Supporting Information

Discovery of novel PDE9A inhibitors with antioxidant activity for treatment of Alzheimer's disease

Chen Zhang^{a, †}, Qian Zhou^{a, †}, Xu-Nian Wu^{a,}, Ya-Dan Huang^{a,}, Jie Zhou^{a,}, Zengwei Lai^{a,*}, Yinuo Wu^{a,*} and Hai-Bin Luo ^{a, b}

Content

1.	Figure S1-S8 and Table S1	S2
2	¹ HNMR and ¹³ CNMR of compounds 1a-11 . 2 and 3	SC

^a School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China

^b Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China

^c State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China

[†] These authors contribute equally.

^{*}Corresponding authors: wyinuo3@mail.sysu.edu.cn (Y. Wu). or 2860879@sina.com (Z. Lai)

Figure S1: Designed compounds with different linkers.

Table S1. The Docking Score values and IC₅₀ of compounds 1a-1l, 2, and 3.

Compound	Docking Score ^a	IC ₅₀ ± SD (nM) ^b
3	3.7284	>500°
1e	5.6790	>200°
1 a	5.8646	126 ± 15
11	6.2419	57±4
1k	6.3890	130±6
1d	6.7393	83± 11
1b	6.9738	64± 2
1 j	7.0099	186±7
1h	7.1075	56±7
2	7.1897	25±4
1f	7.2400	190±7
1c	7.2997	65± 4
1i	7.8117	133±22
1g	8.6352	63± 3

^a Docking Score values are given by the total_score of Surflex-Dock method embedded in Tripos Sybyl 2.0.

 $^{^{\}rm c}$ The IC₅₀ values of **1e** and **3** are treated as 200 and 500 nM for the correlation with Docking Score values.

Fig. S2. The correlation between Docking Score values and IC_{50} values of compound **1a-1l**, **2**, and **3**.

 $^{^{\}text{b}}\,\text{IC}_{50}$ values are given as the mean of three independent determinations.

Figure S3: Binding modes of compound 1a, 1c, 1d and 1e.

Figure S4: Binding modes of compounds 1b, 1j, 1k and 1l.

Figure S5: Binding modes of compounds 1f, 1g, 1h and 1i.

Figure S6: Binding modes of compounds 2 and 3.

Figure S7: The RMSD plots of compounds 1h and 2.

Figure S8: Cell viability of compounds 1h and 2. A) without cell and compounds A) without cell but compounds were added at $100\mu M$

¹H and ¹³C NMR of **M-6**

¹H and ¹³C NMR of **1c**

¹H and ¹³C NMR of **1d**

¹H and ¹³C NMR of **1e**

 ^{1}H and ^{13}C NMR of $\mathbf{1f}$

¹H and ¹³C NMR of **1h**

¹H and ¹³C NMR of **1i**

¹H and ¹³C NMR of **11**

¹H and ¹³C NMR of 3

