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Supplemental Figures 

 

 

Supplemental Figure 1. Experimental workflow 
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Supplemental Figure 2. Sequencing depth and coverage of each case analyzed. The figure shows 

fraction of exonic bases ± 5 flanks covered at depth of ≥100, ≥75, ≥50, ≥40, ≥30, ≥20, ≥10, ≥5 and 

≥1. Annovar RefGene exons were used to define exonic bases that were padded by ± 5 bases. The 

average sequence depth of whole-exome sequencing (WES) samples was 84× (±55) and of targeted 

sequencing samples 191× (±95). 
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Supplemental Figure 3. Sequencing depth and coverage of each case analyzed over panel 

targets. The figure shows fraction of exonic bases ± 5 flanks covered at depth of ≥100, ≥75, ≥50, 

≥40, ≥30, ≥20, ≥10, ≥5 and ≥1. Annovar RefGene exons of genes part of the panel were used to define 

exonic bases that were padded by ± 5 bases. The average sequence depth of whole-exome sequencing 

(WES) samples was 124× (±47) and of targeted sequencing samples 271× (±100). 
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Supplementary figure 4. Numbers of single nucleotide variants (SNVs) per million bp in individual 

samples in (a) whole-exome sequencing (WES) highlighting the differences between AML (n=11), 

AP/BP (n=7), and CP (n=12) cases. (b) Combined WES and panel samples with restriction of SNVs 

to exons covered by the targeted panel sequencing highlights differences in SNV loads between 

BP/AP (7 WES, 12 panel) and CP cases (12 WES, 31 panel), and also differences between CP cases 

who fail to achieve MMR (4 WES, 3 panel) compared to cases who achieve MMR during TKI 

treatment (7 WES, 26 panel). WES cases are marked with dark red and panel cases with grey. SNVs 

per million bp in individual AP/BP samples from cases with and without ABL1 resistance mutations 

in samples analyzed using (c) WES or (d) panel. (e) SNVs per million bp in individual samples from 

cases with matched diagnostic CP and AP/BP samples. In the figure, * indicates p<0.05, ** indicates 

p<0.01, and **** indicates p<0.0001. 
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Supplemental Figure 5. Mutation load and clinical characters. Scatter plots comparing mutation 

load per million base pairs and clinical characters. Data from whole exome sequencing (WES) is 

presented in the upper row, from targeted panel in middle row and data from combined experiments 

in the left row. Clinical correlates are presented in columns: a) age, b) Sokal score, c) Bone marrow 

blast percentage, d) spleen size (in centimeter measured by ultrasound), e) sequencing horizontal 

depth. Correlations between variables were assessed using Pearson's correlation Coefficient. Only 

weak correlation was observed between mutation load and clinical criteria. 
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Supplemental Figure 6. Mutational signatures in CML. Normalized weights of trinucleotide 

signatures identified (a) in 11 AML, 10 AP/BP, and 10 CP cases and in CP cases with optimal (n=3), 

suboptimal (n=3), or poor respond (n=4) by WES. (b) Normalized weights of 11 AP/BP and 31 CP 

cases and of CP cases with optimal (n=16), suboptimal (n=10) or poor (n=3) respond by targeted 

panel sequencing. Weights of most frequent signatures in each cancer type are shown across cancers 

as separate signatures and others. 
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Supplemental Figure 7. Virus classification of each case analyzed. Number of viral reads in each 

sample analyzed. Viral read counts are expressed as counts per million mapped reads (CPMs). CPMs 

of three most abundant taxas in any sample are shown across all samples. Assignments of reads to 

other viral taxas excluding those to phiX174 (a common Illumina sequencing control) are summarised 

under the category other virus.  
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Supplemental Figure 8. Bacteria, Archaea, and virus classification of each case analyzed. 

Number of bacterial, archaeal, and viral reads in each sample analyzed. Read counts are expressed as 

counts per million mapped reads (CPMs). CPMs of total archaeal, total viral assignments excluding 

those to phiX174 (a common Illumina sequencing control), and three most abundant bacterial taxas 

across any sample are shown. Assignments of reads to other bacterial taxas are summarised under the 

category other bacteria. 
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Supplemental Figure 9. Somatic mutations in CML. Stacked columns comparing the prevalence 

of mutations in epigenetic genes. (a) The difference between AP/BP and CP patients. b) The 

difference between patients with or without optimal response. c) The difference between patients with 

or without optimal or sub-optimal response. The differences between groups were analyzed with t-

test. In the figure, * marks p <0.05.  
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Supplemental figure 10. Relevant variants VAF in longitudinal samples. Plots showing change in 

relevant variants VAF between (a) CP and BP samples in patients with matched CP_AP/BP samples 

(n=3) (b-e) initial diagnosis and follow up time points in CP patients with serial samples (n=25) 

collectively (b), CP-poor patients (n=2) (c), CP-suboptimal patients (n=11) (d), CP-optimal patients 

(n=13) (e) 
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Supplemental Figure 11. Heatmap of statistically differentially expressed genes between AP/BP 

and CP, AP/BP and healthy, and CP and healthy. Fading blue colours indicate down-regulation 

of the gene in the sample and red its up-regulation relative to the mean expression of the genes across 

all samples. Explanatory tracks from top to bottom show disease phase, sequencing protocol, and 

sorting status of the sample. Clustering was performed with both genes and samples using a Euclidean 

distance and Ward linkage method. Panel on the left shows in which comparison the gene was found 

as statistically differentially expressed with Q-value ≤0.05. 
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Supplemental Figure 12. Comparison of drug sensitivity profile diagnosis and relapse samples 

from first index case. A) Depiction of molecular pathways with altered expression between 

timepoints. The analysis highlighted notable reprogramming of expression of genes associated with 

pathways X and Y. B). Scatter plot comparing DSS of diagnosis (X-axis) to relapse (y-axis). Note 

that TKI other than ponatinib has DSS<5 in both samples. C) Waterfall plot highlighting the most 

potent cancer-selective drugs for the primary cells extracted from patient. The drug sensitivity screen 

suggested administration of ponatinib and axitinib to the patient. At the relapse, sensitivity to these 

drugs were lost in accordance with the loss of the original subclone. 
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Supplemental Figure 13. Drug sensitivity profile from the second index case. Waterfall plot 

highlighting the most potent cancer-selective drugs for the primary cells extracted from the patient.  
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Supplemental Datasets: 

Supplemental dataset 1. Clinicopathological features of CML cohort. 

Supplemental dataset 2. Identified mutations in all samples. 

Supplemental dataset 3. Correlation of mutational signature profiles in CML patients’ subsets. 

Supplemental dataset 4. Results from pathogen screening analysis. 

Supplemental dataset 5. Somatic mutations identified in 59 CML samples after manual curation. 

Supplemental dataset 6. Somatic variants dynamics in 28 CML patients with serial samples. 

Supplemental dataset 7. Fusion genes in CML patients. 

Supplemental dataset 8. Differential expression analysis of RNA-sequencing data. 

Supplemental dataset 9. Pathway enrichment analysis. 

Supplemental dataset 10. Somatic mutations identified in the index case at diagnosis and relapse. 

Supplemental dataset 11. Pathway enrichment analysis of the index case between diagnosis and 

relapse. 

Supplemental dataset 12. Drug sensitivity profiling data of the index case at diagnosis and relapse. 
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Supplemental Methods 

RNA sequencing 

Total RNA was extracted from two AP/BP, all five CP, and all four control samples following CD34+ 

enrichment to minimize signal related to mature granulocytes and other cell types not present in 

samples with a high blast count. In the case of five AP/BP samples without CD34+ enrichment. The 

miRNeasy Mini Kit (Qiagen) was used in the RNA extraction. The RNA integrity was measured by 

Agilent Bioanalyzer RNApico chip (Agilent) and Qubit RNA kit (Life Technologies) was used to 

quantitate RNA in samples. RNA sequencing libraries were then prepared from 1.5 µg of total RNA 

using ribo-depletion-based approaches. In the case of two AP/BP and two controls cases, RNA 

sequencing libraries were prepared using the ScriptSeq v2™ Complete kit for human/mouse/rat 

(Illumina). In the remaining cases, preparation of RNA sequencing libraries involved the use of 

Illumina compatible Nextera™ Technology (Epicentre). In each case, RNA-sequencing libraries 

were purified using SPRI beads (Agencourt AMPure XP, Beckman Coulter). High Sensitivity chips 

by Agilent Bioanalyzer (Agilent) was used to evaluate the library quality. All libraries were 

sequenced on Illumina HiSeq instruments (HiSeq 2000, Illumina) with paired-end 100-bp (2 × 100) 

reads. 

 

Analysis of RNA sequencing data 

Analysis of RNA-sequencing data was performed mainly as previously described1. Briefly, RNA-

sequencing data were pre-processed similar to DNA-sequencing data. Filtered paired-end reads were 

aligned to human reference genome build 38 (EnsEMBL v82) using STAR2 with the guidance of 

EnsEMBL v82 gene models. Analysis was done using default 2-pass per-sample mapping settings, 

except that the overhang of the splice junctions was set to 99. Reads were sorted by coordinate using 

the SortSAM, PCR duplicates were marked with the MarkDuplicate module of the Picard toolkit, 
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feature counts were generated using SubRead3, feature counts were converted to expression estimates 

using Trimmed Mean of M-values (TMM) normalisation4, and lowly expressed genomic features 

with a CPM value ≤1.00 in less than half of samples removed. Differential expression testing was 

then performed using the edgeR5 software. In the statistical testing, comparisons between subject 

groups included factors for cell-sorting status and sequencing kit. The resulting P‐values were 

adjusted Storey’s Q-value approach6. Genomic features with Q-value ≤0.05 were considered 

differentially expressed. In data visualisations and pathway analyses, we used CPM data that was 

corrected for cell-sorting and library preparation kit effects. Batches were corrected using the 

removeBatchEffect function from the package limma7. Clustering of gene expression profiles was 

performed with both genes and samples using a Euclidean distance and Ward linkage method.  

Clustering revealed majority of samples from the same phase to cluster together (Supplemental Figure 

10).  

 

Drug sensitivity and resistance testing 

The oncology compound library consisted of 125 FDA/EMA anti-cancer approved drugs and 127 

investigational and preclinical compounds (Supplemental Table 11). All compounds were purchased 

from commercial chemical vendors and dissolved in either 100% dimethyl sulfoxide (DMSO) or 

water. Drug sensitivity and resistance testing was performed as previously described8. Briefly, 

mononuclear cells were suspended in Mononuclear Cell Medium (MCM; PromoCell) supplemented 

with 0.5 μg ml−1 gentamicin and 2.5 μg ml−1 amphotericin B. Each compound was tested covering 

a 10,000-fold concentration range in five different concentrations and pre-printed on 384-microwell 

plates (Corning) with an acoustic liquid handling device (Echo 550, Labcyte Inc.). Five µl culture 

medium per well was added to dissolve compounds and plates were shaken for 10 min. Freshly 

isolated cells in a single-cell suspension (10,000 cells in 20 µl per well) were dispensed using Multi-
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Drop Combi peristaltic dispenser (Thermo Scientific). Plates were then incubated for 72 h at 37 °C 

and 5% CO2. CellTiter-Glo 2.0 reagent (Promega) was used to measure cell viability according to 

the manufacturer’s instructions using a Pherastar FS plate reader. Cell viability luminescence data 

were normalised to DMSO-only wells (negative control) and 100 mM benzethonium chloride-

containing wells (positive control). The drug sensitivity and resistance testing data were quantified 

using the drug sensitivity score9. 

 

Variant analysis 

Analysis of DNA read data was mainly performed as previously described10. Briefly, sequence data 

was pre-processed for low quality, adapter sequences, and short read length using the Trimmomatic 

software11. Paired-end reads passing filters were then aligned to human reference genome build 38 

(EnsEMBL v82) using BWA-MEM12, alignments were sorted by coordinate using the SortSAM, and 

PCR duplicates were marked with the MarkDuplicate module of the Picard toolkit (Broad Institute). 

Default parameters were used. Calling of variants employed Genome Analysis Toolkit (GATK) 

toolset13 and was based on the GATK somatic short variant best practice (version 3.5), supplemented 

with the estimation of the cross-sample contamination level and filtering of the 8-oxoguanine and 

deamination artefacts with GATK4 CalculateContamination, CollectSequencingArtifactMetrics, and 

FilterByOrientationBias tools. In the case of WES, calling of variants employed tumor-normal variant 

calling strategy. These variants were filtered against a panel of normals consisting of variants detected 

in two or more exomes of 24 healthy unrelated Finnish individuals. In the case of targeted sequencing, 

tumor-only variant calling strategy was used to enable comparison of cases with and without controls. 

Variants were filtered against the same panel of normals that was used in exome analyses as well as 

a panel of normals from five unrelated age-matched controls (seen in at least one individual) 

sequenced using the same sequencing protocol and a panel of normals from patient-matched control 

samples (seen in three or more samples) that had been sequenced using the same sequencing protocol. 
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The sensitivity and positive predictive value of the tumor-only variant calls in comparison to the 

matched tumor-control calls were estimated to be (after variant annotation and filtering) 0.77 and 

0.62, respectively. GATK resources used in the variant calling process were converted from GRCh37 

to GRCh38 using CrossMap14 and chain files downloaded from EnsEMBL. 

 

To enable differentiation of variants with a low variant allele frequency from technical or biological 

artefacts, datasets were filtered after variant calling for vector contamination, RNA or pseudogene 

associated reads. In this process, reads from the final GATK alignment files were re-mapped to human 

reference genome build 38 (EnsEMBL v94) using STAR2 with the guidance of EnsEMBL v94 gene 

models. Alignments were sorted by coordinate using the SortSAM, PCR duplicates were marked with 

the MarkDuplicate, indels were left-aligned using the GATK toolkit, and duplicate pairs, unmapped 

pairs, and secondary alignment were removed. Read pairs with an internal gap ≥ 10 bp and insert size 

less than 50 kb or with an insert size of between 1 and 50 kb were then classified as discordant. The 

fraction of discordant read pairs relative to undiscordant spanning exon-intron boundaries were then 

assessed per gene and exon. Variants with a variant allele frequency ≤ either contamination fraction 

+ 2% were removed with the exception of variants supported by approximately same fractions of 

discordant and undiscordant reads (i.e. variant allele frequency in discordant read pairs × 0.8 ≤ variant 

allele frequency in undiscordant read pairs ≤ variant allele frequency in discordant read pairs × 1.2) 

at gene and exon level and variants residing in genes and exons without any discordant read pair. 

 

Variants were annotated and filtered using the Annovar tool15  against the RefGene database. At first, 

all variant calls were normalised using bcftools16. Variants other than those passing all MuTect2 

filters with a TLOD ≥ 6.3 or a TLOD ≥ 5.0 and supported by five or more independent COSMIC17 

samples were filtered. Variant data were then filtered for false-positives by removing variants in 
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intronic and intergenic regions, with a total coverage ≤ 10, and not supported by at least one read in 

both directions as well as variants with variant quality value ≤ 40, variant allele frequency ≤ 2%, 

strand odd ratio for SNVs ≥ 3.00, and strand odd ratio for indels ≥ 11.00, minor allele frequency ≥ 

1% in the 1KG database, minor allele frequency ≥ 3% in the EPS database, minor allele frequency ≥ 

1% in general, African, Finnish, Latino, East Asian, and Non-European ExAC, gnomAD exome, or 

gnomAD genome databases, PHRED-like CADD score ≤ 3.00, and likelihood ratios score ≤ 2.00. 

Variants with a variant allele frequency ≥ 35% were accepted, if supported by five or more COSMIC17 

samples. For functional analyses, the previous variant call set was filtered further by removing 

synonymous mutations and non-frameshift variants. Finally, cancer associated mutations were picked 

by removing those without COSMIC identifier and those seen in genes that were mutated in less than 

two patients. Variants were manually curated, missed known cancer variants checked and rescued, 

and variants inspected using Integrative Genomics Viewer 2.3.66 (Broad Institute).  

 

Identification of mutational signatures was done using the deconstructSigs18 software with default 

parameters and using cancer profiles downloaded from the COSMIC web site on September 2017. In 

the analysis, function mapSeqlevels from the package GenomeInfoDb was used to convert EnsEMBL 

chromosome nomenclature to UCSC nomenclature. Sequencing coverage was computed from read 

regions overlapping Annovar RefGene exons with a 5 bp padding on each side (i.e. regions tested in 

variant annotation and filtering) using samtools depth, revealing a mean coverage of 89× and 187× 

for WES and targeted sequencing (Supplemental Figure 2). 

 

Pathogen discovery 

Classification of the DNA sequencing reads into microbial taxa was performed mainly as previously 

described10. Briefly, Trimmomatic11 was used in adapter trimming, quality filtering, and removal of 
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short (<36bp) reads. Pre-processed read-pairs were then mapped against rRNA sequences from 

RFAM v12.319 by using the Burrows-Wheeler Aligner (BWA)20 with default settings, and read pairs 

matching rRNAs were filtered by using samtools21. Surviving paired-end reads were classified into 

different taxa by using Centrifuge22 and an index made of 27,127 known complete bacterial, archaeal, 

and viral genome assemblies, the human genome, and 10,615 technical artefact sequences that were 

available in the RefSeq23 database on February 2018. Default parameters were used in the 

classification, with the exception of reporting only one taxonomical assignment (i.e. the lowest 

common ancestor) for read-pairs with multiple primary assignments. Classification results are 

available in supplemental Table 3. In data visualisations and statistical analyses, read counts were 

scaled by the total number of reads in the root times one million to obtain CPMs. Total number of 

viral and total number of bacterial, archaeal, and viral reads in each case analyzed as expressed in 

CPMs is provided in supplemental Figures 7 and 8, respectively. The statistical significance of the 

difference in microbial counts was examined using two-tailed Student’s t-test with unequal variance. 

 

Pathway enrichment analysis 

Pathway enrichment analysis was done using GSEA24 software (Broad Institute) and Enrichr25,26. In 

the GSEA analysis, a pre-ranked gene list was prepared by sorting genes by their log-fold change in 

the batch corrected CPM data. GSEA analysis was then performed using default values. Q-value 

<0.05 was used as a threshold to interpret analysis output. The Enrichr was applied to protein coding 

genes significantly differentially expressed between AP/BP and healthy, CP and healthy, intersection 

of the previous two gene lists, as well as AP/BP and CP groups. 
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Calling of fusion genes 

Hybrid genes were identified using FusionCatcher27 with default parameters. FusionCatcher was 

applied to raw, un-processed RNA sequencing data. Results obtained from the tool were further 

filtered by excluding fusion calls located in introns, present in healthy control samples, and supported 

by ≤ 3 spanning unique reads. Fusion calls supported by fewer unique reads were selected if supported 

by evidence from spanning pairs or reciprocal reads and if clinically relevant (previously described 

in cancer). 

 

Validation of hybrid genes 

To validate the hybrid genes, single-step RT-PCR was performed on cDNA from samples in which 

hybrid genes were called. The cDNA was synthesized from total RNA using QuantiNova Reverse 

Transcription kit (QIAGEN). Primers were designed for CBFB-MYH11, RUNX1-DYRK1A, 

TMEM236-MRC1 hybrid genes (supplemental Table 6). The cDNA was amplified with Phusion® 

High-Fidelity DNA Polymerase (NEB) and using the Applied Biosystem 2720 thermal cycler 

(ThermoFisher). 10 ul of PCR products were stained with Gel Loading Dye, Purple (6X) (NEB), run 

on a 2% agarose gel, and visualized on a standard UV trans illuminator. 5ul of PCR products were 

then cleaned up using ExoSAP-IT (ThermoFisher) and used for Sanger sequencing using both 

forward and reverse primers of the relevant hybrid gene and standard sequencing protocols. In situ 

hybridization (FISH) and karyotyping data were available for two hybrids (BCR-ABL1 and CBFB-

MYH11).  
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