(m−k)×(m−k)

] [
ẑC
ẑN

]
= ẑ>C

(
Σ−1

c,CC + RCC

)−1
ẑC

(69)

We can also simplify the determinant in Equation 63:

|I + ΣcR| =
∣∣∣∣Ik×k + Σc,CCRCC Σc,CCRCN

0(m−k)×k I(m−k)×(m−k)

∣∣∣∣
= |Ik×k + Σc,CCRCC|

∣∣I(m−k)×(m−k)

∣∣
= |Ik×k + Σc,CCRCC|

(70)

We have thus shown that evaluating the Bayes Factor with only putative causal markers is
mathematically equivalent to evaluating with all markers. Thus:

BF(c : 0) = |Ik×k + Σc,CCRCC|−(1/2) exp

(
1

2
ẑ>C

(
Σ−1

c,CC + RCC

)−1
ẑC

)
(71)

1.5 The hyperparameters in terms of heritability

The model takes a number or hyperparameters specifying the variances and covariances of the
association statistics. We reparameterize the hyperparameters in terms of the QTL heritablity of
the locus h2

β and the AS heritability of the locus h2
φ.
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First, we look at σ2
c,β and σ2

c,φ, given k expected causal variants. Let σ2
y be the overall variance

of the QTL phenotype across the individuals. Since the heritability hβ is the proportion of the
variance attributed to the causal variance, the average variance of a causal marker’s QTL effect
size is given by:

σ2
c,β =

h2
β

lk
σ2
y (72)

where l is the average LD score between the given marker and the other causal markers. Similarly,
the variance of the AS effect size is given by:

σ2
c,φ =

h2
φ

lk
σ2
w (73)

However, in the case of the AS phenotype, where the quality of data varies considerably among
individuals, we must take into account the variance introduced by sampling. As we recall, the
variance of the observed phenotype for a given individual j under a beta-binomial model is:

Var (ŵj) ≈
2

cj
(1 + cosh(w∗j ))(1 + ρe(cj − 1))

ŵ∗j ≈
ŵj

1 + 1
cj

(1 + ρe(cj − 1))

(74)

We now derive an estimator σ̂2
w = E [Var (ŵj)] for the total expected variance of the observed

phenotype, across individuals. As an approximation, we substitute the individual read coverage for
the expected read coverage c̄, assumng that E [Var (ŵj |cj)] ≈ E [Var (ŵj |E [c])]. Thus:

σ̂2
w =

2

c̄
(1 + E

[
cosh(w∗j )

]
)(1 + ρe(c̄− 1)) (75)

Since we model ŵj as normally distributed, ŵ∗j is approximately normally distributed. We now find

E
[
cosh(w∗j )

]
. Given a normally distributed zero-mean variable A ∼ N (0, σ2), the even-numbered

moments are given by:
E
[
A2p
]

= σ2p(2p− 1)!! (76)

Taking the Taylor expansion of cosh and using linearity of expectation:

E [cosh(A)] =

∞∑
p=0

E
[
A2p
]

2p!

=

∞∑
p=0

σ2p(2p− 1)!!

2p!

=
∞∑
p=0

σ2p

2pp!

=
∞∑
p=0

(
σ2

2

)p
1

p!

= exp

(
σ2

2

)

(77)
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Substituting this result back into the formula for σ̂2
w:

σ̂2
w =

2

c̄

(
1 + exp

(
σ2
w

2
(
1 + 1

c̄ (1 + ρe(c̄− 1))
)2
))

(1 + ρe(c̄− 1)) (78)

Thus, the variance of the calculated AS effect size is given by:

σ2
c,φ̂

=

(
h2
φ

lk

)
2

c̄

(
1 + exp

(
σ2
w

2
(
1 + 1

c̄ (1 + ρe(c̄− 1))
)2
))

(1 + ρe(c̄− 1)) (79)

We also define the observed AS heritability h2
φ̂

such that

h2
φ̂

= h2
φ

σ2
w

σ̂2
w

(80)

We now derive an expression for rβφ, the overall correlation between the QTL and AS statistics
for a casual variant. We first find an expression, given causal variant i for the variance of ẑβ,i. Since

i is causal, the variance of β̂i is a combination of the variance of a causal variant and the average
phenotypic variation across individuals:

Var
(
β̂i

)
= σ2

c,β +
σ2
y − σ2

c,β

n

Var (ẑβ,i) =
Var

(
β̂i

)
(
σ2
y − σ2

c,β

)
/n

= n
σ2
c,β

σ2
y − σ2

c,β

+ 1

= n
h2
β/(lk)

1− h2
β/(lk)

+ 1

(81)

We model the QTL statistic of a causal variant as a zero-mean normal distribution:

ẑβ,i ∼ N

(
0, n

h2
β/(lk)

1− h2
β/(lk)

+ 1

)
(82)

We model the AS statistic in a similar manner:

ẑφ,i ∼ N

(
0, n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

+ 1

)
(83)

We model the noise as independently distributed between the two statistics, but the causal variance
as correlated with coefficient rc,βφ. Thus:

ẑβ,i + ẑφ,i ∼ N

0, n
h2
β/(lk)

1− h2
β/(lk)

+ n
h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

+ 2 + 2rc,βφ

√√√√(n h2
β/(lk)

1− h2
β/(lk)

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

)
ẑβ,i − ẑφ,i ∼ N

0, n
h2
β/(lk)

1− h2
β/(lk)

+ n
h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

+ 2− 2rc,βφ

√√√√(n h2
β/(lk)

1− h2
β/(lk)

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

)
(84)
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We now find the covariance between ẑβ and ẑφ. Since the distributions are zero-mean, the
covariance is just E [ẑβ ẑφ]. Expanding out this product:

E [ẑβ ẑφ] =
1

4

(
E
[
(ẑβ + ẑφ)2

]
− E

[
(ẑβ − ẑφ)2

])
=

1

4
(Var (ẑβ + ẑφ)−Var (ẑβ − ẑφ))

= rc,βφ

√√√√(n h2
β/(lk)

1− h2
β/(lk)

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

) (85)

The correlation is thus:

rβφ =
E [ẑβ ẑφ]√

Var (ẑβ) Var (ẑφ)

=

rc,βφ

√√√√(n h2
β/(lk)

1− h2
β/(lk)

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

)
√√√√(n h2

β/(lk)

1− h2
β/(lk)

+ 1

)(
n

h2
φ̂
/(lk)

1− h2
φ̂
/(lk)

+ 1

)

= rc,βφ

√√√√√ n2h2
βh

2
φ̂(

lk + h2
β(n− 1)

)(
lk + h2

φ̂
(n− 1)

)

(86)
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