Supporting Information

Inverse-opal CuCrO₂ photocathodes for H₂ production using organic dyes and a molecular Ni catalyst

Charles E. Creissen,^a Julien Warnan,^a Daniel Antón-García,^a Yoann Farré,^b Fabrice Odobel,^b and Erwin Reisner^{a*}

^{*a*} Christian Doppler Laboratory for Sustainable Syngas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

^{*b*} Université LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France

*Corresponding author email address: reisner@ch.cam.ac.uk

Contents

Supporting Tables S1-S2 Supporting Figures S1-S6 Supporting References page S2 pages S3-S6 page S7

Supporting Tables

Table S1. Dye properties determined using UV-Vis spectroscopy, fluorescence spectroscopy, and cyclic voltammetry.¹⁻³

Dye	$\lambda_{max}\left(nm\right)$	$\varepsilon ~(\mathrm{M}^{-1}~\mathrm{cm}^{-1})$	E ₀₀ (eV)	E_{S^*/S^-} (V vs. RHE)	$E_{S/S^{-}}$ (V vs. RHE)
PMI-P	536	3.8×10^4	2.20	1.47	-0.73
DPP-P	496	2.6×10^{4}	2.27	1.57	-0.70

Table S2. Quantities of dye and catalyst loaded on the photocathodes.

Photocathode	Dye Loading (nmol cm ⁻²)	NiP Loading (nmol cm ⁻²)	NiP Loading (nmol cm ⁻²)
		Pre-catalysis	Post-catalysis ^a
IO-CuCrO ₂ PMI-P/NiP	11.4 ± 1.8	4.5 ± 0.9	3.9 ± 1.5
IO-CuCrO ₂ DPP-P / NiP	14.8 ± 1.6	4.5 ± 0.4	3.3 ± 1.1
Sol-Gel CuCrO ₂ DPP-P / NiP ^b	2.6 ± 0.7	0.8 ± 0.4	0.4 ± 0.3

^{*a*} Conditions for catalysis: Visible light illumination (100 mW cm⁻², AM 1.5G, $\lambda > 420$ nm) for 2 h with the cell maintained at 25 °C, applied potential of 0.0 V vs. RHE, aqueous Na₂SO₄ (0.1 M, pH 3). ^{*b*} Taken from previous report.¹

Supporting Figures

Figure S1. TEM images of as-prepared CuCrO₂ nanoparticles with measured diameter and length distribution.

Figure S2. XRD patterns of CuCrO₂-NPs and IO-CuCrO₂ films. Diamonds represent ITO-glass background and circles the SiO₂ reference.

Figure S3. Normalized absorption and emission spectra of (a) **PMI-P** and (b) **DPP-P** in DMF, (c) UV-Vis spectra of **PMI-P** (red) and **DPP-P** (black) recorded in DMF.^{2,4}

Figure S4. Chronoamperometry results at 0.0 V vs. RHE under chopped light illumination upon loading of separate components for (a) IO-CuCrO₂|**PMI-P/NiP** and (b) IO-CuCrO₂|**DPP-P/NiP** photocathodes. Conditions: aqueous Na₂SO₄ (0.1 M, pH 3), chopped visible light illumination (100 mW cm⁻², AM 1.5G, $\lambda > 420$ nm). A geometric electrode area of 0.25 cm² was used for all experiments.

Figure S5. Chronoamperometry at 0.0 V vs. RHE in the dark for IO-CuCrO₂ and IO-CuCrO₂|phenylphosphonic acid electrodes. Conditions: aqueous Na_2SO_4 (0.1 M, pH 3). A geometric electrode area of 0.25 cm² was used.

Figure S6. Controlled potential photoelectrolysis at (a) 0.0 V vs. RHE and (b) + 0.3 V vs. RHE under constant light illumination for IO-CuCrO₂|**PMI-P/NiP** (red) and IO-CuCrO₂|**DPP-P/NiP** (black) photocathodes. Conditions: aqueous Na₂SO₄ (0.1 M, pH 3), illumination (100 mW cm⁻², AM 1.5G, $\lambda >$ 420 nm). A geometric electrode area of 0.25 cm² was used for all experiments.

Supporting References

- Creissen, C. E.; Warnan, J.; Reisner, E. Solar H₂ Generation in Water with a CuCrO₂ Photocathode Modified with an Organic Dye and Molecular Ni Catalyst. *Chem. Sci.* 2018, 9, 1439–1447.
- Warnan, J.; Willkomm, J.; Farre, Y.; Pellegrin, Y.; Boujtita, M.; Odobel, F.; Reisner, E. Solar Electricity and Fuel Production with Perylene Monoimide Dye-Sensitised TiO₂ in Water. *Chem. Sci.* 2019, *10*, 2758–2766.
- (3) Farré, Y.; Maschietto, F.; Föhlinger, J.; Wykes, M.; Planchat, A.; Pellegrin, Y.; Blart, E.; Ciofini, I.; Hammarström, L.; Odobel, F. Manuscript in Preparation.
- (4) Warnan, J.; Willkomm, J.; Ng, J. N.; Godin, R.; Prantl, S.; Durrant, J. R.; Reisner, E. Solar H₂ Evolution in Water with Modified Diketopyrrolopyrrole Dyes Immobilised on Molecular Co and Ni Catalyst–TiO₂ Hybrids. *Chem. Sci.* **2017**, *8*, 3070–3079.

End of Supporting Information