Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material

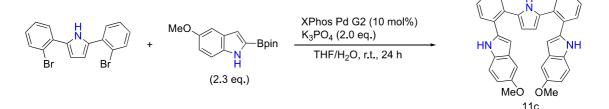
Facile synthesis of fluorescent hetero[8]circulene analogues with

tunable solubilities and optical properties

Yusuke Matsuo, Fengkun Chen, Koki Kise, Takayuki Tanaka* and Atsuhiro Osuka

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

E-mail: taka@kuchem.kyoto-u.ac

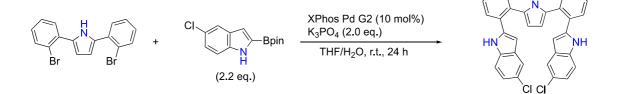

Contents

1. Instrumentation and Materials	2
2. Experimental Section-	
3. NMR Spectra	11
4. Mass Spectra-	27
5. DFT Calculations	
6. X-Ray Crystallographic Details	43
7. Absorption and Emission Spectra-	51
8. Fluorescence Lifetime	
9. Solubility	61
10. Optical Resolution	62
11. Supporting References	64

1. Instrumentation and Materials

Commercially available solvents and reagents were used without further purification unless otherwise noted. 2,5-bis(2-bromophenyl)-1*H*-pyrrole^[S1], 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-1*H*-indole^[S2] and 5-chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole^[S2] were prepared according to the reported procedures, respectively. Dry dichloromethane was purchased from Wako Pure Chemical Industries, Ltd. Dry tetrahydrofuran (THF) was obtained by passing through alumina under N_2 in a solvent purification system. The spectroscopic grade solvents were used as solvents for all spectroscopic studies. Silica gel column chromatography was performed on Wako gel C-300. Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silica gel 60 F₂₅₄ (Merck 5554). UV-visible absorption spectra were recorded on a Shimadzu UV-3600. Fluorescence spectra were recorded on a JASCO FP-8500 spectrometer. Absolute fluorescence quantum yields were determined on a HAMAMATSU C9920-02S. Fluorescence lifetime was recorded on a Hamamatsu Photonics Quantaurus-Tau C11367. ¹H and ¹³C NMR spectra were recorded on a JEOL ECA-600 spectrometer (operating as 600 MHz for ¹H and 150 MHz for ¹³C) and chemical shifts were reported as the δ scale in ppm relative to internal standards CHCl₃ (δ = 7.26 ppm for ¹H, 77.16 ppm for ¹³C), acetone (δ = 2.05 ppm for ¹H, δ = 29.84 ppm for ¹³C), THF (δ = 25.31 ppm for ¹³C) and DMSO (δ = 2.50 ppm for ¹H). High-resolution atmosphericpressure-chemical-ionization time-of-flight mass-spectrometry (HR-APCI-TOF-MS) was recorded on a BRUKER micrOTOF model using positive mode. High-resolution matrix-assisted-laser-dissociationionization time-of-flight mass spectrometry (HR-MALDI-TOF-MS) was recorded on a BRUKER ultrafleXterme MALDI-TOF/TOF spectrometer using matrix. Single-crystal diffraction analysis data were collected at -180 °C with a Rigaku XtaLAB P200 by using graphite monochromated Cu-K α radiation (λ = 1.54187 Å). The structures were solved by direct methods (SHELXT-2014/5) and refined with full-matrix least squares technique (SHELXT-2014/7)[S3]

2. Experimental Section

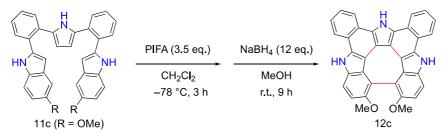

2,5-bis(2-(5-methoxy-1*H*-indol-2-yl)phenyl)-1*H*-pyrrole (11c)

To a 500 mL three-necked round bottom flask, XPhos Pd G2 (472 mg, 0.60 mmol, 10 mol%), 2,5-bis(2-bromophenyl)-1*H*-pyrrole (2.26 g, 6.0 mmol) and 5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (3.69 g, 13.5 mmol, 2.3 eq.) were charged. The reaction flask was evacuated and purged with argon three times. After the mixture was dissolved in dry THF (120 mL), degassed aqueous 0.5 M tripotassium phosphate solution (120 mL) was added via syringe and the reaction mixture was stirred at room temperature for 24 h. After quenched with saturated aqueous ammonium chloride solution, the mixture was extracted with ethyl acetate three times and the combined organic layers were washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, the residue was purified by column chromatography on silica with ethyl acetate/*n*-hexane (v/v = 1/3) as eluent to give **11c** (2.22 g, yield: 74%) as white solids.

¹H NMR (600 MHz, acetone- d_6) δ = 9.96 (s, 2H, NH), 9.38 (s, 1H, NH), 7.50 (dd, J_1 = 7.3, J_2 = 1.4 Hz, 2H, phenylene-H), 7.22–7.28 (m, 8H, phenylene/indole-H), 7.06 (d, J = 2.3 Hz, indole-H), 6.78 (dd, J_1 = 8.7, J_2 = 2.3 Hz, 2H, indole-H), 6.34 (d, J = 2.3 Hz, 2H, pyrrole-H), 5.94 (d, J = 2.8 Hz, 2H, indole-H) and 3.81 (s, 6H, -O-C H_3) ppm

¹³C NMR (151 MHz, acetone- d_6) δ = 155.22, 139.37, 132.82, 132.75, 132.17, 131.50, 131.44, 130.11, 129.14, 128.91, 127.20, 112.85, 112.73, 110.32, 102.53, 102.34 and 55.85 ppm

HR-APCI-TOF-MS: *m/z* calcd for C₃₄H₂₇N₃O₂ *M*⁺: 509.2103; found: 509.2098.

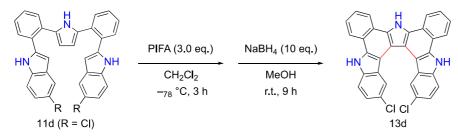

11**d**

2,5-bis(2-(5-chloro-1*H*-indol-2-yl)phenyl)-1*H*-pyrrole (11d)

To a 300 mL three-necked round bottom flask, XPhos Pd G2 (244 mg, 0.31 mmol, 10 mol%), 2,5-bis(2bromophenyl)-1*H*-pyrrole (1.17 g, 3.1 mmol) and 5-chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-1*H*-indole (1.89 g, 6.8 mmol, 2.2 eq.) were charged. The reaction flask was evacuated and purged with argon three times. After the mixture was dissolved in dry THF (50 mL), degassed 0.5 M aqueous tripotassium phosphate solution (50 mL) was added via syringe and the reaction mixture was stirred at room temperature for 24 h. After quenched with saturated aqueous ammonium chloride solution, the mixture was extracted with ethyl acetate three times and the combined organic layers were washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, the residue was purified by column chromatography on silica with dichloromethane/*n*-hexane (v/v = 1/1) as eluent to give **11d**. **11d** were used without further purification.

¹H NMR (600 MHz, acetone- d_6) $\delta = 10.31$ (s, 2H, NH), 9.55 (s, 1H, NH), 7.51-7.56 (m, 4H, phenylene/indole-H), 7.38 (d, J = 8.7 Hz, 2H, indole-H), 7.26–7.34 (m, 6H, phenylene-H), 7.10 (dd, $J_1 = 8.7$, $J_2 = 1.8$ Hz, 2H, indole-H), 6.39 (d, J = 2.3 Hz, 2H, pyrrole-H) and 5.89 (d, J = 2.3 Hz, 2H, indole-H) ppm

¹³C NMR (151 MHz, acetone-*d*₆) δ = 140.67, 136.05, 132.95, 132.11, 131.51, 130.99, 130.79, 129.48, 129.25, 127.45, 125.48, 122.39, 120.20, 113.40, 110.52 and 102.13 ppm HR-APCI-TOF-MS: *m/z* calcd for C₃₂H₂₁N₃³⁵Cl₂ *M*⁺: 517.1082; found: 517.1107.

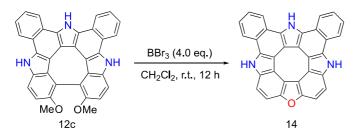

dimethoxy-substituted dibenzotriaza-quasi-[8]circulene 12c

To a 300 mL three-necked round bottom flask were charged **11c** (583 mg, 1.1 mmol) and dry dichloromethane (85 mL) under argon, which was cooled to -78 °C. Bis(trifluoroacetoxy)iodobenzene (PIFA, 1.72 g, 4.0 mmol, 3.5 eq.) was then added and the reaction mixture was kept at -78 °C for 3 h. Then, the reaction system was allowed to warm to ambient temperature and stirred for 45 min. Next, sodium borohydride (509 mg, 13 mmol, 12 eq.) and methanol (36 mL) were added and the reaction was stirred for 9 h. The mixture was extracted with dichloromethane three times and the combined organic layers were washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvent *in vacuo*, the residue was purified by recrystallization with dichloromethane/*n*-hexane to afford **12c** (558 mg, yield: 97%) as green solids.

¹H NMR (600 MHz, DMSO- d_6) δ = 12.48 (s, 1H, NH), 11.95 (s, 2H, NH), 8.84 (d, J = 8.3 Hz, 2H, phenylene-H), 8.59 (d, J = 8.3 Hz, 2H, phenylene-H), 7.71 (t, J = 7.6 Hz, 2H, phenylene-H), 7.64 (t, J = 7.6 Hz, 2H, phenylene-H), 7.59 (d, J = 8.7 Hz, 2H, indole-H), 7.17 (d, J = 8.7 Hz, 2H, indole-H) and 3.60 (s, 6H, -O-C H_3) ppm.

¹³C NMR (151 MHz, THF- d_8) δ = 157.37, 138.23, 133.87, 129.04, 125.43, 124.49, 123.11, 123.01, 122.89, 122.49, 122.20, 120.23, 115.67, 115.25, 113.15, 110.90 and 59.02 ppm

HR-APCI-TOF-MS: *m/z* calcd for C₃₄H₂₁N₃O₂ *M*⁺: 503.1625; found: 503.1628.

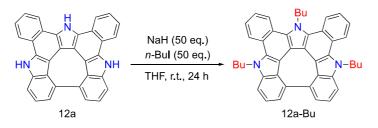

dichloro-substituted dibenzotriaza[7]helicene 13d

To a 200 mL three-necked round bottom flask were charged **11d** (156 mg, 0.30 mmol) and dry dichloromethane (50 mL) under argon, which was cooled to -78 °C. Bis(trifluoroacetoxy)iodobenzene (PIFA, 387 mg, 0.90 mmol, 3.0 eq.) was then added and the reaction mixture was kept at -78 °C for 3 h. Then, the reaction system was allowed to warm to ambient temperature and stirred for 45 min. Next, sodium borohydride (114 mg, 3.0 mmol, 10 eq.) and methanol (10 mL) were added and the reaction was stirred for 9 h. The mixture was extracted with dichloromethane three times and the combined organic layers were washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvent *in vacuo*, the residue was purified by recrystallization from dichloromethane/*n*-hexane to afford **13d** (147 mg, yield: 95%) as pale yellow solids.

¹H NMR (600 MHz, acetone- d_6) $\delta = 12.03$ (s, 1H, NH), 11.50 (s, 2H, NH), 8.84 (d, J = 8.3 Hz, 2H, phenylene-H), 8.65 (d, J = 8.3 Hz, 2H, phenylene-H), 8.10 (d, J = 2.0 Hz, 2H, indole-H), 7.74 (t, J = 7.3 Hz, 2H, phenylene-H), 7.67 (d, J = 8.7 Hz, 2H, indole-H) and 7.30 (dd, $J_1 = 8.7$ Hz, $J_2 = 2.0$ Hz, 2H, indole-H) ppm.

¹³C NMR (151 MHz, THF- d_8) δ = 138.37, 134.06, 131.44, 126.26, 126.09, 126.03, 125.23, 124.07, 123.89, 123.13, 122.92, 122.76, 122.03, 114.18, 113.79 and 112.17 ppm.

HR-APCI-TOF-MS: m/z calcd for $C_{32}H_{17}N_3^{35}Cl_2$ M^+ : 513.0784; found: 513.0794.

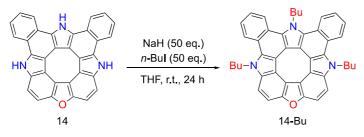


dibenzotriazaoxa[8]circulene 14

To a 1 L four-necked round bottom flask, **12c** (503 mg, 1.0 mmol) was charged. The reaction flask was evacuated and purged with argon three times. After **12c** was dissolved in dry dichloromethane (400 mL), 1.0 M boron tribromide solution in dichloromethane (4.0 mL, 4.0 mmol, 4.0 eq.) was added via syringe and the reaction mixture was stirred at room temperature for 12 h. After quenched with saturated aqueous sodium hydrogen carbonate solution, the mixture was extracted with THF three times and the combined organic layers were washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, the residue was purified by column chromatography on silica with THF/*n*-hexane (v/v = 2/1) as eluent to give **14** (331 mg, yield: 73%) as yellow solids.

¹H NMR (600 MHz, DMSO-*d*₆) δ = 12.93 (s, 1H, NH), 12.64 (s, 2H, NH), 9.09 (d, *J* = 8.3 Hz, 2H, phenylene-H), 8.82 (d, *J* = 7.8 Hz, 2H, phenylene-H), 7.98 (d, *J* = 8.7 Hz, 2H, indole-H), 7.96 (d, *J* = 8.7 Hz, 2H, indole-H) 7.83 (t, *J* = 7.6 Hz, 2H, phenylene-H) and 7.77 (t, *J* = 7.6 Hz, 2H, phenylene-H) ppm. ¹³C NMR (151 MHz, THF-*d*₈) δ = 152.37, 135.60, 133.26, 130.52, 125.52, 124.92, 123.20, 123.10, 122.11, 116.93, 116.34, 113.46, 112.62, 109.97 and 107.94 ppm.

HR-MALDI-TOF-MS: *m/z* calcd for C₃₂H₁₅N₃O *M*⁺: 457.1210; found: 457.1218.

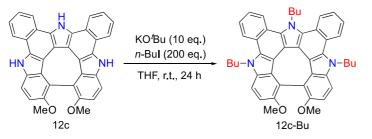

tri-N-butyl-substituted dibenzotriaza-quasi-[8]circulene 12a-Bu

To a 30 mL Schlenk tube, **12a** (17.7 mg, 0.040 mmol), sodium hydride (80.0 mg, 60% dispersion in mineral oil, 2.0 mmol, 50 eq.) were charged and the mixture was dissolved in dry THF (50 mL) under argon atmosphere. To this solution was added *n*-iodobutane (0.23 mL, 2.0 mmol, 50 eq.) via syringe and the reaction mixture was stirred at room temperature for 24 h. After quenched with saturated aqueous ammonium chloride solution, the mixture was extracted with ethyl acetate three times and the combined organic layers were washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, the residue was purified by column chromatography on silica with ethyl acetate/*n*-hexane (v/v = 1/10) as eluent to give **12a-Bu** (10.5 mg, yield: 43%) as yellow solids.

¹H-NMR (600 MHz, DMSO- d_6) $\delta = 8.72$ (d, J = 8.3Hz, 2H, phenylene-H), 8.70 (d, J = 8.3Hz, 2H, phenylene-H), 7.93 (dd, $J_1 = 6.9$, $J_2 = 2.3$ Hz, 2H, indole-H), 7.79 (t, J = 7.0 Hz, 2H, phenylene-H), 7.74 (t, J = 7.0 Hz, 2H, phenylene-H), 7.57–7.62 (m, 4H, indole-H), 5.22 (t, J = 7.3 Hz, 2H, N-C H_2 -), 4.92 (t, J = 7.8 Hz, 4H, N-C H_2 -), 2.05 (m, 4H, -C H_2 -C H_2 -C H_2 -), 1.53 (tq, J = 14.9 Hz, 4H, -C H_2 -C H_2 -C H_3), 1.41–1.46 (m, 2H, -C H_2 -C H_2 -C H_2 -), 1.00 (t, J = 7.3 Hz, 6H, -C H_3), 0.65–0.70 (tq, J = 14.9, 2H, -C H_2 -C H_2 -C H_3) and 0.45 (t, J = 7.3 Hz, 3H, -C H_3) ppm.

¹³C NMR (151 MHz, CDCl₃) δ = 141.70, 136.49, 134.24, 133.34, 127.22, 124.61, 124.02, 123.96, 123.80, 123.71, 123.52, 121.63, 119.71, 117.90, 113.97, 108.85, 52.56, 46.83, 32.53, 31.18, 20.56, 19.94, 14.12 and 13.68 ppm.

HR-APCI-TOF-MS: m/z calcd for C₄₄H₄₁N₃ M^+ : 611.3281; found: 611.3295.


tri-N-butyl-substituted dibenzotriazaoxa[8]circulene 14-Bu

To a 200 mL three-necked round bottom flask, **14** (45.8 mg, 0.10 mmol), sodium hydride (200 mg, 60% dispersion in mineral oil, 5.0 mmol, 50 eq.) were charged and the mixture was dissolved in dry THF (60 mL) under argon atmosphere. To the mixture was added *n*-iodobutane (0.57 mL, 5.0 mmol, 50 eq.) via syringe and the reaction mixture was stirred at room temperature for 24 h. After quenched with saturated aqueous ammonium chloride solution, the mixture was extracted with ethyl acetate three times and the combined organic layers were washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, the residue was purified by recrystallization from dichloromethane/*n*-hexane to give **14-Bu** (48.7 mg, yield: 78%) as yellow solids.

¹H NMR (600 MHz, CDCl₃) δ = 8.80 (d, *J* = 8.3 Hz, 2H, phenylene-H), 8.74 (d, *J* = 8.3 Hz, 2H, phenylene-H), 7.86 (d, *J* = 8.7 Hz, 2H, indole-H), 7.76 (d, *J* = 8.7 Hz, 2H, indole-H), 7.67–7.73 (m, 4H, phenylene-H), 5.21 (t, *J* = 7.3 Hz, 2H, N-CH₂-), 5.00 (t, *J* = 7.8 Hz, 4H, N-CH₂-), 2.23–2.28 (m, 4H, -CH₂-CH₂-CH₂-), 1.67 (tq, *J* = 14.9 Hz, 4H, -CH₂-CH₂-CH₃), 1.14–1.22 (m, 2H, -CH₂-CH₂-CH₂-), 1.11 (t, *J* = 7.3 Hz, 6H, -CH₃), 0.67 (tq, *J* = 14.9 Hz, 2H, -CH₂-CH₂-CH₃) and 0.39 (t, *J* = 7.3 Hz, 3H, -CH₃) ppm.

¹³C NMR (151 MHz, CDCl₃) δ = 151.39, 137.45, 136.45, 132.56, 124.79, 124.21, 124.10, 123.88, 123.17, 121.94, 117.29, 116.10, 114.39, 112.86, 107.85, 107.47, 54.31, 46.84, 32.48, 30.61, 20.55, 19.94, 14.12 and 13.51 ppm.

HR-APCI-TOF-MS: *m/z* calcd for C₄₄H₃₉N₃O *M*⁺: 625.3070; found: 625.3088.

tri-N-butyl-dimethoxy-substituted dibenzotriaza-quasi-[8]circulene 12c-Bu

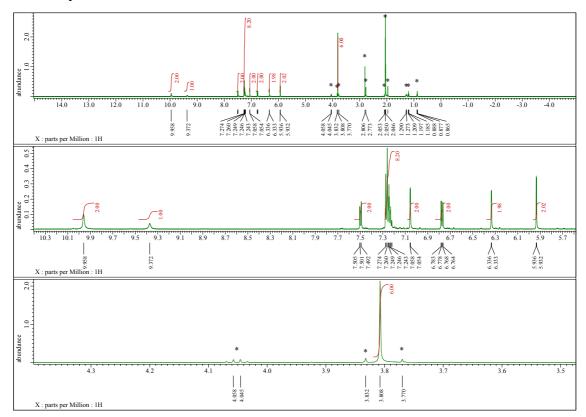
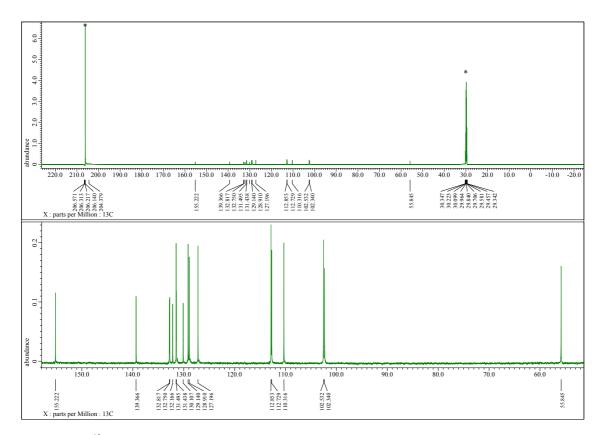
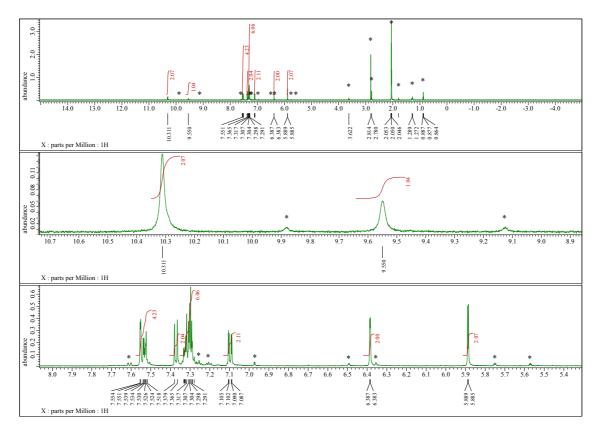
To a 200 mL three-necked round bottom flask, **12c** (50.3 mg, 0.10 mmol) was charged and dissolved in dry THF (60 mL) under argon atmosphere. To the mixture was added *n*-iodobutane (2.3 mL, 20 mmol, 200 eq.) and 1 M potassium *tert*-butoxide in THF (1.0 mL, 1.0 mmol, 10 eq.) via syringe and the reaction mixture was stirred at room temperature for 24 h. After quenched with saturated aqueous ammonium chloride solution, the mixture was extracted with ethyl acetate three times and the combined organic layers were washed with water, brine and dried over anhydrous sodium sulfate. After removal of the solvents *in vacuo*, the residue was purified by column chromatography on silica with ethyl acetate/*n*-hexane (v/v = 1/4) as eluent to give **12c-Bu** (30.7 mg, yield: 46%) as yellow solids.

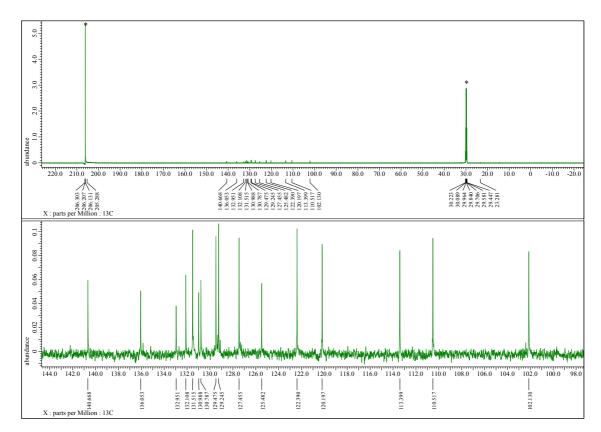
¹H NMR (600 MHz, DMSO- d_6) $\delta = 8.64$ (t, J = 9.2 Hz, 4H, phenylene-H), 7.69–7.76 (m, 6H, phenylene/indole-H), 7.25 (d, J = 8.7 Hz, 2H, indole-H), 5.22 (m, 1H, N-CH₂-), 5.10 (m, 1H, N-CH₂-), 4.73–4.84 (m, 4H, N-CH₂-), 1.93–2.02 (m, 4H, -CH₂-CH₂-CH₂-), 1.43–1.62 (m, 6H, -CH₂-CH₂-CH₂-/-CH₂-CH₂-CH₃), 0.98 (t, J = 7.3 Hz, 6H, -CH₃), 0.79 (tq, J = 14.9 Hz, 2H, -CH₂-CH₂-CH₃) and 0.53 (t, J = 7.3 Hz, 3H, -CH₃) ppm.

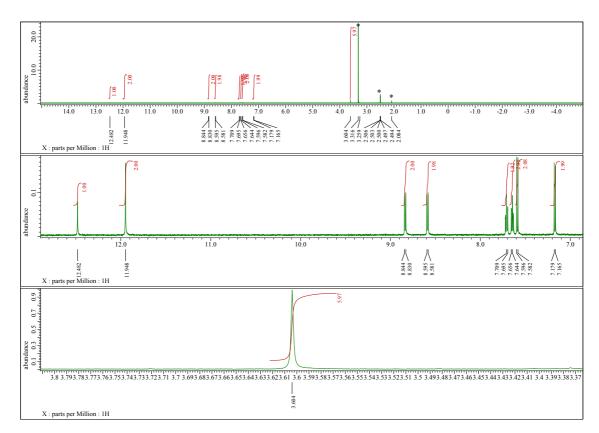
¹³C NMR (151 MHz, CDCl₃) δ = 156.01, 138.38, 134.32, 132.81, 124.56, 124.02, 123.79, 123.60, 121.93, 121.18, 119.41, 117.77, 114.70, 112.87, 108.84, 59.28, 51.67, 46.86, 32.74, 31.37, 20.59, 19.97, 14.13 and 13.75 ppm.

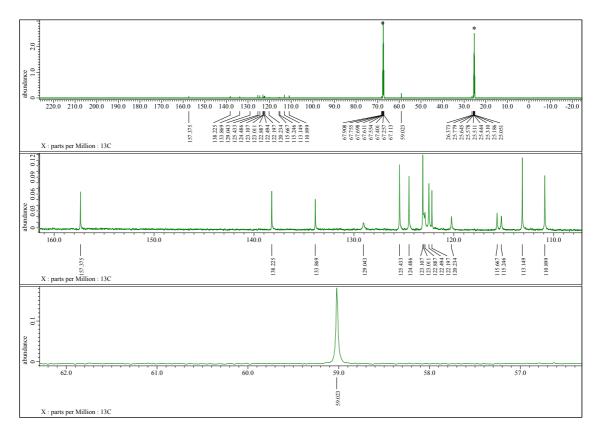
HR-APCI-TOF-MS: m/z calcd for $C_{46}H_{45}N_3O_2$ M^+ : 671.3497; found: 671.3506.

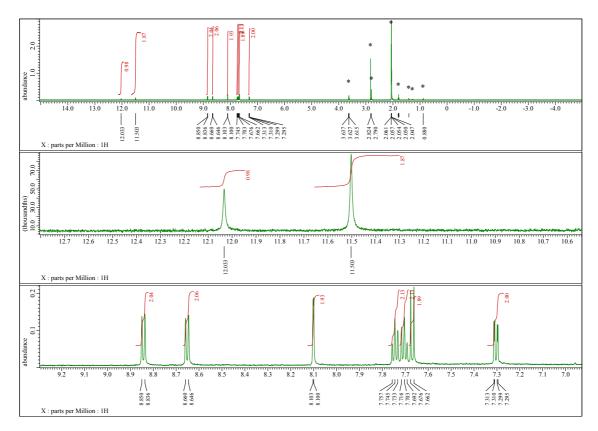
3. NMR Spectra

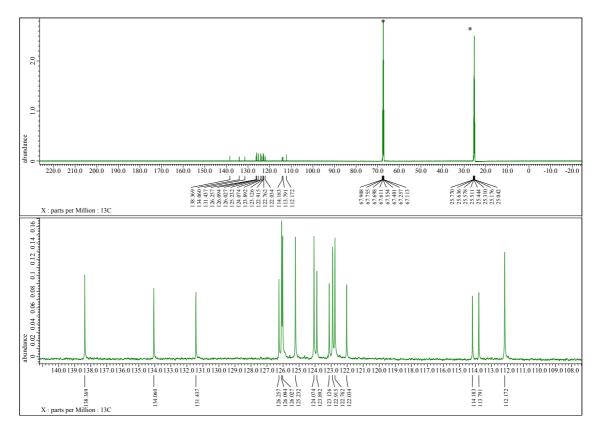




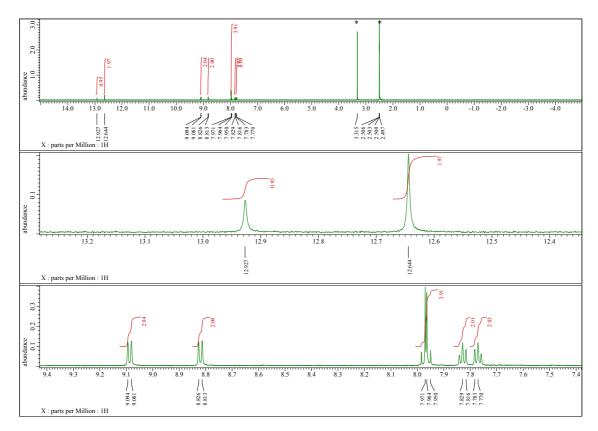

Figure S3-1. ¹H NMR spectrum of 11c in acetone- d_6 at room temperature. Peaks with * are due to residual solvents and impurities.

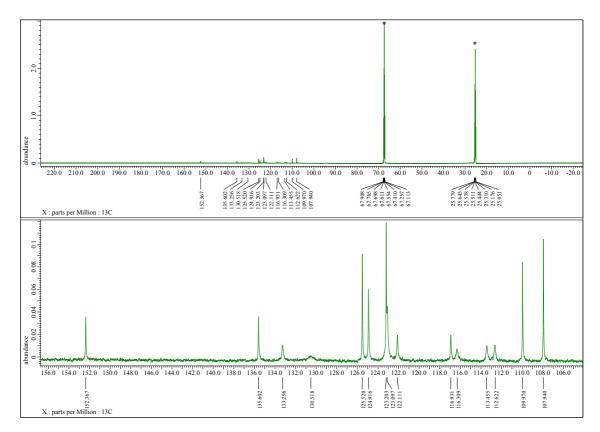

Figure S3-2. ¹³C NMR spectrum of **11c** in acetone- d_6 at room temperature. Peaks with * are due to residual solvent.

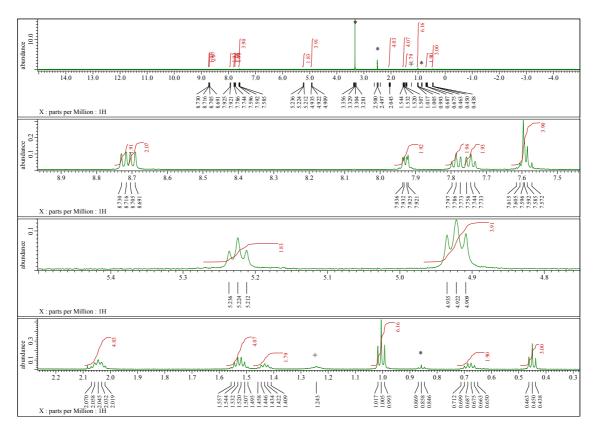

Figure S3-3. ¹H NMR spectrum of **11d** in acetone- d_6 at room temperature. Peaks with * are due to residual solvents and impurities.

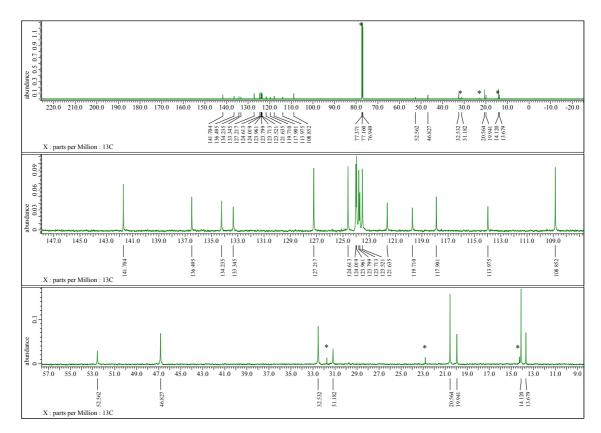

Figure S3-4. ¹³C NMR spectrum of **11d** in acetone- d_6 at room temperature. Peaks with * are due to residual solvent.

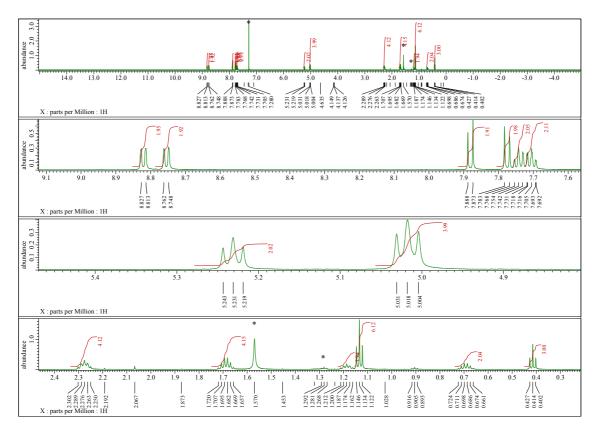

Figure S3-5. ¹H NMR spectrum of **12c** in DMSO- d_6 at room temperature. Peaks with * are due to residual solvents and impurities.

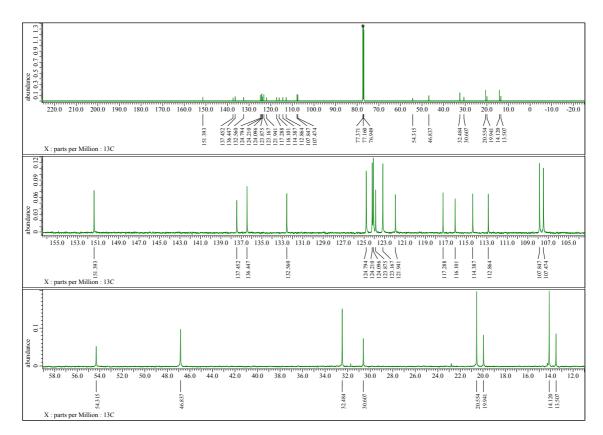

Figure S3-6. ¹³C NMR spectrum of **12c** in THF- d_8 at room temperature. Peaks with * are due to residual solvent.

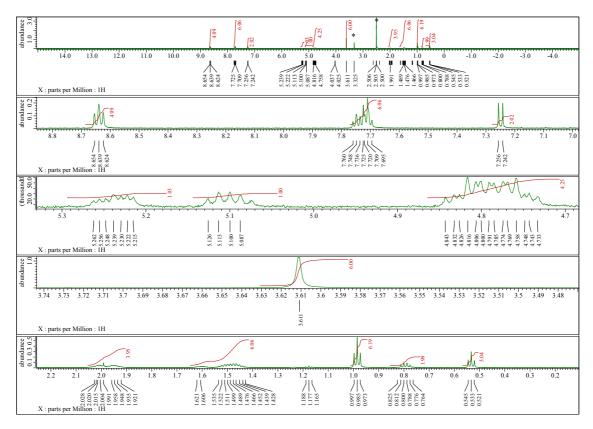

Figure S3-7. ¹H NMR spectra of **13d** in acetone- d_6 at room temperatures. Peaks with * are due to residual solvents and impurities.


Figure S3-8. ¹³C NMR spectrum of **13d** inTHF- d_8 at room temperature. Peaks with * are due to residual solvents.


Figure S3-9. ¹H NMR spectrum of **14** in DMSO- d_6 at room temperature. Peaks with * are due to residual solvents.


Figure S3-10. ¹³C NMR spectra of **14** in THF- d_8 at room temperatures. Peaks with * are due to residual solvents.


Figure S3-11. ¹H NMR spectrum of **12a-Bu** in DMSO- d_6 at room temperature. Peaks with * are due to residual solvents and impurities.


Figure S3-12. ¹³C NMR spectrum of **12a-Bu** in CDCl₃ at room temperature. Peaks with * are due to residual solvents.

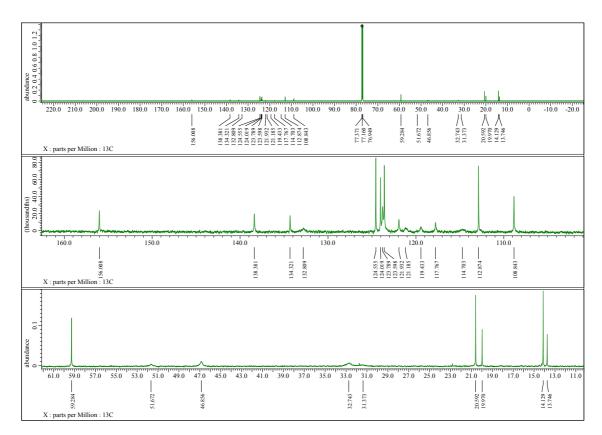

Figure S3-13. ¹H NMR spectrum of **14-Bu** in CDCl₃ at room temperature. Peaks with * are due to residual solvents and impurities.

Figure S3-14. ¹³C NMR spectra of **14-Bu** in CDCl₃ at room temperature. Peak with * are due to residual solvent.

Figure S3-15. ¹H NMR spectrum of **12c-Bu** in DMSO- d_6 at room temperature. Peaks with * are due to residual solvents and impurities.

Figure S3-16. ¹³C NMR spectrum of **12c-Bu** in CDCl₃ at room temperature. Peak with * are due to residual solvent.

4. Mass Spectra

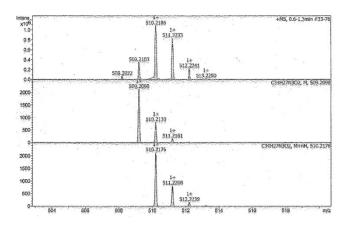


Figure S4-1. APCI-TOF-mass spectra of 11c (Top; observed. Bottom; calculated).

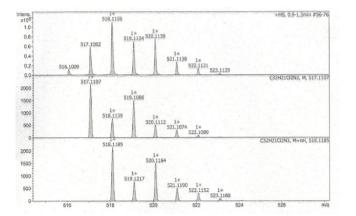


Figure S4-2. APCI-TOF-mass spectra of 11d (Top; observed. Bottom; calculated).

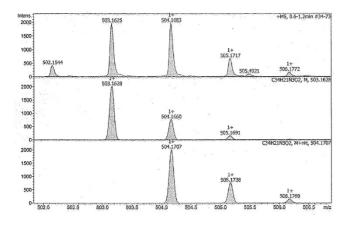


Figure S4-3. APCI-TOF-mass spectra of 12c (Top; observed. Bottom; calculated).

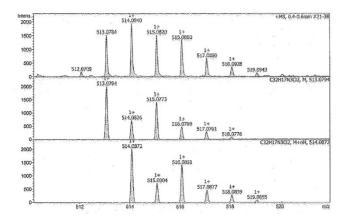
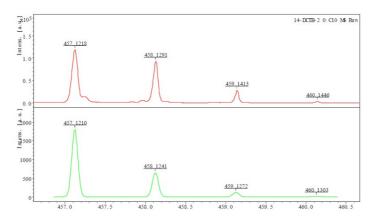
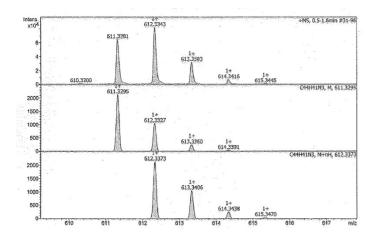
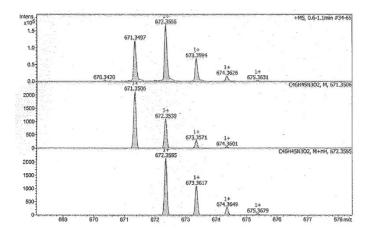


Figure S4-4. APCI-TOF-mass spectra of 13d (Top; observed. Middle; simulated as $[M]^+$, Bottom; simulated as $[M+H]^+$).

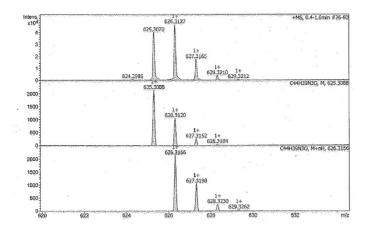

Figure S4-5. HR-MALDI-TOF-mass spectra of 14 (Top; observed. Bottom; simulated).

Figure S4-6. APCI-TOF-mass spectra of **12a-Bu** (Top; observed. Middle; simulated as [M]⁺, Bottom; simulated as [M+H]⁺).

Figure S4-7. APCI-TOF-mass spectra of **12c-Bu** (Top; observed. Middle; simulated as [M]⁺, Bottom; simulated as [M+H]⁺).

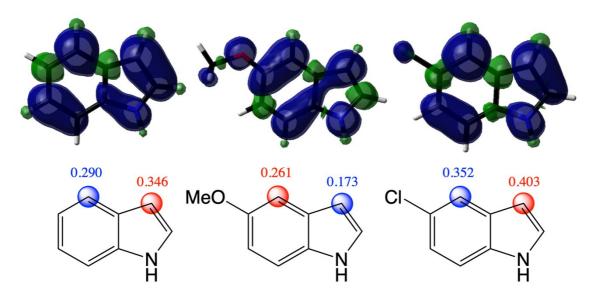
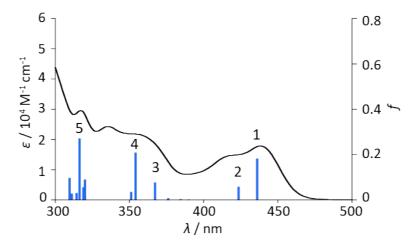


Figure S4-8. APCI-TOF-mass spectra of **14-Bu** (Top; observed. Middle; simulated as [M]⁺, Bottom; simulated as [M+H]⁺).


*For **11c**, **11d**, **12c**, **13d**, **12a-Bu**, **12c-Bu** and **14-Bu**, the observed mass peaks were likely considered to be a mixture of [M] and [M+H].

5. DFT Calculations

All calculations were carried out using the Gaussian 16 program. All structures were fully optimized without any symmetry restriction. The calculations were performed by the density functional theory (DFT) method with restricted B3LYP level^[S5], employing a basis set 6-311G(d,p) for all atoms. Spin density distributions have been calculated at the UB3LYP/6-311G(d,p) level. NICS^[S6] values have been obtained with the GIAO method at the B3LYP/6-311G(d,p) level. Excitation energies and oscillator strengths were calculated with the TD-SCF method at the B3LYP level.

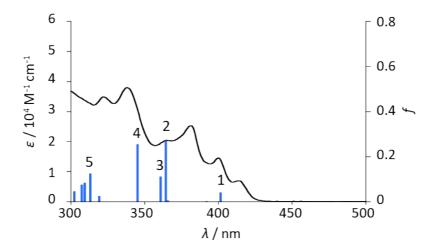

Figure 5-1. Spin density distribution of the radical cations of 1H-indole, 5-methoxy-1H-indole and 5-chloro-1H-indole calculated at the UB3LYP/6-311G(d,p) level.

Figure S5-2. Experimental molar absorption in THF and calculated oscillator strengths *f* on the basis of optimized structure of **12c**.

No.	Wavelength (nm)	coefficients	Electronic Transition	f
1	436.13	0.69255	131 HOMO \rightarrow 132 LUMO	0.1816
2	423.65	-0.12399 0.68703	129 HOMO-2 → 134 LUMO+2 130 HOMO-1 → 132 LUMO	0.0568
3	376.15	0.12335 0.53834 0.42423	128 HOMO-3 → 132 LUMO 130 HOMO-1 → 133 LUMO+1 131 HOMO → 134 LUMO+2	0.0065
4	354.13	0.67397 -0.13094	128 HOMO-3 → 132 LUMO 131 HOMO → 134 LUMO+2	0.2073
5	316.44	-0.16005 -0.40783 0.52152 -0.10859	127 HOMO-4 → 132 LUMO 128 HOMO-3 → 134 LUMO+2 129 HOMO-2 → 133 LUMO+1 131 HOMO → 135 LUMO+3	0.2708

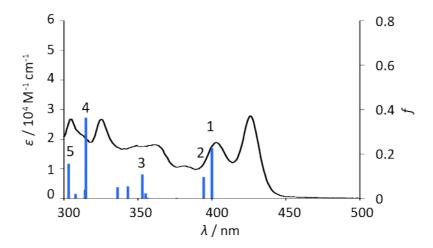

 Table S5-1. Selected calculated electronic transition of 12c at the B3LYP/6-311G(d,p) level.

Figure S5-3. Experimental molar absorption in THF and calculated oscillator strengths *f* on the basis of optimized structure of **13d**.

No.	Wavelength (nm)	coefficients	Electronic Transition	f
1	401.50	0.24013 0.64850	131 HOMO-1 → 134 LUMO+1 132 HOMO → 133 LUMO	0.0400
2	364.30	0.46514 0.40778 0.27637	131 HOMO-1 → 133 LUMO 131 HOMO-1 → 135 LUMO+2 132 HOMO → 134 LUMO+1	0.2690
3	360.88	-0.10383 0.63871 -0.24467 -0.10674	129 HOMO-3 → 133 LUMO 131 HOMO-1 → 134 LUMO+1 132 HOMO → 133 LUMO 132 HOMO → 135 LUMO+2	0.1113
4	345.28	-0.20350 -0.31823 0.53392 -0.23005	130 HOMO-2 → 133 LUMO 131 HOMO-1 → 133 LUMO 131 HOMO-1 → 135 LUMO+2 132 HOMO → 134 LUMO+1	0.2541
5	313.20	0.66192 0.10754 0.13145	129 HOMO-3 → 133 LUMO+1 130 HOMO-2 → 134 LUMO+2 131 HOMO-1 → 136 LUMO+4	0.1244

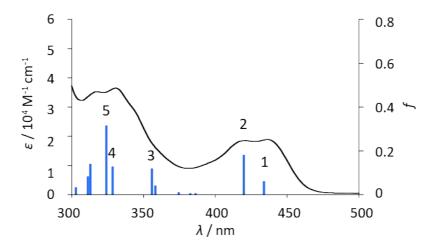
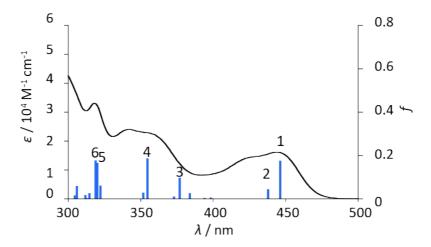

Table S5-2. Selected calculated electronic transition of 13d at the B3LYP/6-311G(d,p) level.

Figure S5-4. Experimental molar absorption in THF and calculated oscillator strengths *f* on the basis of optimized structure of **14**.

No.	Wavelength (nm)	coefficients	Electronic Transition	f
1	399.95	0.13880 0.67662	116 HOMO-2 → 120 LUMO+1 118 HOMO → 119 LUMO	0.2254
2	394.49	0.15531 -0.14463 0.66334	115 HOMO-3 → 119 LUMO 116 HOMO-2 → 121 LUMO+2 117 HOMO-1 → 119 LUMO	0.0948
3	352.92	0.51982 -0.15151 0.42562	115 HOMO-3 → 119 LUMO 117 HOMO-1 → 119 LUMO 117 HOMO-1 → 120 LUMO+1	0.1079
4	314.83	0.44027 0.37606 -0.15875 -0.13933	114 HOMO-4 → 119 LUMO 116 HOMO-2 → 120 LUMO+1 117 HOMO-1 → 121 LUMO+2 118 HOMO → 119 LUMO	0.3625
5	303.17	0.63011 0.10550 0.13167 0.22115	116 HOMO-2 →121 LUMO+2 117 HOMO-1 → 119 LUMO 117 HOMO-1 → 120 LUMO+1 118 HOMO → 123 LUMO+4	0.1552


Table S5-3. Selected calculated electronic transition of 14 at the B3LYP/6-311G(d,p) level.

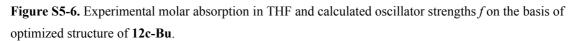
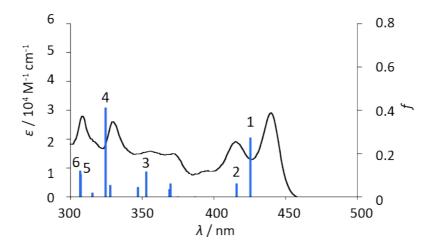


Figure S5-5. Experimental molar absorption in THF and calculated oscillator strengths *f* on the basis of optimized structure of **12a-Bu**.

No.	Wavelength (nm)	coefficients	Electronic Transition	f
1	433.95	-0.10001	161 HOMO-2 \rightarrow 166 LUMO+2	0.0609
		-0.11995	$162 \text{ HOMO-1} \rightarrow 164 \text{ LUMO}$	
		0.68025	$163 \text{ HOMO} \rightarrow 164 \text{ LUMO}$	
2	419.96	0.11086	161 HOMO-2 \rightarrow 165 LUMO+1	0.1809
		0.67303	$162 \text{ HOMO-1} \rightarrow 164 \text{ LUMO}$	
		0.11775	$163 \text{ HOMO} \rightarrow 164 \text{ LUMO}$	
3	355.91	-0.13304	161 HOMO-2 \rightarrow 164 LUMO	0.1184
		-0.17105	161 HOMO-2 \rightarrow 165 LUMO+1	
		-0.38329	$162 \text{ HOMO-1} \rightarrow 165 \text{ LUMO+1}$	
		0.39344	$162 \text{ HOMO-1} \rightarrow 166 \text{ LUMO+2}$	
		-0.16764	163 HOMO \rightarrow 165 LUMO+1	
		-0.32267	$163 \text{ HOMO} \rightarrow 166 \text{ LUMO+2}$	
4	328.58	0.66942	160 HOMO-3 \rightarrow 164 LUMO	0.1280
5	324.14	-0.35689	159 HOMO-4 \rightarrow 164 LUMO	0.3150
		0.55804	161 HOMO-2 \rightarrow 165 LUMO +1	
		-0.10654	$162 \text{ HOMO-1} \rightarrow 164 \text{ LUMO}$	
		0.11546	$162 \text{ HOMO-1} \rightarrow 167 \text{ LUMO+3}$	


Table S5-4. Selected calculated electronic transition of 12a-Bu at the B3LYP/6-311G(d,p) level

No.	Wavelength (nm)	coefficients	Electronic Transition	f
1	446.27	0.69201	179 HOMO \rightarrow 180 LUMO	0.1752
2	437.86	0.68999	178 HOMO-1 \rightarrow 180 LUMO	0.0446
3	376.98	0.13631	175 HOMO-4 \rightarrow 180 LUMO	0.0961
		-0.18227	176 HOMO-3 \rightarrow 180 LUMO	
		-0.18689	177 HOMO-2 \rightarrow 180 LUMO	
		0.58211	178 HOMO-1 \rightarrow 182 LUMO+2	
		-0.21770	$179\text{HOMO} \rightarrow 181\text{LUMO+1}$	
4	354.66	0.56271	176 HOMO-3 \rightarrow 180 LUMO	0.1866
		-0.37071	177 HOMO-2 \rightarrow 180 LUMO	
		0.12156	179 HOMO \rightarrow 182 LUMO+2	
5	319.99	-0.15847	$175 \text{ HOMO-4} \rightarrow 180 \text{ LUMO}$	0.1653
		0.46270	$175\mathrm{HOMO}\text{-}4 \rightarrow 181\mathrm{LUMO}\text{+}1$	
		-0.19140	176 HOMO-3 \rightarrow 181 LUMO+1	
		0.14011	176 HOMO-3 \rightarrow 182 LUMO+2	
		-0.23150	177 HOMO-2 \rightarrow 181 LUMO+1	
		-0.13631	177 HOMO-2 \rightarrow 182 LUMO+2	
		-0.13801	178 HOMO-1 \rightarrow 184 LUMO+4	
		0.27852	$179 \text{ HOMO} \rightarrow 183 \text{ LUMO-3}$	
6	318.90	0.10102	$175 \text{ HOMO-4} \rightarrow 180 \text{ LUMO}$	0.1765
		0.20709	$175\mathrm{HOMO}\text{-}4 \rightarrow 181\mathrm{LUMO}\text{+}1$	
		0.25925	176 HOMO-3 \rightarrow 181 LUMO+1	
		0.25977	$176 \text{ HOMO-3} \rightarrow 182 \text{ LUMO+2}$	
		0.41917	177 HOMO-2 \rightarrow 181 LUMO+1	
		-0.33440	$177 \text{ HOMO-2} \rightarrow 182 \text{ LUMO+2}$	

Table S5-5. Selected calculated el	lectronic transition	of 12c-Bu at the	B3LYP/6-311G(d,p) level.
--	----------------------	-------------------------	--------------------------

Figure S5-7. Experimental molar absorption in THF and calculated oscillator strengths *f* on the basis of optimized structure of **14-Bu**.

No.	Wavelength (nm)	coefficients	Electronic Transition	f
1	425.48	0.12707	163 HOMO-3 → 168 LUMO+1	0.2737
		0.68436	166 HOMO \rightarrow 167 LUMO	
2	415.82	-0.12348	$163 \text{ HOMO-}3 \rightarrow 169 \text{ LUMO+}2$	0.0618
		0.11279	164 HOMO-2 \rightarrow 167 LUMO	
		0.67768	$165 \text{ HOMO-1} \rightarrow 167 \text{ LUMO}$	
3	352.92	0.24859	164 HOMO-2 \rightarrow 167 LUMO	0.1160
		-0.19788	165 HOMO-1 \rightarrow 168 LUMO+1	
		0.60739	$166 \text{ HOMO} \rightarrow 169 \text{ LUMO+2}$	
4	324.57	-0.36808	$162 \text{ HOMO-4} \rightarrow 167 \text{ LUMO}$	0.4116
		0.54462	163 HOMO-3 \rightarrow 168 LUMO+1	
		-0.15857	165 HOMO-1 \rightarrow 168 LUMO+2	
		-0.12765	$166 \text{ HOMO} \rightarrow 167 \text{ LUMO}$	
5	307.25	-0.27859	$162 \text{ HOMO-4} \rightarrow 167 \text{ LUMO}$	0.1047
		-0.13033	163 HOMO-3 \rightarrow 168 LUMO+1	
		0.44751	163 HOMO-3 \rightarrow 169 LUMO+2	
		-0.29277	164 HOMO-2 \rightarrow 169 LUMO+2	
		-0.10217	166 HOMO \rightarrow 170 LUMO+3	
		0.24710	166 HOMO \rightarrow 171 LUMO+4	
6	306.84	0.30522	$162 \text{ HOMO-4} \rightarrow 167 \text{ LUMO}$	0.1198
		0.14147	163 HOMO-3 \rightarrow 168 LUMO+1	
		0.41992	$163 \text{ HOMO-3} \rightarrow 169 \text{ LUMO+2}$	
		0.29102	$164 \text{ HOMO-2} \rightarrow 169 \text{ LUMO+2}$	
		0.10963	165 HOMO-1 \rightarrow 170 LUMO+3	
		-0.25922	166 HOMO \rightarrow 170 LUMO+3	

Fable S5-6. Selecte	d calculated electronic	transition of	of 14-Bu at tl	he B3LYP/6-31	11G(d,p) level.
-----------------------------	-------------------------	---------------	-----------------------	---------------	-----------------

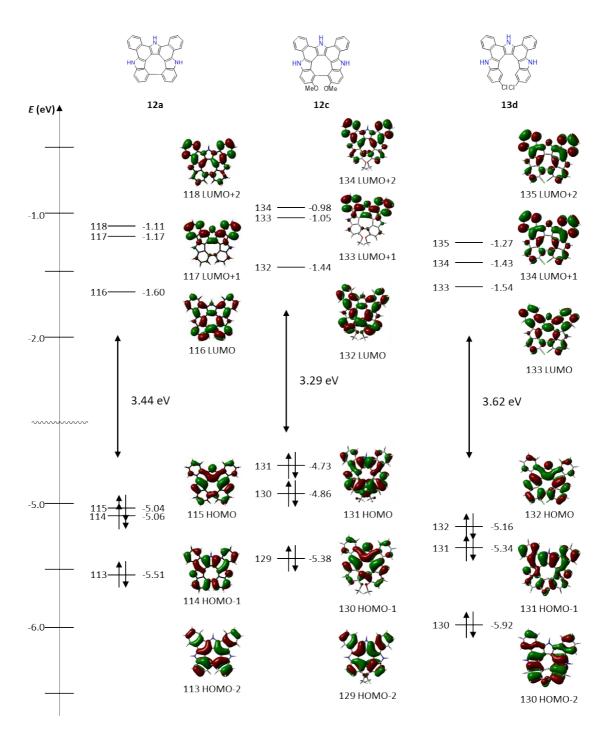


Figure S5-8. Kohn-Sham MO representation and energy diagrams of 12a (left), 12c (center) and 13d (right).

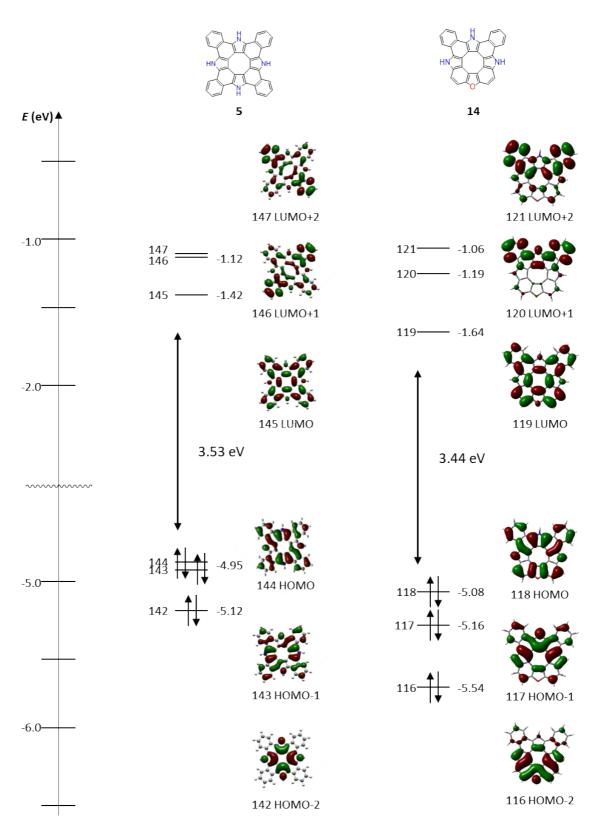
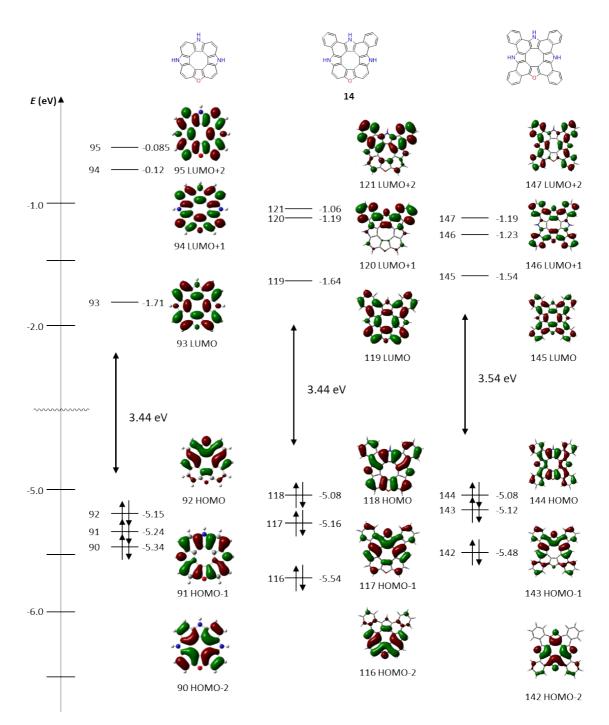
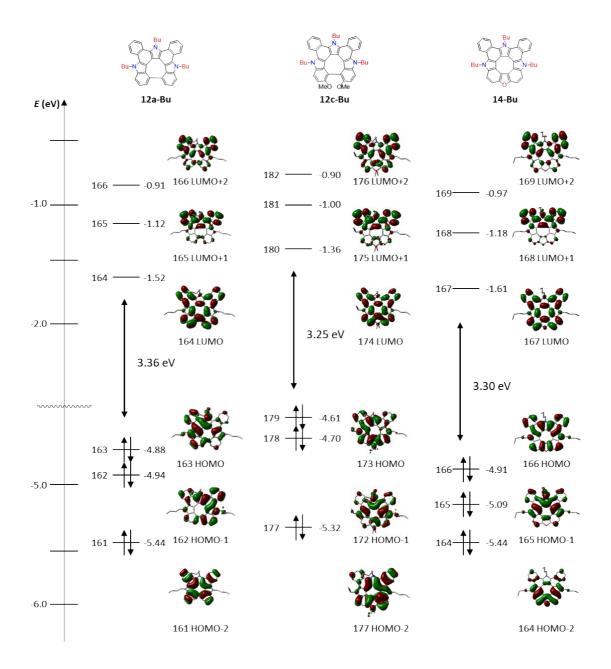
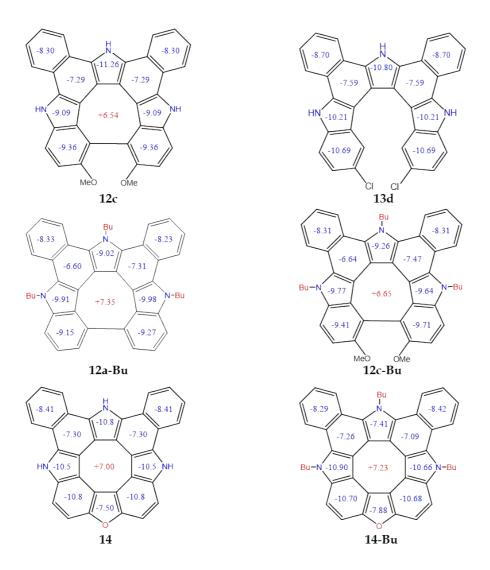
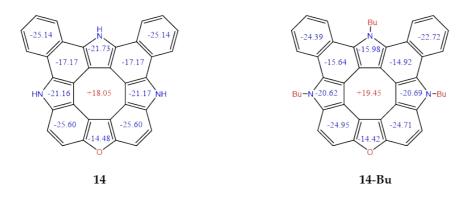
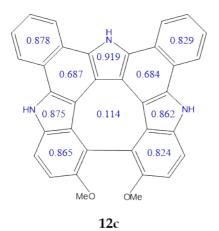



Figure S5-9. Kohn-Sham MO representation and energy diagrams of 5 (left) and 14 (right).

Figure S5-10. Kohn-Sham MO representation and energy diagrams of triazaoxa[8]circulene, dibenzotriazaoxa[8]circulene (left) **14** (center) and tetrabenzotriazaoxa[8]circulene (right).


Figure S5-11. Kohn-Sham MO representation and energy diagrams of 12a-Bu (left), 12c-Bu (center) and 14-Bu (right). Hydrogen molecules are omitted for clarity.

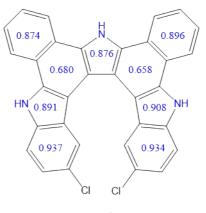
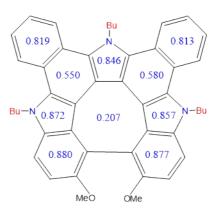
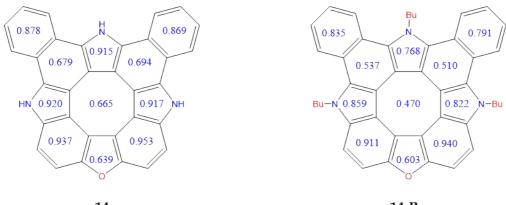


Figure S5-12. Calculated NICS(0)_{iso} values (in ppm) of **12c**, **13d**, **12a-Bu**, **12c-Bu**, **14** and **14-Bu**. The values were calculated at the center of each ring.


Figure S5-13. Calculated NICS(1)_{zz} values (in ppm) of 14 and 14-Bu. The values were calculated 1 Å above the center of each ring.


13d

12a-Bu

12c-Bu

14

14-Bu

Figure S5-14. Calculated HOMA values^[S7,8] of each ring from crystal structures.

6. X-Ray Crystallographic Details

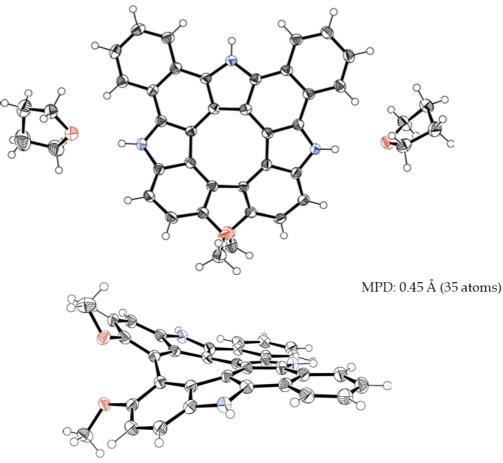


Figure S6-1. X-Ray crystal structure of 12c. Thermal ellipsoids were scaled to 50% probability.

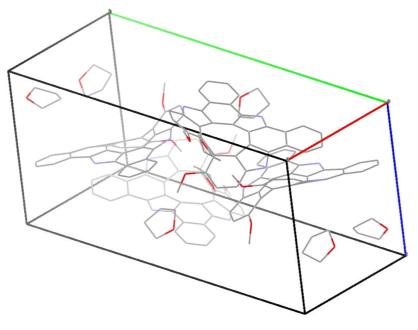


Figure S6-2. Packing structure of 12c. Hydrogen atoms were omitted for clarity.

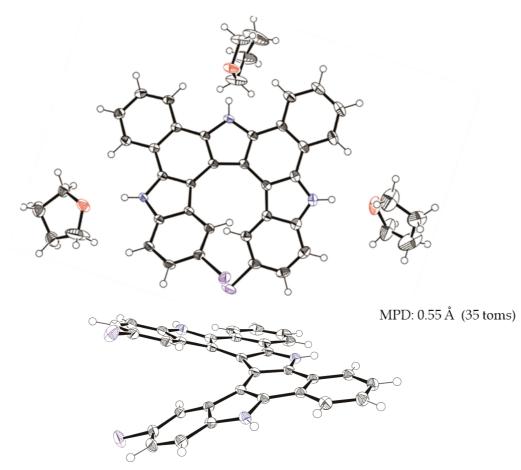


Figure S6-3. X-Ray crystal structure of 13d. Thermal ellipsoids were scaled to 50% probability.

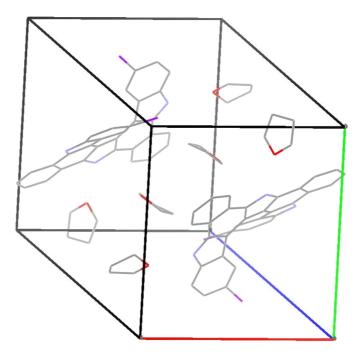


Figure S6-4. Packing structure of 13d. Hydrogen atoms were omitted for clarity.

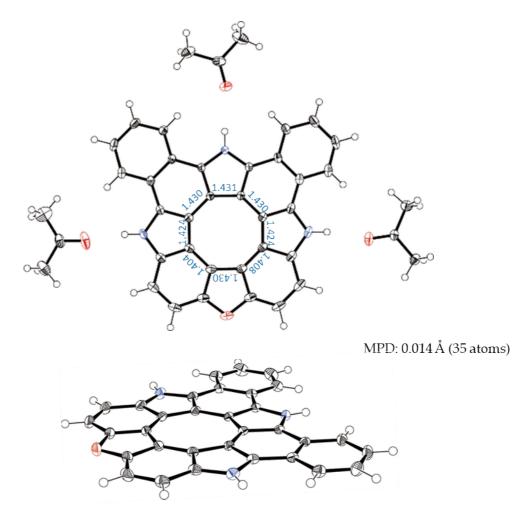


Figure S6-5. X-Ray crystal structure of 14. Thermal ellipsoids were scaled to 50% probability.

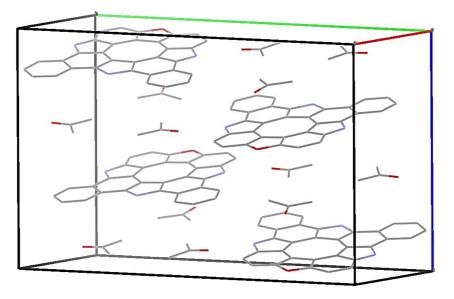
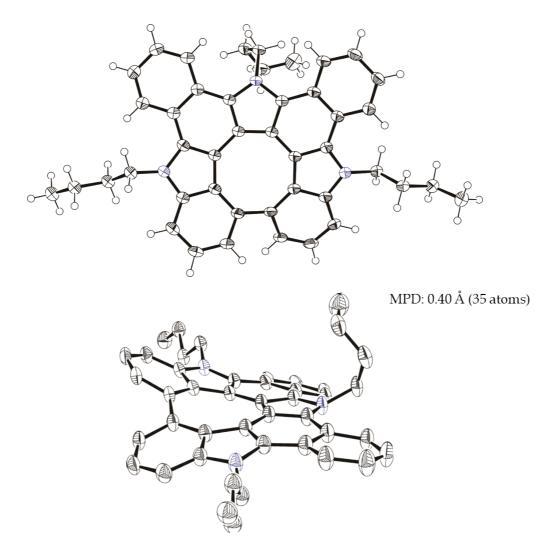



Figure S6-6. Packing structure of 14. Hydrogen atoms were omitted for clarity.

Figure S6-7. X-Ray crystal structure of **12a-Bu**. Thermal ellipsoids were scaled to 50% probability. Solvent molecules omitted for clarity. Hydrogen atoms were omitted for clarity (bottom).

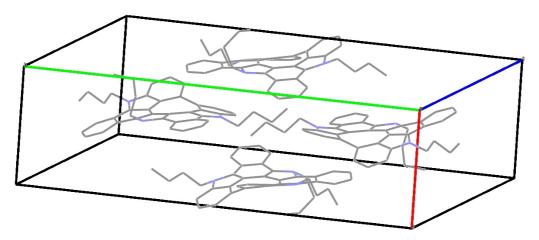
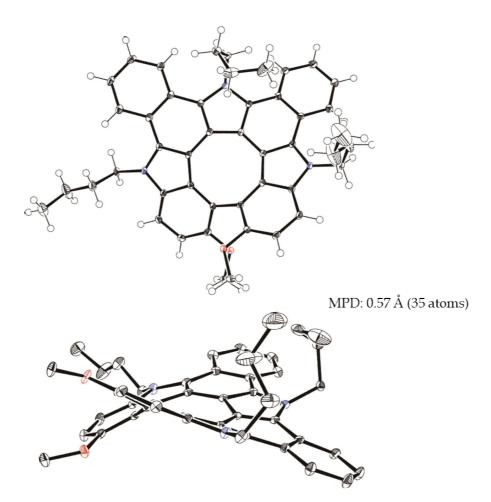



Figure S6-8. Packing structure of 12a-Bu. Hydrogen atoms were omitted for clarity.

Figure S6-9. X-Ray crystal structure of **12c-Bu**. Thermal ellipsoids were scaled to 50% probability. Solvent molecules omitted for clarity. Hydrogen atoms were omitted for clarity (bottom).

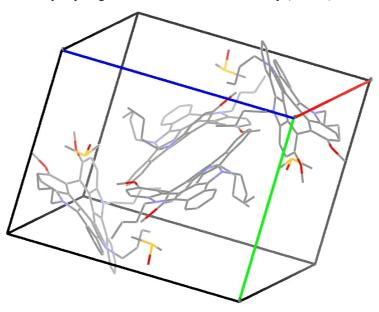
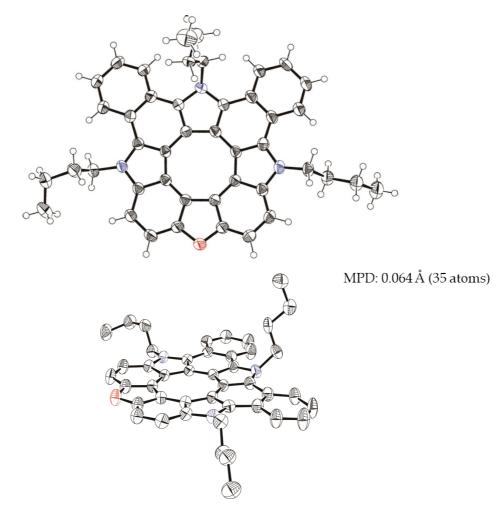



Figure S6-10. Packing structure of 12c-Bu. Hydrogen atoms were omitted for clarity.

Figure S6-11. X-Ray crystal structure of **14-Bu**. Thermal ellipsoids were scaled to 50% probability. Solvent molecules omitted for clarity. Hydrogen atoms were omitted for clarity (bottom).

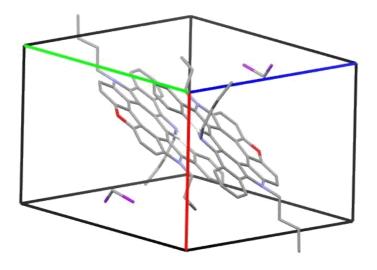


Figure S6-12. Packing structure of 14-Bu. Hydrogen atoms were omitted for clarity.

Compound	12c	13d	14
Empirical Formula	C ₃₄ H ₂₁ O ₂ , 2(C ₄ H ₈ O)	$C_{32}H_{27}N_3Cl_2, 3(C_4H_8O)$	C ₃₂ H ₁₅ N ₃ O, 3(C ₃ H ₆ O)
M_W	647.78	730.70	631.73
Crystal System	monoclinic	triclinic	monoclinic
Space Group	$P 2_1/n$ (No. 14)	<i>P</i> -1 (No. 2)	$P 2_1/c$ (No. 14)
a [Å]	10.5709(4)	12.0391(15)	10.5647(16)
<i>b</i> [Å]	24.7927(5)	12.6294(18)	21.451(4)
<i>c</i> [Å]	11.9563(3)	12.8334(8)	13.969(2)
α [deg]	90	74.367(11)	90
β [deg]	93.905(3)	75.366(11)	91.911(5)
γ [deg]	90	86.809(19)	90
Volume [Å ³]	3126.25(16)	1818.0(4)	3163.9(9)
Ζ	4	2	4
Density [g/cm ³]	1.376	1.335	1.326
Completeness	0.969	0.979	0.986
Goodness-of-fit	1.082	1.055	1.077
$R_1[I > 2\sigma(I)]$	0.0887	0.0599	0.0360
wR_2 (all data)	0.3301	0.1563	0.1095
Solvent System	THF/n-hexane	THF/n-hexane	acetone/n-hexane
CCDC No.	1953597	1953596	1953592

Table S6-1. Crystal data and structure refinements for 12c, 13d and 14.

Compound	12a-Bu	12c-Bu	14-Bu
Empirical Formula	$C_{44}H_{41}N_3$	C46H45N3O2, 2(C2H6OS)	C44H39N3O, CH2Cl2
M_W	611.83	828.15	710.75
Crystal System	monoclinic	triclinic	triclinic
Space Group	$P 2_1/a$ (No. 14)	P -1 (No. 2)	P -1 (No.2)
<i>a</i> [Å]	8.191(3)	14.877(2)	10.881(4)
<i>b</i> [Å]	35.062(11)	15.0887(14)	13.068(7)
<i>c</i> [Å]	11.513(3)	17.9227(12)	13.624(7)
α [deg]	90	71.320(5)	114.604(18)
β [deg]	107.607(5)	89.990(11)	92.906(5)
γ[deg]	90	89.980(12)	97.348(10)
Volume [Å ³]	3151.6(17)	3811.3(7)	1735.2(14)
Ζ	4	2	2
Density [g/cm ³]	1.289	1.307	1.356
Completeness	0.982	0.977	0.977
Goodness-of-fit	1.033	1.007	1.010
$R_1[I \ge 2\sigma(I)]$	0.0610	0.0638	0.0639
wR_2 (all data)	0.1769	0.1747	0.1754
Solvent System	CH ₂ Cl ₂ /n-hexane	DMSO/n-hexane	CH ₂ Cl ₂ /n-hexane
CCDC No.	1953593	1953595	1953594

Table S6-2. Crystal data and structure refinements for 12a-Bu, 12c-Bu and 14-Bu.

7. UV/Vis Absorption and Emission Spectra

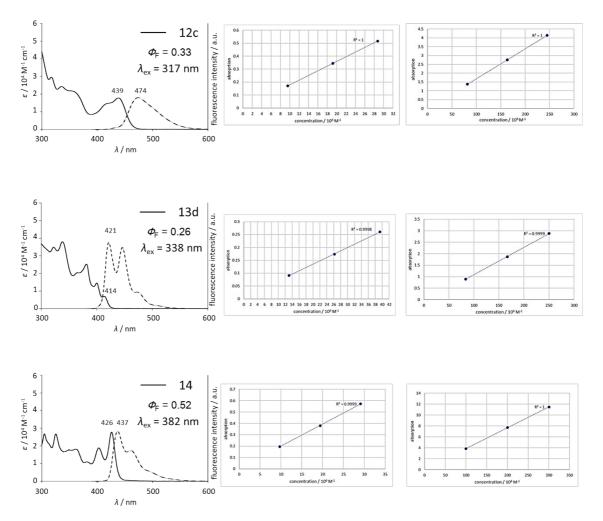
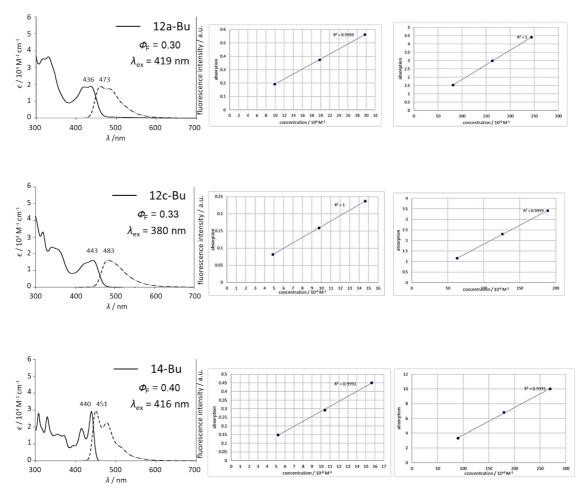
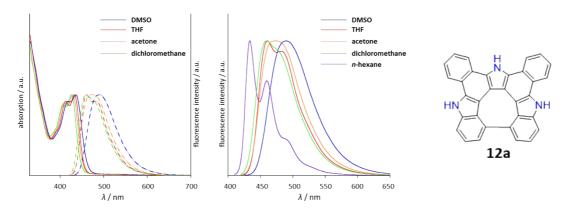
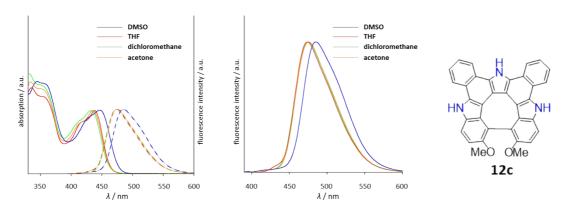


Figure S7-1. UV/Vis absorption and emission spectra of 12c, 13d and 14 in THF (left). UV/Vis absorption of 12c (439 nm), 13d (400 nm) and 14 (426 nm) in THF (right).


Figure S7-2. UV/Vis absorption and emission spectra of 12a-Bu, 12c-Bu and 14-Bu in THF (left). UV/Vis absorption of 12a-Bu (436 nm), 12c-Bu (443 nm) and 14-Bu (440 nm) in THF (right). Table S7-1. Summary of the optical properties.

Conpound	λ _{abs}	λ _{ex}	$\lambda_{_{FL}}$	Stokes shift
12c	426 nm	382 nm	474 nm	1680 cm ⁻¹
13d	414 nm	338 nm	421 nm	400 cm ⁻¹
14	426 nm	317 nm	437 nm	590 cm ⁻¹
12a-Bu	436 nm	419 nm	473 nm	1790 cm ⁻¹
12c-Bu	443 nm	380 nm	483 nm	1870 cm ⁻¹
14-Bu	440 nm	416 nm	451 nm	550 cm ⁻¹

Figure S7-3. Normalized absorption and emission spectra of **12a** in DMSO (blue line), THF (red line), acetone (orange line), dichloromethane (green line) and *n*-hexane (purple line). **Table S7-2.** Summary of the optical properties of **12a**.

Table 57-2. Summary of the optical properties of 12a.				
λ_{abs}	λ _{ex}	$\lambda_{_{FL}}$	Stokes shift	
426 nm	400 nm	434 nm	430 cm ⁻¹	
433 nm	414 nm	462 nm	1450 cm ⁻¹	
426 nm	406 nm	459 nm	1690 cm ⁻¹	
429 nm	411 nm	474 nm	2210 cm ⁻¹	
436 nm	419 nm	490 nm	2530 cm ⁻¹	
	λ _{abs} 426 nm 433 nm 426 nm 426 nm 429 nm	λ _{abs} λ _{ex} 426 nm 400 nm 433 nm 414 nm 426 nm 406 nm 429 nm 411 nm	λ _{abs} λ _{ex} λ _{FL} 426 nm 400 nm 434 nm 433 nm 414 nm 462 nm 426 nm 406 nm 459 nm 429 nm 411 nm 474 nm	

Figure S7-4. Normalized absorption and emission spectra of **12c** in DMSO (blue line), THF (red line), acetone (orange line) and dichloromethane (green line).

	5 1	1 1		
Solvent	λ_{abs}	λ_{ex}	$\lambda_{_{FL}}$	Stokes shift
THF	439 nm	317 nm	474 nm	1680 cm ⁻¹
dichloromethane	432 nm	353 nm	475 nm	2100 cm ⁻¹
acetone	436 nm	353 nm	476 nm	1930 cm ⁻¹
DMSO	444 nm	353 nm	485 nm	1900 cm ⁻¹

Table S7-3. Summary of the optical properties of 12c.

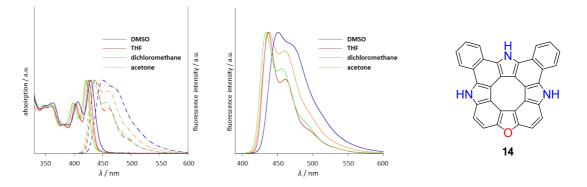


Figure S7-5. Normalized absorption and emission spectra of 14 in DMSO (blue line), THF (red line), acetone (orange line) and dichloromethane (green line).Table S7-4. Summary of the optical properties of 14.

	Tuble 57 II building of the option properties of I .					
Solvent	λ_{abs}	λ_{ex}	$\lambda_{_{\rm FL}}$	Stokes shift		
THF	426 nm	382 nm	437 nm	590 cm ⁻¹		
dichloromethane	420 nm	380 nm	434 nm	770 cm ⁻¹		
acetone	422 nm	360 nm	438 nm	870 cm ⁻¹		
DMSO	429 nm	360 nm	449 nm	1040 cm^{-1}		

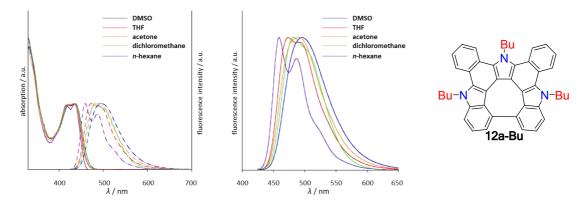


Figure S7-6. Normalized absorption and emission spectra of 12a-Bu in DMSO (blue line), THF (red line), acetone (orange line), dichloromethane (green line) and *n*-hexane (purple line).
Table S7-5. Summary of the optical properties of 12a-Bu.

Solvent	λ_{abs}	$\lambda_{ m ex}$	$\lambda_{_{FL}}$	Stokes shift
<i>n</i> -hexane	435 nm	414 nm	459 nm	1200 cm ⁻¹
THF	436 nm	419 nm	473 nm	1790 cm ⁻¹
dichloromethane	436 nm	331 nm	482 nm	2190 cm^{-1}
acetone	432 nm	430 nm	491 nm	2780 cm^{-1}
DMSO	435 nm	420 nm	496 nm	2830 cm ⁻¹

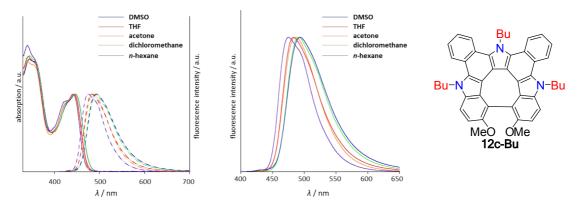
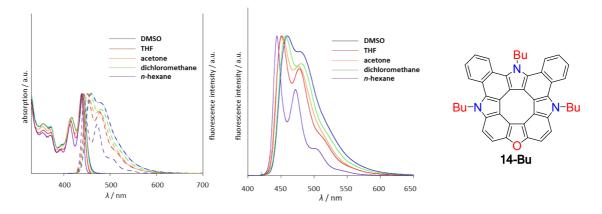



Figure S7-7. Normalized absorption and emission spectra of 12c-Bu in DMSO (blue line), THF (red line), acetone (orange line), dichloromethane (green line) and *n*-hexane (purple line).
Table S7-6. Summary of the optical properties of 12c-Bu.

Solvent	$\boldsymbol{\lambda}_{\mathrm{abs}}$	$\lambda_{ m ex}$	$\lambda_{_{\rm FL}}$	Stokes shift
<i>n</i> -hexane	442 nm	430 nm	475 nm	1570 cm^{-1}
THF	443 nm	380 nm	483 nm	1870 cm ⁻¹
dichloromethane	447 nm	380 nm	491 nm	2000 cm^{-1}
acetone	443 nm	430 nm	486 nm	2000 cm ⁻¹
DMSO	447 nm	380 nm	494 nm	2130 cm ⁻¹

Figure S7-8. Normalized absorption and emission spectra of **14-Bu** in DMSO (blue line), THF (red line), acetone (orange line), dichloromethane (green line) and *n*-hexane (purple line). **Table S7-7.** Summary of the optical properties of **14-Bu**.

Solvent	λ_{abs}	λ_{ex}	$\lambda_{_{FL}}$	Stokes shift
<i>n</i> -hexane	438 nm	414 nm	444 nm	610 cm ⁻¹
THF	440 nm	416 nm	451 nm	550 cm ⁻¹
dichloromethane	441 nm	417 nm	457 nm	790 cm ⁻¹
acetone	438 nm	414 nm	452 nm	710 cm ⁻¹
DMSO	442 nm	417 nm	460 nm	890 cm ⁻¹

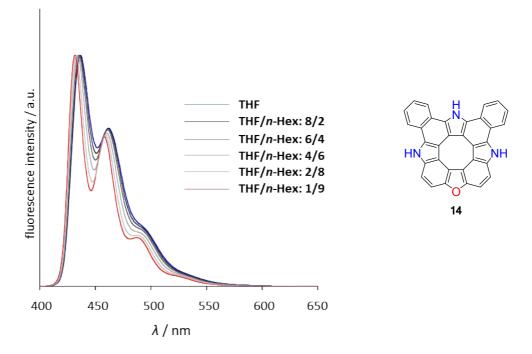


Figure S7-9. Normalized fluorescence spectra of 14 in binary solvent system (THF/n-hexane).

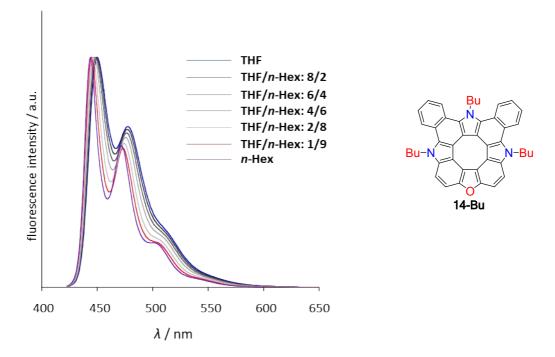


Figure S7-10. Normalized fluorescence spectra of 14-Bu in binary solvent system (THF/n-hexane).

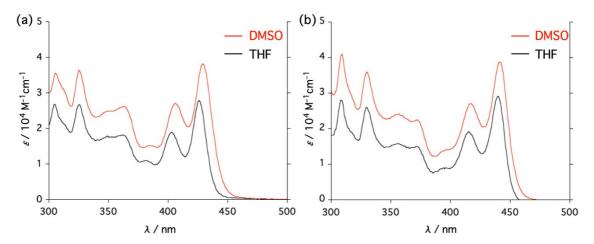
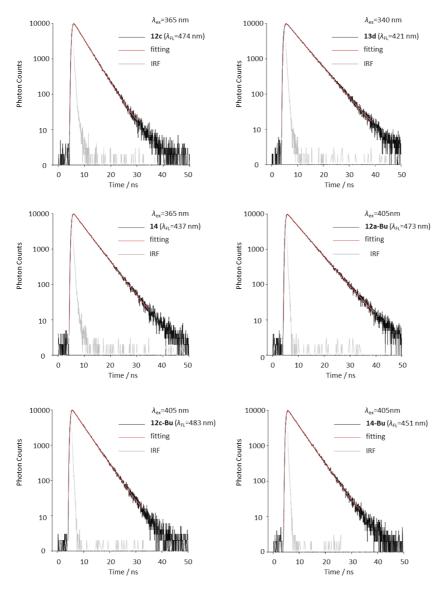
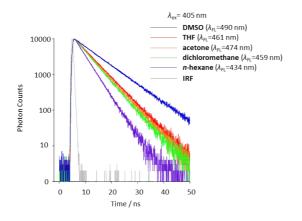


Figure S7-11. UV/Vis absorption spectra of (a) 14 and (b) 14-Bu in THF (black) and DMSO (red).

8. Fluorescence Lifetime



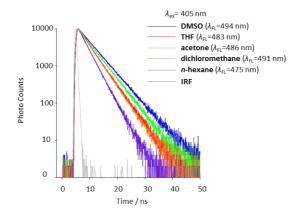

Figure S8-1. Fluorescence decay profiles of 12c, 13d, 14, 12a-Bu, 12c-Bu and 14 in THF.

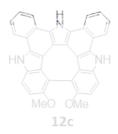
(IRF = instrumental	response	function)
---------------------	----------	-----------

compound	λ_{ex}	${\pmb \phi}_{\scriptscriptstyle \sf F}$	$\lambda_{_{FL}}$	τ _F [ns]	<i>k</i> _r [10 ⁸ s ⁻¹]	<i>k</i> _{nr} [10 ⁸ s⁻¹]
12c	317 nm	0.33	476 nm	3.6 ^[a]	0.85	1.9
13d	338 nm	0.26	421 nm	5.0 ^[b]	0.52	1.5
14	325 nm	0.52	437 nm	4.5 ^[a]	1.2	1.1
12a-Bu	419 nm	0.29	473 nm	5.1 ^[c]	0.59	1.4
12c-Bu	443 nm	0.33	491 nm	4.0 ^[c]	0.82	1.7
14-Bu	417 nm	0.40	451 nm	4.1 ^[c]	0.97	1.5

Table S8-1. Summary of the optical properties

[a] $\lambda_{ex} = 365 \text{ nm}$ [b] $\lambda_{ex} = 340 \text{ nm}$ [c] $\lambda_{ex} = 405 \text{ nm}$




Figure S8-2. Fluorescence decay profiles of **12a** in DMSO (blue line), THF (red line), acetone (orange line), dichloromethane (green line) and *n*-hexane (purple line).

Solvent	$\lambda_{ m ex}$	${\pmb \Phi}_{\scriptscriptstyle F}$	$\lambda_{_{FL}}$	τ _F ^[a] [ns]	<i>k</i> _r [10 ⁸ s ⁻¹]	<i>k</i> _{nr} [10 ⁸ s ^{−1}]
<i>n</i> -hexane	400 nm	0.11	434 nm	3.8	0.30	2.3
acetone	411 nm	0.32	474 nm	5.4	0.59	1.3
dichloromethane	406 nm	0.39	459 nm	5.1	0.75	1.2
THF	412 nm	0.47	461 nm	5.6	0.83	0.93
DMSO	419 nm	0.58	490 nm	8.2	0.71	0.51

Table S8-2. Summary of optical properties of 12a.

[a] $\lambda_{ex} = 405 \text{ nm}$

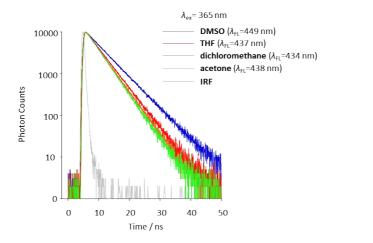


Figure S8-3. Fluorescence decay profiles of **12c** in DMSO (blue line), THF (red line), acetone (orange line) and dichloromethane (green line).

Solvent	λ_{ex}	${\pmb \Phi}_{\scriptscriptstyle \sf F}$	$\lambda_{_{FL}}$	τ _F ^[a] [ns]	<i>k</i> _r [10 ⁸ s ⁻¹]	<i>k</i> _{nr} [10 ⁸ s ⁻¹]
acetone	353 nm	0.29	476 nm	3.4	0.85	2.1
dichloromethane	353 nm	0.37	475 nm	3.4	1.1	1.9
THF	317 nm	0.33	474 nm	3.6	0.92	1.9
DMSO	353 nm	0.49	485 nm	4.6	1.1	1.1

Table S8-3. Summary of optical properties of 12c.

[a] $\lambda_{ex} = 365 \text{ nm}$

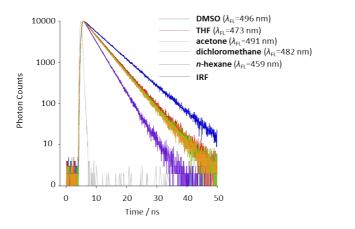


Figure S8-4. Fluorescence decay profiles of **14** in DMSO (blue line), THF (red line), acetone (orange line) and dichloromethane (green line).

Table S8-4.	Summary	of optical	properties	of 14.
-------------	---------	------------	------------	--------

Solvent	λ_{ex}	${\pmb \Phi}_{\scriptscriptstyle \sf F}$	$\lambda_{_{\rm FL}}$	τ _F ^[a] [ns]	k _r [10 ⁸ s ⁻¹]	k _{nr} [10 ⁸ s ⁻¹]
acetone	360 nm	0.45	438 nm	4.2	1.1	1.3
dichloromethane	380 nm	0.39	434 nm	4.0	0.96	1.5
THF	325 nm	0.52	437 nm	4.5	1.2	1.1
DMSO	360 nm	0.72	449 nm	5.7	1.3	0.50

 $[a] \lambda_{ex} = 365 \text{ nm}$

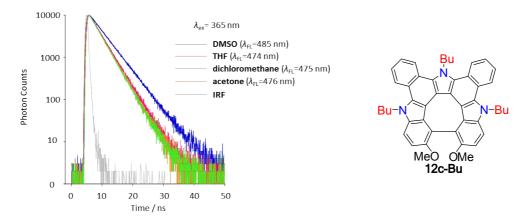
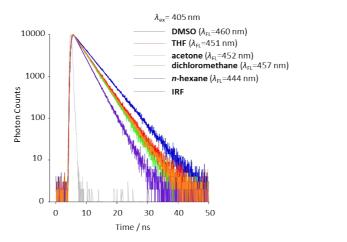


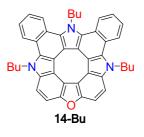
Figure S8-5. Fluorescence decay profiles of **12a-Bu** in DMSO (blue line), THF (red line), acetone (orange line), dichloromethane (green line) and *n*-hexane (purple line).

Solvent	$\lambda_{ m ex}$	${\pmb \Phi}_{\sf F}$	$\lambda_{_{FL}}$	τ _F ^[a] [ns]	k _r [10 ⁸ s ⁻¹]	k _{nr} [10 ⁸ s ⁻¹]
n-hexane	414 nm	0.20	459 nm	3.5	0.58	2.2
acetone	430 nm	0.24	491 nm	4.8	0.49	1.6
dichloromethane	331 nm	0.29	482 nm	4.9	0.60	1.4
THF	419 nm	0.30	473 nm	5.1	0.59	1.4
DMSO	420 nm	0.42	496 nm	6.7	0.62	0.87

Table S8-5. Summary of optical properties of 12a-Bu.

[a] $\lambda_{ex} = 405 \text{ nm}$




Figure S8-6. Fluorescence decay profiles of **12c-Bu** in DMSO (blue line), THF (red line), acetone (orange line), dichloromethane (green line) and *n*-hexane (purple line).

Solvent	λ_{ex}	${\pmb \Phi}_{\scriptscriptstyle \sf F}$	$\lambda_{_{FL}}$	τ _F ^[a] [ns]	<i>k</i> _r [10 ⁸ s ⁻¹]	<i>k</i> _{nr} [10 ⁸ s ^{−1}]
<i>n</i> -hexane	430 nm	0.20	475 nm	3.0	0.67	2.7
acetone	430 nm	0.31	486 nm	3.9	0.77	1.8
dichloromethane	447 nm	0.33	483 nm	4.5	0.74	1.5
THF	443 nm	0.33	491 nm	4.0	0.82	1.7
DMSO	447 nm	0.42	494 nm	5.0	0.84	1.2

Table S8-6. Summary of optical properties of 12c-Bu.

[a] $\lambda_{ex} = 405 \text{ nm}$

Figure S8-7. Fluorescence decay profiles of **14-Bu** in DMSO (blue line), THF (red line), acetone (orange line), dichloromethane (green line) and *n*-hexane (purple line).

Solvent	λ_{ex}	$\pmb{\Phi}_{F}$	$\lambda_{_{FL}}$	τ _F ^[a] [ns]	<i>k</i> _r [10 ⁸ s ⁻¹]	k _{nr} [10 ⁸ s⁻¹]
<i>n</i> -hexane	414 nm	0.28	444 nm	3.1	0.89	2.3
acetone	414 nm	0.39	452 nm	3.9	0.98	1.6
dichloromethane	417 nm	0.39	457 nm	3.8	1.0	1.5
THF	416 nm	0.40	451 nm	4.1	0.97	1.5
DMSO	417 nm	0.70	460 nm	4.8	1.5	0.62

Table S8-7. Summary of optical properties of 14-Bu.

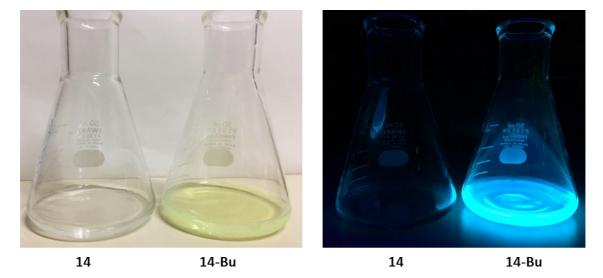
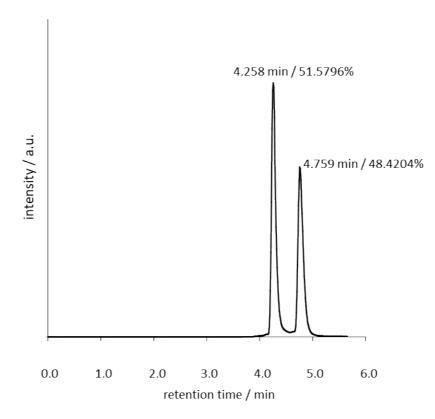
[a] $\lambda_{ex} = 405 \text{ nm}$

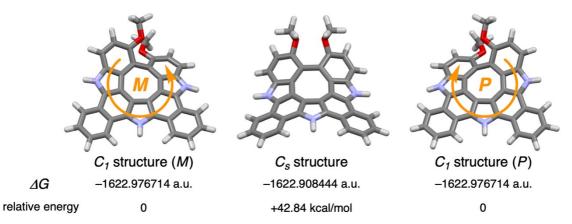
9. Solubility

Table S9-1. Solubilities of 14 and 14-Bu

The solubilities of 14 and 14-Bu were measured by the following procedures. (1) A small amount of solvents was added to the solids of each compounds. (2) The resulting suspension was sonicated for 30 sec and the insoluble residue was removed by filtration. (3) The weight of the saturated solution (filtrate) was measured.

Solvent	acetone	dichloromethane	<i>n</i> -hexane	toluene	methanol	diethyl ether	THF
14 (mg/mL)	4.6	0.15	pprox 0	pprox 0	4.2	0.54	21
14-Bu (mg/mL)	5.1	26	0.79	17	1.8	1.7	>79


Figure 9-1. Filtrate of 14 and 14-Bu in *n*-hexane (left: under room light, right: under UV light).

10. Optical Resolution

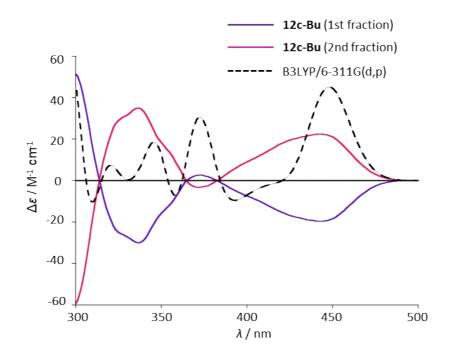

Optical separation of **12c-Bu** was performed on a Shimadzu LC-20 AT instrument equipped with a CHIRALPAK IA-3 chiral column (Φ = 4.6 mm). CD spectra were collected on a JASCO J-715 circular dichroism spectrometer at 298 K.

Figure S10-1. Chiral HPLC analysis of **12c-Bu** eluted by dichloromethane using CHIRALPAK IA-3 with a flow rate of 0.9 mL/min.

Figure S10-2. Calculated structures of **12c** with C_1 and C_s symmetry restrictions. The calculations were performed at B3LYP/6-311G(d,p) level of theory.

Figure S10-3. Experimental CD spectrum (purple and pink, solid line) in dichloromethane and simulated CD spectrum (black, broken line) of the (*P*)-enantiomer of **12c-Bu** calculated by TD-DFT at the B3YLP/6-311G(d,p) level.

11. Supporting References

[S1] F. Chen, T. Tanaka, T. Mori and A. Osuka, Chem. Eur. J., 2018, 24, 7489.

[S2] M. E. Hoque, R. Bisht, C. Haldar and B. Chattopadhyay, J. Am. Chem. Soc., 2017, 139, 7745.

[S3] a) G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112, b) G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3.

[S4] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V.
Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T.
Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.
Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N.
Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski,
R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[S5] a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372. b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.

[S6] H. F. B. Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, *Org. Lett.*, 2006, **8**, 863.

[S7] T. M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska and M. Palusiak, *Chem. Rev.*, 2014, **114**, 6383.