Supporting Information

Tunable Covalent Triazine-Based Frameworks (CTF-0) for Visible Light-Driven Hydrogen and Oxygen Generation from Water Splitting

Dan Kong, ^a Xiaoyu Han, ^b Jijia Xie, ^a Qiushi Ruan, ^a Christopher D. Windle, ^a Srinivas Gadipelli, ^b Kai Shen,^c Zhiming Bai, ^{a,d,*} Zhengxiao Guo, ^{b,} * Junwang Tang ^{a,*}

^a Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

^b Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK.

^c Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.

^d The school of Material Science and Engineering, Beihang University, No.37 Xueyuan Road, Haidian district, Beijing, China.

*Corresponding Author E-mails: junwang.tang@ucl.ac.uk; z.x.guo@ucl.ac.uk; bzm@buaa.edu.cn

Scheme S1. Polymerization reaction of 1,3,5-tricyanobenzene to an intermediate trimer and the ideal extended CTF-0.

Figure S1. Transmission electron microscopy (TEM) image of CTF-0-M₂.

Figure S2 Estimated band positions of CTF-0 with three-layer AA stacking and AB stacking.

Figure S3. XPS survey spectra of CTF-0-I, CTF-0-M₁, CTF-0-M₂ and CTF-0-M₃.

Table S1. Elemental analysis data of the polymers CTF-0-I, CTF-0- M_1 , CTF-0- M_2 and CTF-0- M_3 .

Polymer	Acid catalyst	ТСВ	Experimental %				Theory %		
			С	Н	N	N/C	С	Н	N
CTF-0-I	0.9 g	1 g	76.8	2.5	20.0	0.26	70.6	2.0	27.4
CTF-0-M ₂	2 mL	1 g	71.4	2.0	26.3	0.36	70.6	2.0	27.4
CTF-0-M ₁	1.5 mL	1 g	72.1	2.1	25.3	0.35	70.6	2.0	27.4
CTF-0-M ₃	2.5 mL	1 g	72.3	2.2	24.8	0.34	70.6	2.0	27.4

Figure S4. C1*s* XPS spectra with applied peak and cumulative fits of CTF-0-I, CTF-0- M_1 , CTF-0- M_2 , and CTF-0- M_3 .

Figure S5. N1s XPS spectra with applied peak and cumulative fits of CTF-0-I, CTF-0- M_1 , CTF-0- M_2 , and CTF-0- M_3 .

Figure S6. XPS survey spectra of CTF-0-I.

Figure S7. Zn 2p XPS spectrum of CTF-0-I

Figure S8. Log-linear plot of time-resolved photoluminance

Figure S9. Triple-exponential fits to PL kinetics

Figure S10. Fitting parameters of PL kinetics

Sample	τ_1 (contribution) / ns (%)	$ au_2$ (contribution) / ns (%)	τ_3 (contribution) / ns (%)	y ₀ / ns	τ _{average} / ns
CTF-0-I	0.41 (52)	1.25 (40)	4.66 (8)	17.0	1.09
CTF-0-M ₁	0.54 (48)	1.59 (42)	4.58 (9)	16.6	1.34
CTF-0-M ₂	0.50 (43)	1.53 (42)	4.82 (11)	30.4	1.39
CTF-0-M ₃	0.39 (33)	1.27 (52)	4.32 (15)	30.7	1.44

Table S2 Fitting parameters of PL kinetics

 y_0 represents y-offset which can be interpreted as a long-lived PL component with timeconstant.

Figure S11. XRD patterns (a) and FTIR spectra (b) of $CTF-0-M_2$ before and after photocatalytic reactions.

Figure S12. (a) Apparent quantum yield (AQY) for oxygen generation and (b) Stability test of CTF-0-I under ambient conditions.

Figure S13. XRD patterns (a) and FTIR spectra (b) of CTF-0-I before and after photocatalytic water oxidation reactions.

Figure S14. XPS survey spectra of CTF-0-I before and after photocatalytic reactions (a) and Ag 3d XPS spectra of CTF-0-I after photocatalytic reaction (b). Charge referenced to adventitious C1s peak at 284.8 eV.0

Polvmer	Amount of	TCB	Nitrile to benzene		
j	T · · 1				
	Lewis acid		ratio		
OTE O I	0.0 -	1 -	0.01		
C1F-0-1	0.9 g	Ig	0.91		
CTE O M	2T	1 ~	1.02		
$CIF-0-M_2$	2 mL	Ig	1.23		
	1.5.1	1	0.70		
$CTF-0-M_1$	1.5 mL	lg	0.79		
CTF-0-Ma	2.5 mI	1 σ	0.15		
		15	0.15		
	1				

Table S3. Nitrile rings to benzene rings ratio according to the ${}^{13}C$ ssNMR spectra of the polymers CTF-0-I, CTF-0-M₁, CTF-0-M₂ and CTF-0-M₃.

Figure S15. The CTF-0 with the unreacted CN terminals. The model was built on a 2×2 supercell with distracting one 1,3,5-tricyanobenzene group.

Figure S16. (a)The projected Density of States of different N in the CTF-0 with nitrile framework. The dot line represents the Fermi level. (b)The calculated band alignments of pristine CTF-0 and CTF-0 with nitrile terminals in the framework.

Table S4. The detailed parameters for calculating AQY data.

AQY of Hydrogen evolution							
wavelength(nm)	365	420	500	600			
light intensity (mw/cm ²)	1.58	1.25	1.82	1.93			
the amount of gas (µmol)	18.7	11.96	5.08	1.94			
AQY (%)	10.98	7.72	1.89	0.57			
AQY of Oxygen evolution							
wavelength(nm)	365	420					
light intensity (mw/cm ²)	1.16	1.01					
the amount of gas (µmol)	9.17	3.25					
AQY (%)	14.59	5.21					
Both reactions have the same irradiation time and area							
irradiation area(cm ²)	19.63						
irradiation time(s)	3600						