BMJ Paediatrics Open

BMJ Paediatrics Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Paediatrics Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjpaedsopen.bmj.com</u>).

If you have any questions on BMJ Paediatrics Open's open peer review process please email <u>info.bmjpo@bmj.com</u>

BMJ Paediatrics Open

Double burden of malnutrition among Indian school children

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2019-000505
Article Type:	Original article
Date Submitted by the Author:	12-Apr-2019
Complete List of Authors:	Daga, Subhashchandra; Pacific Medical College and Hospital, Pediatrics Mhatre, Sameer; Smt Kashibai Navale Medical College and General Hospital, Paediatrics Kasbe, Abhiram ; Topiwala National Medical College DSouza, Eric; MIMER
Keywords:	General Paediatrics, Growth, Obesity, School Health, Tropical Paediatrics

SCHOLARONE[™] Manuscripts

Double burden of malnutrition among Indian school children Short title: Double burden of malnutrition SubhashchandraDaga Department of Pediatrics, Pacific Medical College and Hospital, Udaipur Sameer Mhatre Department of Pediatrics, Smt. Kashibai Navle Medical College, Pune Eric DSouza Department of Pediatrics, MIMER Medical College, Talegaon Abhiram Kasbe Department of Pediatrics, Topiwala Medical College, Mumbai

Correspondence

SubhashchandraDaga

Jecia Co. Department of Pediatrics, Pacific Medical College and Hospital,

Udaipur-313001, India

E-mail: dagasubhash49@gmail.com

Tel: +91-9960522259

Abstract

Objective

To document the extent of double burden of malnutrition (coexistence of over- and under-nutrition) among Indian schoolchildren from lower socioeconomic groups, and to determine if mid-upper arm circumference (MUAC) can be used as a proxy for body mass index (BMI).

Design

A cross-sectional study

Setting

A school from the outskirts of a large city with a majority of the children belonging to lower and lower-middle socioeconomic categories

Subjects

The total number of participants was 1,444, comprising 424 girls and 1,020 boys belonging to playgroups and grades 1-7.

Interventions

Anthropometric measurements, such as MUAC, height, and weight, were taken from each participant using standard techniques. Descriptive statistics for BMI and MUAC were obtained based on gender; Z-scores were computed using age-specific and sexspecific WHO reference data. The distribution of variables was calculated among all participants, together and separately, for each gender. Homogeneous subsets for BMI and MUAC were identified the three groups. Age-wise comparisons of BMI and MUAC were also conducted for each gender.

Main outcome measures

- 1. To know if MUAC and BMI are correlated among both boys and girls.
- 2. To study BMI and MUAC Z score distribution among the subjects.

Results

Importantly, MUAC correlated positively with BMI among both boys and girls. The following BMI Z-score distribution was observed: obese, 21 (1.5%); overweight, 36 (2.5%); pre-obese, 136 (9.4%); severe acute malnutrition (SAM), 5(0.3%); moderate acute malnutrition (MAM), 146 (10.1%); undernourished, at risk of MAM/SAM, 141 (9.8%). The distribution of categories of children based on MUAC Z-scores was: obese, 19; overweight, 178; pre-obese, 135; SAM, 7; MAM, 181; undernourished, at risk of MAM/SAM, 181

Conclusions

Obesity/overweight/pre-obese and SAM/MAM/undernourished states coexist among Indian schoolchildren from lower middle/lower socioeconomic categories. BMI and MUAC were significantly correlated. MUAC may identify both under-nutrition and overnutrition by early detection of aberrant growth.

Introduction

The double burden of under-nutrition and over-nutrition is emerging as a major problem. According to estimates from 129 countries with available data, 57 experience serious problems of both undernourished children and overweight adults (1). The relationship between under-nutrition and overweight status and obesity is more than coexistence. The double burden of malnutrition (DBM) refers to the coexistence of both under-nutrition and over-nutrition within individuals, households, and populations and across the life course. "Across the life course" refers to the phenomenon that undernutrition early in life contributes to an increased propensity for over-nutrition during adulthood (2). The occurrence of DBM is attributed to a complex interplay of nutritional transitions (shifting from an active to a sedentary lifestyle, demographic transitions, etc.) from high fertility and early deaths to low fertility and aging populations and epidemiological transitions from communicable to non-communicable diseases(2).

The consequences of DBM are enormous. Early life under-nutrition is associated with approximately one-third of childhood deaths. The survivors, who become stunted during their first two years of life, are prone to infections and are unable to carry out physical work, study, and progress in school. Later in the life course, the double burden of disease is characterized by the coexistence of communicable (infectious disease) and non-communicable diseases. Prior to the 1970s, obesity was a relatively rare condition, even in the wealthiest of nations (3), whereas under-nutrition was a major problem, and nutrition supplementation was the main intervention. Thus, obesity is a relatively new problem in need of attention. A systematic review of obesity and socioeconomic status

in developing countries concluded that child obesity is more prevalent among affluent groups within developing countries (4). This may be attributed to improved access to surplus/excess food and a higher degree of urbanization and technological progress in these economies that render activities less laborious, resulting in less energy expenditure (5). Thus, economic advancement seems inevitably associated with a rapidly increasing prevalence of obesity. Furthermore, childhood obesity is a strong predictor of adult obesity. For instance, a Japanese study revealed that approximately one-third of obese children grew into obese adults (6). Therefore, early detection of excessive weight gain, and action to prevent its progress, is more likely to succeed than attempting to reverse obesity later.

Body mass index (BMI)-for-age, the internationally recommended measure of obesity, suggests that Asians are at an increased risk of cardio-metabolic disorders, even at lower BMI levels, because of a considerably higher body fat percentage (7). Therefore, the World Health Organization (WHO) recommends lowering the BMI cut-offs for "overweight" among Asian adults (8) in light of the increased health risks. Therefore, early detection of an overweight status has become very important in Asia.

The selection of height-based parameters, such as BMI for the detection of overweight/obese children in low-resource settings, has limitations because of the shortage of stadiometers and trained paramedical staff. A simpler proxy for BMI that parallels the use of abdominal girth for detecting visceral obesity needs to be developed (9). The mid-upper arm circumference (MUAC) appears to be a promising alternative in this regard (10-14). A recent study from the Netherlands reaffirmed that, compared with BMI,MUAC is a valid measure for detecting overweight/obesity, and thus is a good

alternative to BMI (15).Health workers are familiar with MUAC measurement, as it has been commonly used for identifying severe acute under-nutrition among young (6–60 months of age) children (16).

To our knowledge, few studies have focused on the coexistence of under- and overnutrition in India. The present study was conducted to document the extent of DBM among Indian schoolchildren, a key group for intervention, using BMI and MUAC distributions. The study also examined whether MUAC can be used as a proxy for BMI, so that MUAC can detect trends toward obesity or severe acute malnutrition (SAM).

Participants and Methods

Setting: This cross-sectional study was conducted with schoolchildren from the outskirts of Pune, India. This study was part of the MIMER medical college and hospital's outreach activities regarding annual school health check-ups. A schedule of class-wise health check-ups was developed in consultation with the school authorities who, in turn, sought parents' permission. The study had the approval of the ethics committee of MIMER medical college and hospital, Talegaon Dabhade. A majority of the children belonged to lower and lower-middle socioeconomic categories. Children between 3-5 years were from a playgroup, and those between 6-12 years belonged to grades 1-7.

Anthropometric measurements: Anthropometric measurements, such as MUAC, height, and weight, were taken from each participant using standard techniques. Height (cm) was measured on a stadiometer (Easy care) without shoes. Weight (kg) was measured using a digital weighing machine (Meditrin Instruments) in light clothes and without shoes. MUAC (cm) was measured using a non-elastic plastic tape at the midway between the olecranon and acromion processes on the upper left arm. During these measurements, the participant was in a comfortable standing position and was asked to look straight ahead with his/her shoulders in a neutral position. The participant's arm was straightened, and we ensured that the tape was neither too tight nor too loose.

Statistical tools: Open Source Statistical Software PSPP version 1.0.1was used for all analyses, and a *p*-value ≤ 0.05 was considered statistically significant. Mean and standard deviation (SD), median, inter-quartile range, and Z-scores for BMI and MUAC were computed by sex for participants with complete measurements. Z-scores were computed using age-specific and sex-specific reference data from the WHO (17). The distribution of variables was calculated among all participants together and separately for boys and girls. Homogeneous subsets for BMI and MUAC were identified in these three groups. Age-wise comparisons of BMI and MUAC were calculated for both girls and boys.

Patient involvement: Patients were not directly involved in the design of this study.

Results

The total number of participants was 1,444, comprising 424 girls and 1,020 boys. The distribution of variables among all participants, girls and boys, is shown in Tables 1 and

BMJ Paediatrics Open

2. Age, height, weight, and BMI were all significantly different between girls and boys; boys had higher values for all parameters. MUAC, BMI Z-scores, and MUAC Z-scores, however, did not significantly differ between boys and girls (suppl. files).

BMI and MUAC differed significantly for all participants combined, and separately for boys and girls, between the ages of 3 to 16 years. Tukey's HSD tests for multiple comparisons revealed a significant shift in mean BMI at 3, 6, and 10 years whereas for MUAC, the shift occurred at 4, 6, and 9 years. Thereafter, MUAC changed significantly almost every year until the age of 16. Thus, in contrast to BMI, MUAC had more agedependent variability. BMI change with age was minimal among girls (only at age 14) compared to changes among boys at 6, 10, 12, and 14 years. Girls had six homogeneous subsets for MUAC, with the first significant rise at age4, compared to nine subsets among boys, with the first shift at age 5. Thus, changes in BMI and MUAC were more frequent among boys (suppl. files).

Importantly, MUAC positively correlated with other anthropometric variables among girls. Correlations were significant with weight, height, BMI, and BMI Z-scores (Table3). These findings were similar for boys (Table 4).

Based on BMI Z-scores, the following distribution of overweight children was found: obese (Z-scores more than 3 SD) - 21 (1.5%), overweight (Z-scores between 2 and 3 SD) - 36 (2.5%), and pre-obese (Z-scores between 1 and 2 SD)-136 (9.4%). At the other end of the spectrum, among undernourished children, the following distribution was found: SAM (Z-scores less than 3 SD) -5(0.3%), moderate acute malnutrition (MAM; Z-scores between -2 and -3 SD) -146 (10.1%), and undernourished at risk of sliding to MAM or SAM (Z-score between -1 and -2 SD) - 141 (9.8%) (Table5). Drawing parallels to BMI, the distribution of various categories of children based on the MUAC Z-scores was as follows (Table 6): obese-19 (1.3%), overweight- 178 (12.3%), pre-obese-135 (9.3%), SAM- 7(0.5%), MAM- 181 (12.5%), and undernourished at risk of MAM or SAM -181 (12.5%). BMI and MUAC categories had no statistically significant association with gender (suppl. files). The distribution of nutrition conditions, based on a modified WHO classification, is provided in (Table 7).

Discussion

The present study suggests that DBM has reached Indian school children of lower middle or lower socioeconomic statuses, which calls for urgent action. Importantly, the present results identify children at the brink of sliding into severe forms of over- and under-nutrition. The present study also suggests using a single and simpler method, MUAC, for detecting both forms of malnutrition by monitoring growth during routine health check-ups.

The World Health Assembly targets were considered in crafting the 2030 development agenda and are referred to in target 2.2 of the Sustainable Development Goals to "end all forms of malnutrition." The reference to "all forms of malnutrition" is important for acknowledging the existence of the double burden of under-nutrition and overweight. While the drivers of the double burden of malnutrition are varied and often insidious, their effects present a clear case for urgent action and demand an integrated response. Using a single tool for detecting both forms of malnutrition integrates and simplifies the process. Page 11 of 45

BMJ Paediatrics Open

To our knowledge, few studies have focused on this aspect of growth among children in India, as well as other emerging economies. Based on BMI Z-scores, 21(1.5%) and 36 (3.9%) children were classified as obese and overweight, respectively. At the other end of the spectrum, a relatively small proportion, 5 (0.3%) and 5 (0.3%), belonged to SAM and MAM categories, respectively. MUAC Z-scores suggested the following distribution: obesity -19(1.3%), overweight -43(4.3%), SAM -1(0.1%), and MAM-(0.4%). An even greater number of children were leaning towards obesity or overweight, as well as SAM or MAM. Children who are not yet at the BMI-for-age threshold for the current definition of childhood obesity or overweight (and SAM or MAM) may be at an increased risk of developing obesity or severe forms of under-nutrition. One of the present study's aims was to identify these target groups so that these children's needs could be addressed.

The first target group, pre-obese children (BMI or MUACZ-score between 1 and 2 SD), is at risk of progressing to overweight/obesity. The second group, undernourished children (BMI or MUACZ-score between -1 and -2 SD), is at risk of sliding into MAM or SAM. Based on the BMI Z-scores, 136 (9.4%) were pre-obese, and 181 (12.5%) were undernourished. The equivalent numbers for MUAC were 135 (9.3%) for obesity and 181 (12.5%) for SAM and MAM risk, respectively. These target groups may develop more severe forms of malnutrition if corrective measures are delayed. The first step in that direction is to plan face-to-face counseling sessions with parents and children. School programs are effective at preventing childhood obesity by fostering more physical activity and recommending healthier diets (18). Counseling for the target groups will have to be done, keeping in mind that within low-resource settings, places for play may be scarce, sports infrastructure may be poor, and recreational centers may

be lacking (19). Similarly, low family income is linked to greater consumption of lowquality nutrition and fast food (20).

Importantly, MUAC as a single tool can facilitate this cohesive intervention by detecting both under and over-nutrition during routine growth monitoring without a heightdependent parameter, such as BMI (Figure). This is because BMI and MUAC are significantly correlated with each other. However, monitoring for obesity should begin even earlier, as the most rapid weight gain occurs between ages 2 and 6among obese adolescents (21).

While India's economy has been growing at an impressive rate, the country still has the highest number of stunted children in the world (46.8 million), representing one-third of the global total of stunted children under age 5(22).Stunting is associated with being overweight among children in countries that are undergoing a nutritional transition (23).Economic improvements are accompanied by a conspicuous change in dietary patterns in the form of increased fat intake (5). This, coupled with low physical activity, contributes to an increasing prevalence of obesity among adults, which accompanies the first wave of a cluster of non-communicable diseases, such as hypertension and diabetes mellitus, called "the new world syndrome" (24).

It should be noted, however, that some children classified as obese under this system may actually have a higher relative weight due to stunting rather than excess adiposity. Moreover, classification of a child's or adolescent's weight status is complicated by the fact that height and body composition are continually changing, and such changes often occur at different rates and times within different populations. Charts showing BMI for

BMJ Paediatrics Open

healthy children by age indicate an initial rapid rise in the first year, a subsequent decline for the next 5 years, and then a slow rise into adulthood, making simple universal adiposity indices of little value. Therefore, there has not been the same level of agreement on the classification of obesity for children and adolescents as there is for adults (25).

To summarize, until recently, India has considered under-nutrition to be a major problem, and nutrition supplementation has been the key intervention. At the national level, India is at stage 1 of the obesity transition with wide sub-national variations (26). Our study may help in the surveillance effort to address underserved populations (26).With improved availability of food, a double burden of malnutrition is emerging that needs to be concurrently addressed. The present study observed the coexistence of obesity, overweight, pre-obese, and SAM, MAM, and undernourished states among Indian school children in lower-middle and lower socioeconomic levels. Second, the present results revealed a significant correlation between BMI and MUAC. This study provides evidence to suggest that MUAC is a valid, single measurement for identifying this dual problem of aberrant growth and over-nutrition on the one hand and undernutrition on the other, through extended routine growth monitoring of children. However, more studies are required to establish validity and reliability of this tool.

What is known about the subject?

- Emerging economies face a dual problem of under-nutrition and over-nutrition.
- Its detection is not easy with height-based parameters in low resource setting.

What this study adds?

This study suggests that MUAC is a simple, valid, and single measurement for • identifying this dual problem in the above setting.

A funding statement: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

No competing interests: All authors have completed the ICMJE uniform disclosure form at and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Author contribution:

SD-Conceptualization; Data analysis; Manuscript writing.

SM-Data collection; data analysis; manuscript writing.

AK- Data analysis; manuscript writing.

ED- Data collection; manuscript writing.

References

1. Nestle M. Rethinking nutritional policies in developing countries taking into account the double burden of malnutrition. [Internet]. Cited 2016 Oct 18]. Available from:https://ideas4development.org/en/rethinking-nutritional-policies/

2. Shrimpton R, Rokx C. Health, Nutrition, and Population (HNP) Discussion Paper: The double burden of malnutrition: a review of global evidence. Washington (DC): The World Bank; 2012[cited 2002 Aug 12]. Available from:

http://documents.worldbank.org/curated/en/905651468339879888/The-double-burdenof-malnutrition-a-review-of global evidence cited 2002 Aug 12.3. Prentice AM. The double burden of malnutrition in countries passing through the economic transition. Ann Nutr Metab. 2018;72(suppl 3):47-54.doi: 10.1159/000487383.

 Dinsa GD, Goryakin Y, Fumagalli E, Suhrcke M. Obesity and socioeconomic status in developing countries: a systematic review. ObesRev. 2012 Nov; 13(11):1067-79. doi: 10.1111/j.1467-789X.2012.01017.

5. Kennedy G, Nantel G, Shetty P. Assessment of the double burden of malnutrition in six case study countries. In: Food and Agriculture Organization of the United Nations (FAO), editor. The double burden of malnutrition: Case studies from six developing countries. Rome: FAO; 2006. December 2006. Available from:

http://www.fao.org/docrep/009/a0442e/a0442e03.htm.6

 Ketal K. Two decades of annual medical examinations in Japanese obese children: do obese children grow into obese adults? Int J Obes Relat Metab Disord.1997Oct; 21:912-21.

7. de Wilde JA, vanDommelen P, Middelkoop BJ. Appropriate body mass index cut-offs to determine thinness, overweight and obesity in south Asian children in the Netherlands. PLoSOne.2013 Dec;8(12).e82822.doi:10.1371/journal.pone.0082822.

8. World Health Organization Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004 Jan 10; 363:157-63.doi: 10.1016/S0140-6736(03)15268-39.Liu A, Hills AP, Hu X, Li Y, Du L, Xu Y, et al. Waist circumference cut-off values for the prediction of cardiovascular risk factors clustering in Chinese school-aged children: a cross-sectional study. BMC Public Health. 2010; 10:82. doi: 10.1186/1471-2458-10-8210.Craig E, Bland R, Ndirangu J, Reilly JJ.Use of mid-upper arm circumference for determining overweight and overfatness in children and adolescents. Arch Dis Child.2014 Aug; 99:763-6. doi: 10.1136/archdischild-2013-305137 763.11. ChaputJP, Katzmarzyk PT, Barnes JD, Fogelholm M, Hu G, Kuriyan R, et al. Mid-upper arm circumference as a screening tool for identifying children with obesity: a 12-country study. Pediatr Obes. 2017 Dec; 12(6):439-45.doi: 10.1111/ijpo.12162.

12. Asif M, Aslam M, Altaf S. Mid-upper-arm circumference as a screening measure for identifying children with elevated body mass index: a study for Pakistan. Korean J Pediatr.2018Jan; 61(1):6-11.doi: 10.3345/kjp.2018.61.1.6

13. Jaiswal M, Bansal R, Agarwal A. Role of mid-upper arm circumference for determining overweight and obesity in children and adolescents. J Clin Diagn Res. 2017 Aug; 11(8):SC05-SC08.doi: 10.7860/JCDR/2017/27442.10422

14. Lu Q, Wang R, Lou DH, Ma CM, Liu XL, Yin FZ. Mid-upper-arm circumference and arm-to-height ratio in evaluation of overweight and obesity in Han children. PediatrNeonatol.2014; 55:14-9.doi: 10.1016/j.pedneo.2013.05.004.

15. Talma H, van Dommelen P, Schweizer JJ, Bakker B, Kist-van Holthe JE, Chinpaw JMM, Hirasing RA. Is mid-upper arm circumference in Dutch children useful in identifying obesity? Arch Dis Child. 2019 Feb;104(2):159-65. doi: 10.1136/archdischild-2017-313528.

16. Roberfroid D, Hammami N, Lachat C, Weise Prinzo Z, Sibson V, Guesdon B, et al. Utilization of mid-upper arm circumference versus weight-for-height in nutritional rehabilitation programmes: a systematic review of evidence. Geneva: World Health Organization; 2013.

17. WHO Multicentre Growth Reference Study Group. WHO child growth standards based on length/height, weight and age. Acta Paediatr. 2006; 450(Suppl.):76-85.

 Veugelers PJ, Fitzgerald AL. Effectiveness of school programs in preventing childhood obesity: a multilevel comparison. Am J Pub Health. 2005 Mar; 95(3):432-35. doi: 10.2105/AJPH.2004.045898

19. Ludwig J, Sanbonmatsu L, Gennetian L, Adam E, Duncan GJ, Katz LF, et al. Neighborhoods, obesity, and diabetes–a randomized social experiment. N Engl J Med. 2011 Oct 20; 365:1509-19.doi: 10.1056/NEJMsa1103216

20. Zenk SN, Powell LM, Rimkus L, Isgor Z, Barker DC, Ohri-Vachaspati P, Chaloupka F. Relative and absolute availability of healthier food and beverage alternatives across

communities in the United States. Am J PubHealth. 2014Nov; 104(11):2170-8.doi: 10.2105/AJPH.2014.302113

21. Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in early childhood and risk of sustained obesity. N Engl J Med.2018 Oct 4; 379:1303-12. doi: 10.1056/NEJMoa1803527

22. UNICEF India. Stunting. December 2018. Available from:

http://unicef.in/Whatwedo/10/Stunting.

23. Popkin BM, Richards MK, Monteiro CA. Stunting is associated with overweight in children in countries that are undergoing the nutrition transition.JNutr.1996Dec; 126(12):3009-16.doi: 10.1093/jn/126.12.3009.

23. Popkin BM, Richards MK, Monteiro CA. Stunting is associated with overweight in children in countries that are undergoing the nutrition transition.JNutr.1996Dec; 126(12):3009-16.doi: 10.1093/jn/126.12.3009.

24. Kolčić I. Double burden of malnutrition: a silent driver of double burden of disease in low- and middle-income countries. J Glob Health. 2012 Dec; 2(2):020303. doi: 10.7189/jogh.02.02030325. Chan RSM, Woo J.Prevention of overweight and

obesity: How effective is the current public health approach.Int J Environ Res Public Health. 2010 Mar; 7(3):765-83. doi:10.3390/ijerph703076526.

<text><text><text><text><page-footer>

Table 1

Descriptive statistics for age, sex, and anthropometric characteristics

Variabl	Girls (n	=424)			Boys (r	1,020))		Test	Whitney
es ^	Mean	SD	Media n	IQR	Mean	SD	Media n	IQR	Z- valu e	p-value
Age (years)	7.63	2.82	7.00	5.00	8.80	3.69	9.00	5.00	- 5.16 2 Differe	2.44E- 07 ence is cant
Height (cm)	125.1 6	16.9 5	125.0 0	26.00	134.0 6	22.16	133.1 5	34.0 0	- 6.62 6 Differe	3.44E- 11 ence is cant
Body	22.48	8.83	20.20	10.40	28.93	14.96	24.20	19.4	- 7.21	5.41E-

1 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 BMI 17 18 10 11 12 13 14 15 16 BMI 13.84 2.33 13.20 2.14 15.04			
12 13 13 14 15 15 16 BMI 17 13.84 18 (kg/m²) 19 13.84 20 13.20 21 13.20 22 13.20			
24	13.84 2.3	3 13.20 2.14	15.04 3
25 26 26 27 28 29 30 MUAC 17.52 2.61 16.85 3.30 18.94 31 32 33 34 35 36 37 16.85 3.30 18.94	AC 17.52 2.6		18.94
38 39 40 41 41 BMI 42 43 44 (Z- 45 46 47 48 49 50	0.00 0.9	9 -0.22 1.09	-0.01
51 MUAC 0.00 0.99 -0.13 1.22 0.00 53 54 (Z- Image: second	AC 0.00 0.9	9 -0.13 1.22	0.00

weight								0	5	13
(kg)									Differe	ence is
									signific	cant
BMI (kg/m²)	13.84	2.33	13.20	2.14	15.04	3.31	13.98	3.24	- 7.37 4	1.66E- 13
			3						Differe	ence is
				x C					signific	cant
MUAC	17.52	2.61	16.85	3.30	18.94	3.83	17.95	5.00	- 6.23 3	4.59E- 10
						2			Differe	ence is
						6			signific	cant
BMI (Z-	0.00	0.99	-0.22	1.09	-0.01	1.00	-0.21	1.06	- 0.50 1	0.616
Score)										ence is Inificant
										Jinicant
MUAC (Z-	0.00	0.99	-0.13	1.22	0.00	0.99	-0.17	1.14	- 0.08	0.936

2		
3	score)	1
4		
5		
6		Difference is
7		Difference is
8		
9		not significant
10		U U
11		
12	^ All data failed Shapiro-Wilk Normality Tests. Hence, Mann-Whitney U	Rank Sum
13		
14		
14	Tests were applied.	
16 17		
17	# Ordinal data requiring a Mann-Whitney U Rank Sum Test.	
18		
19		
20	BMI=Body Mass Index; MUAC=Mid-upper-arm circumference	
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60	https://mc.manuscriptcentral.com/bmjpo	
~~		

Table 2

Distribution of variables among all participants

						r
Variables	Mean	SD	Median	IQR	Minimum	Maximum
Age (years)	8.46	3.50	9.00	6.00	3.00	16.00
Body weight (kg)	27.04	13.77	23.10	16.20	9.00	97.50
Height (cm)	131.45	21.16	130.00	32.00	84.00	188.00
BMI	14.69	3.10	13.78	2.89	6.58	36.10
MUAC	18.53	3.57	17.50	4.30	12.20	35.00

SD = standard deviation; IQR = inter-quartile range; BMI = Body Mass Index; MUAC =

Mid-upper-arm circumference

Table 3

Correlations between anthropometric parameters among girls (N=424)

	26	MUAC	Body weight	Height	BMI	BMI (Z-score) Internal
MUAC	Pearson Correlation	1	.897**	.700**	.826**	.567**
	Sig. (2-tailed)		7.340E- 152	1.207E- 063	6.856E- 107	2.020E-037
Body weight	Pearson Correlation	.897**	1	.866**	.776**	.422**
Sig. (Sig. (2-tailed)	7.340E- 152		2.851E- 129	1.933E- 086	9.136E-020
Height	Pearson Correlation	.700**	.866**	1	.385**	.055
	Sig. (2-tailed)	1.207E- 063	2.851E- 129		2.156E- 016	.2594

Page 25 of 45

	Pearson Correlation	.826**	.776**	.385**	1	.831**
вмі						
	Sig. (2-tailed)	6.856E-	1.933E-	2.156E-		2.161E-109
		107	086	016		2.1012-109
	Pearson	.567**	.422**	.055	.831**	1
BMI (Z-score)	Correlation					
Internal	Sig. (2-tailed)	2.020E-	9.136E-	.2594	2.161E-	
	Sig. (z-tailed)	037	020	.2094	109	
** Correlation	is significant at t	he 0.01 lev	el (2-tailed).	1	1
			ò			

MUAC = Mid-upper-arm circumference; BMI = Body Mass Index

Table 4

Correlations between anthropometric parameters among boys (N=1020)

6		MUAC	Body weight	Height	BMI	BMI (Z-score) Internal
MUAC	Pearson Correlation	1	.911**	.780**	.847**	.472**
	Sig. (2-tailed)	2	.00000	9.603E- 210	2.206E- 281	1.066E-057
Body weight	Pearson Correlation	.911**	10	.886**	.861**	.383**
	Sig. (2-tailed)	.0000		.00000	1.248E- 301	6.748E-037
Height	Pearson Correlation	.780**	.886**	1	.564**	.049
	Sig. (2-tailed)	9.603E- 210	.00000		1.024E- 086	.1168
BMI	Pearson	.847**	.861**	.564**	1	.748**

Sig. (2-tailed)	2.206E- 281	1.248E-	1.024E-		
Sıg. (2-tailed)	281	1			
		301	086		1.462E-183
Pearson Correlation	.472**	.383**	.049	.748**	1
	1.066E-	6.748E-		1.462E-	
Sig. (2-tailed)	057	037	.1168	183	
	Correlation Sig. (2-tailed)	Correlation .472** Sig. (2-tailed) 1.066E- 057 s significant at the 0.01 lev	.472** .383** Correlation 1.066E- 6.748E- Sig. (2-tailed) 057 037 a significant at the 0.01 level (2-tailed)	Correlation.472**.383**.049Sig. (2-tailed)1.066E- 0576.748E- 037.1168a significant at the 0.01 level (2-tailed).oper-arm circumference; BMI = Body Mass Inde	Correlation .472** .383** .049 .748** Sig. (2-tailed) 1.066E- 6.748E- .1168 1.462E- 057 037 183 183

Table 5

Distribution of BMI Z-scores

BMI (z-score) Internal

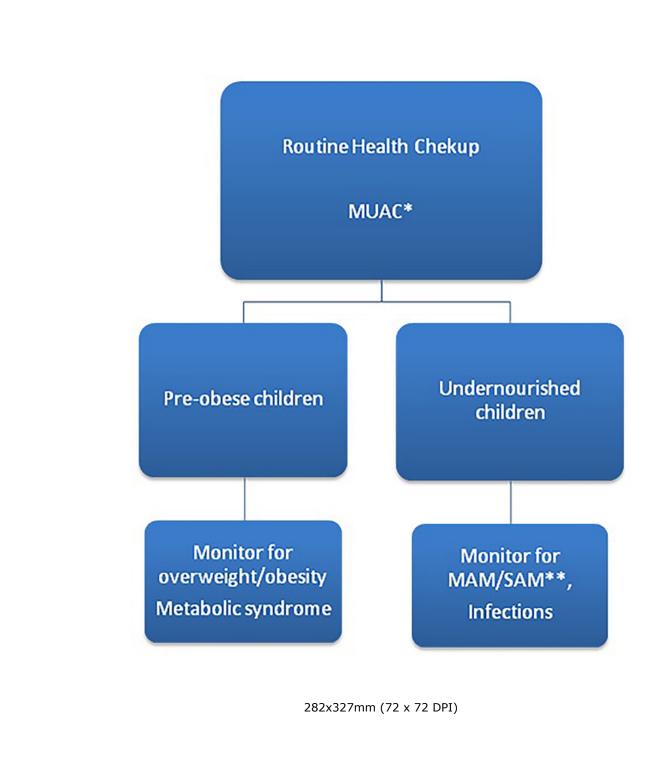
	Ni O	Frequency	Percent	Valid Percent	Cumulative Percent
	1)>+3	21	1.5	1.5	1.5
	2)>+2 to <+3	36	2.5	2.5	3.9
	3)>+1 to <+2	136	9.4	9.4	13.4
	4)0 to +1	391	27.1	27.1	40.4
Valid	5)≥-1 to 0	709	49.1	49.1	89.5
	6)≥-2 to <-1	141	9.8	9.8	99.3
	7)≥-3 to <-2	5	.3	.3	99.7
	8)<-3	5	.3	.3	100.0
	Total	1444	100.0	100.0	

Table 6

Distribution of MUAC Z-scores

(Frequency	Percent	Valid Percent	Cumulative Percen
	1)>+3 SD	19	1.3	1.3	1.3
	2)>+2 to <+3	43	3.0	3.0	4.3
	3)>+1 to <+2	135	9.3	9.3	13.6
	4)0 to +1	418	28.9	28.9	42.6
Valid	5)≥-1 to 0	641	44.4	44.4	87.0
	6)≥-2 to <-1	181	12.5	12.5	99.5
	7)≥-3 to <-2	6	.4	.4	99.9
	8)<-3	1	.1	.1	100.0
	Total	1444	100.0	100.0	0
					24

Table 7


Distribution of nutrition conditions based on BMI and MUAC Z-scores **

	Based on BMI z-scores	Based on MUACZ-scores		
Condition	No (%)	No (%)		
Pre-obese	BMI >1 to 2 SD	MUAC>1to 2SD		
	136 (9.4)	135 (9.3)		
Querreisht	BMI>2 to 3 SD	MUAC>2 to 3SD		
Overweight	36 (2.5)	43 (3)		
		MUAC>3SD		
Obese	BMI >3SD	19(1.3)		
	21 (1.5)			
Possible	BMI <-1 to -2 SD	MUAC ≤ -1 to -2SD		
risk of	141 (9.8)	181 (12.5)		
underweight				
	BMI <-2 to -3 SD	MUAC<-2 to -3SD		
Thin	5 (0.3)	6 (0.4)		

Severely	BMI <-3SD	MUAC<-3 SD	
thin	5 (0.3)	1(0.1)	

**Modified WHO Classification of nutrition conditions based on anthropometry

BMI = Body Mass Index; MUAC = Mid-upper-arm circumference ass much

Table 1

Age-wise comparisons of BMI among all subjects

Age (years)	Mean	SD	Median	IQR	F-value	p-value
3	13.37	1.34	13.26	1.61	56.066	5.73E-118
4	13.04	1.69	13.07	1.46		
5	13.01	1.13	12.80	1.02		
6	13.85	2.09	13.39	1.55		
7	13.54	1.48	13.20	1.90		
8	13.94	2.22	13.37	2.01		
9	13.70	1.73	13.36	1.66		
10	14.74	2.84	13.97	2.77	Difference is	significant
11	15.48	3.03	14.89	3.60		
12	15.89	3.01	15.63	3.87		
13	18.22	3.34	17.51	3.30		
14	18.33	3.88	17.28	4.53		
15	19.09	4.32	18.01	6.52		
16	21.38	5.89	23.55	11.09		

<page-header><text><image>

Table 2

Age-wise comparisons of MUAC among all participants

Age (years)	Mean	SD	Median	IQR	F-value	p-value
3	15.39	1.24	15.20	1.50	140.727	1.10E-244
4	15.50	1.16	15.50	1.10		
5	16.19	1.17	15.95	1.20		
6	16.83	2.07	16.50	1.95		
7	16.98	1.75	16.70	2.00		
8	17.97	2.11	17.50	1.61		
9	17.79	1.78	17.50	2.08	Differenc	e is
10	19.02	2.63	18.50 🤇	3.45	significan	
11	20.16	3.04	19.50	3.93		
12	20.87	2.79	20.50	4.00		
13	22.91	2.79	22.50	2.60		
14	23.53	3.64	23.00	4.95		
15	24.66	3.73	23.50	5.23		
16	25.81	4.63	27.20	7.75		

<page-header><text><image>

Table 3

Homogeneous Subsets: BMI (Tukey's HSD)

Age (years)	No.	Subset f	or alpha =	= 0.05			
		1	2	3	4	5	6
5	132	13.011					
4	146	13.038					
3	102	13.366	13.366				
7	156	13.537	13.537				
9	72	13.696	13.696				
6	109	13.852	13.852	13.852			
8	65	13.939	13.939	13.939			
10	220		14.740	14.740	14.740		
11	182			15.481	15.481	5	
12	77				15.892	2.	
13	30					18.224	
14	72					18.325	
15	72					19.094	

	16	9						21.380
-	Sig.		0.836	0.232	0.059	0.529	0.892	1.000

Means for groups in homogeneous subsets are displayed.

Body Mass Index BMI = Body Mass Index

Table 4

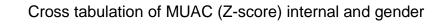
Homogeneous subsets: MUAC – Tukey's HSD (all subjects)

Age	No	Subset	for alph	a = 0.05	5					
(years)		1	2	3	4	5	6	7	8	9
2	10	15.38								
3	2	5	2							
4	14	15.50	15.50							
4	6	0	0	2						
<i>г</i>	13	16.19	16.19		\land					
5	2	4	4		Ô,					
	10	16.82	16.82	16.82		9				
6	9	6	6	6		02				
_	15		16.97	16.97			Ċ.			
7	6		9	9			.2			
0	70			17.79	17.79					
9	72			4	4				1	
0	05			17.97	17.97					
8	65			2	2					

Page 40	of 45
---------	-------

10	22				19.01	19.01				
10	0				5	5				
	18					20.16	20.16			
11	2					1	1			
12	77						20.87			
12	11	0					1			
13	30	C	5					22.90		
	00							7		
14	72			/.				23.53	23.53	
								2	2	
15	72				~				24.65	24.6
15	12					PC.			8	8
16	9									25.8
	5						C			1
Sig.		0.102	0.08	0.421	0.314	0.423	0.961	0.987	0.452	0.41
								0		

MUAC = Mid-upper-arm circumference


Cross tabulation of BMI (Z-score) internal and gender

20			Gender		Total
0			Female	Male	-
	1)>+3	Count	5	16	21
	0.	% within Sex	1.2%	1.6%	1.5%
	2)>+2 to <+3	Count	11	25	36
		% within Sex	2.6%	2.5%	2.5%
BMI (Z-score) Internal	3)>+1 to <+2	Count	47	89	136
		% within Sex	11.1%	8.7%	9.4%
	4)0 to +1	Count	109	282	391
		% within Sex	25.7%	27.6%	27.1%
	5)≥-1 to 0	Count	209	500	709
		% within Sex	49.3%	49.0%	49.1%

	6)≥-2 to <-1	Count	39	102	141
		% within Sex	9.2%	10.0%	9.8%
	7)≥-3 to <-2	Count	3	2	5
		% within Sex	.7%	.2%	.3%
	8)<-3	Count	1	4	5
	12:	% within Sex	.2%	.4%	.3%
Total		Count	424	1020	1444
		% within Sex	100.0%	100.0%	100.0%
		2	1	1	1

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.199 ^a	7	.636
Likelihood Ratio	4.931	7	.668
N of Valid Cases	1444		

f 45	BMJ Paediatrics Open
	^a 4 cells (25.0%) have expected count less than 5. The minimum expected count is
	1.47.
	BMI = Body Mass Index
	Table 6

			Gender		Total
\mathbf{C}			Female	Male	
25	1)>+3	Count	3	16	19
		% within Sex	.7%	1.6%	1.3%
	2)>+2 to <+3	Count	17	26	43
	9/.	% within Sex	4.0%	2.5%	3.0%
	3)>+1 to <+2	Count	38	97	135
MAC (Z-score) Internal		% within Sex	9.0%	9.5%	9.3%
	4)0 to +1	Count	131	287	418
		% within Sex	30.9%	28.1%	28.9%
	5)≥-1 to 0	Count	178	463	641
		% within Sex	42.0%	45.4%	44.4%
	6)≥-2 to <-1	Count	55	126	181

		% withir	n Sex	13.0%	12.4%	12.5%
	7)≥ -3 to <-2	Count		2	4	6
S	.,	% withir	n Sex	.5%	.4%	.4%
75		Count		0	1	1
	8)<-3	% withir	n Sex	.0%	.1%	.1%
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Count		424	1020	1444
Total		% withir	n Sex	100.0%	100.0%	100.0%
		0,				
Chi-Square Tests						
	Value	df	Asyr	np. Sig. (2-sided)	
Pearson Chi-Square	6.054 ^a	7	.533	4		
Likelihood Ratio	6.429	7	.491		Ô,	
	1444					Ĺ
N of Valid Cases		s than 5.	 The n	ninimum	expected	l count i
N of Valid Cases ^a 4 cells (25.0%) have	expected count less					

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.054ª	7	.533
Likelihood Ratio	6.429	7	.491
N of Valid Cases	1444		1
^a 4 cells (25.0%) have expe	ected count less t	han 5.	The minimum expected count is .2

Double burden of malnutrition among Indian school children and its measurement

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2019-000505.R1
Article Type:	Original research
Date Submitted by the Author:	15-Jun-2019
Complete List of Authors:	Daga, Subhashchandra; Pacific Medical College and Hospital, Pediatrics Mhatre, Sameer; Smt Kashibai Navale Medical College and General Hospital, Paediatrics Kasbe, Abhiram ; Topiwala National Medical College DSouza, Eric; MIMER
Keywords:	General Paediatrics, Growth, Obesity, School Health, Tropical Paediatrics

1		
2 3		
4	1	
5		
6		
7	0	
8	2	
9		
10		
11	3	
12	-	
13		
14 15		
16	4	Double burden of malnutrition among Indian school children and its
17		
18	5	measurement
19	5	incasur cinciti
20		
21	-	
22	6	Short title: Measuring double burden of malnutrition
23		
24 25	7	
26	1	
27		
28	8	SubhashchandraDaga ^{1*} , Sameer Mhatre ² , Eric Dsouza ³ , Abhiram Kasbe ⁴
29	Ŭ	Subhushenandubugu , Sumeer Winare, Erre Dsoubu, Monnain Russe
30		
31	9	
32		
33 34		
35	10	¹ Department of Pediatrics, Pacific Medical College and Hospital, Udaipur, India
36		
37		
38	11	² Department of Pediatrics,Smt. KashibaiNavle Medical College, Pune, India
39		
40	12	³ Department of Pediatrics, MIMER Medical College, Talegaon, India
41	12	Department of Fediatrics, Winvier K Wedical Conege, Talegaon, India
42 43		
44	13	⁴ Department of Pediatrics, Topiwala Medical College, Mumbai, India
45	-	
46		Department of Fedhatries, Foptwara Wedrear Conege, Warnoar, mara
47	14	
48		
49		
50 51	15	
52		
52 53	16	*Corresponding outhor
54	16	*Corresponding author
55		
56		
57		
58		
59		https://mc.manuscriptcentral.com/bmjpo
60		https://me.manuscriptcentral.com/binjpo

17	E-mail:	dagasubhash49@gmail.com (S	D)

20 Abstract

Objective

- 22 This cross-sectional study aimed to document the extent of double burden of malnutrition
- 23 (coexistence of over- and under-nutrition) among Indian schoolchildren from lower
- 24 socioeconomic groups, and to determine if mid-upper arm circumference (MUAC) can be used
- as a proxy for body mass index (BMI).
- 26 Design
- 27 A cross-sectional study
- 28 Setting
 - A school in the outskirts of a large city, with a majority of the children belonging to lower and
 - 30 lower-middle socioeconomic categories.
- 31 Subjects

32 The total number of participants was 1,444, comprising 424 girls and 1,020 boys belonging to

33 playgroups and grades 1-7.

34 Measurements

2	
3	
4	
5	
6	
6 7 8 9	
/	
8	
9	
10	
11	
12	
13	
14	
12 13 14 15 16 17 18 19 20 21	
16	
17	
18	
10	
19	
20	
21	
22	
22	
24	
23 24 25	
26	
27	
28	
20	
28 29 30	
30	
31 32	
32	
33 34 35	
34	
35	
36 37	
37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

35 Anthropometric measurements, such as participants' MUAC, height, and weight were measured 36 using standard techniques. Descriptive statistics for BMI and MUAC were obtained based on 37 gender; Z-scores were computed using age-specific and sex-specific WHO reference data. The 38 distribution of variables was calculated for three groups: all participants together and separately 39 for each gender. Homogeneous subsets for BMI and MUAC were identified in the three groups. 40 Age-wise comparisons of BMI and MUAC were conducted for each gender. 41 Main outcome measures 42 1. To know if MUAC and BMI are correlated among both boys and girls. 43 2. To study BMI and MUAC Z score distribution among the subjects. 44 Results 45 The MUAC positively correlated with BMI in both boys and girls. The following BMI Z-score 46 distribution was observed: obese, 21 (1.5%); overweight, 36 (2.5%); pre-obese, 136 (9.4%); 47 severe acute malnutrition (SAM), 5(0.3%); moderate acute malnutrition (MAM), 146 (10.1%); 48 undernourished, at risk of MAM/SAM, 141 (9.8%). The distribution of categories of children based on MUAC Z-scores was: obese, 19 (1.3%), overweight, 178 (12.3%), pre-obese, 135 49 50 (9.3%), SAM, 7(0.5%), MAM, 181 (12.5%), and undernourished at risk of MAM or SAM, 181 51 (12.5%). 52 Conclusions 53 Obesity/overweight/pre-obese and SAM/MAM/undernourished states, undernutrition more than 54 overweight, coexist among Indian schoolchildren from lower middle/lower socioeconomic

- <text><text><text><page-footer>

https://mc.manuscriptcentral.com/bmjpo

57 Introduction

The double burden of under-nutrition and over-nutrition is emerging as a major problem. According to estimates from 129 countries with available data, 57 experience serious problems of both undernourished children and overweight adults [1]. The relationship between under-nutrition and overweight status and obesity is more than coexistence. The double burden of malnutrition (DBM) refers to the coexistence of both under-nutrition and over-nutrition within individuals, households, and populations and across the life course. "Across the life course" refers to the phenomenon that under-nutrition early in life contributes to an increased propensity for over-nutrition during adulthood [2]. The occurrence of DBM is attributed to a complex interplay of nutritional transitions (shifting from an active to a sedentary lifestyle, demographic transitions, etc.) from high fertility and early deaths to low fertility and aging populations and epidemiological transitions from communicable to non-communicable diseases [2].

The consequences of DBM are enormous. Early life under-nutrition is associated with approximately one-third of childhood deaths. The survivors, who become stunted during their first two years of life, are prone to infections and are unable to carry out physical work, study, and progress in school. Later in the life course, the double burden of disease is characterized by the coexistence of communicable (infectious disease) and non-communicable diseases. Prior to the 1970s, obesity was a relatively rare condition, even in the wealthiest of nations [3], whereas under-nutrition was a major problem, and nutrition supplementation was the main intervention. Thus, obesity is a relatively new problem in need of attention. A systematic review of obesity and socioeconomic status in developing countries concluded that child obesity is more prevalent among affluent groups within developing countries [4]. This may be attributed

to improved access to surplus/excess food and a higher degree of urbanization and technological
progress in these economies that render activities less laborious, resulting in less energy
expenditure [5]. Thus, economic advancement seems inevitably associated with a rapidly
increasing prevalence of obesity. Furthermore, childhood obesity is a strong predictor of adult
obesity. For instance, a Japanese study revealed that approximately one-third of obese children
grew into obese adults [6]. Therefore, early detection of excessive weight gain, and action to
prevent its progress, is more likely to succeed than attempting to reverse obesity later.

Body mass index (BMI)-for-age, the internationally recommended measure of obesity,
suggests that Asians are at an increased risk of cardio-metabolic disorders, even at lower BMI
levels, because of a considerably higher body fat percentage [7]. Therefore, the World Health
Organization (WHO) recommends lowering the BMI cut-offs for "overweight" among Asian
adults [8] in light of the increased health risks. Therefore, early detection of an overweight status
has become very important in Asia.

The selection of height-based parameters, such as BMI for the detection of overweight/obese children in low-resource settings, has limitations because of the shortage of stadiometers and trained paramedical staff. A simpler proxy for BMI that parallels the use of abdominal girth for detecting visceral obesity needs to be developed [9]. The mid-upper arm circumference (MUAC) appears to be a promising alternative in this regard [10–14]. A recent study from the Netherlands reaffirmed that, compared with BMI.MUAC is a valid measure for detecting overweight/obesity, and thus is a good alternative to BMI [15]. Health workers are familiar with MUAC measurement, as it has been commonly used for identifying severe acute under-nutrition among young (6–60 months of age) children [16].

BMJ Paediatrics Open

To our knowledge, few studies have focused on the coexistence of under- and overnutrition in India. The present study was conducted to document the extent of DBM among
Indian schoolchildren, a key group for intervention, using BMI and MUAC distributions. The
study also examined whether MUAC can be used as a proxy for BMI, so that MUAC can detect
trends toward obesity or severe acute malnutrition (SAM).

106 Participants and Methods

107 Setting

This cross-sectional study was conducted with schoolchildren from the outskirts of Pune, India. This study was part of the MIMER medical college and hospital's outreach activities regarding annual school health check-ups. A schedule of class-wise health check-ups was developed in consultation with the school authorities who, in turn, sought parents' permission. The study had the approval of the ethics committee of MIMER medical college and hospital, Talegaon Dabhade. A majority of the children belonged to lower and lower-middle socioeconomic categories. Children between 3–5 years were from a playgroup, and those between 6–12 years belonged to grades 1–7.

116 Anthropometric measurements

Anthropometric measurements, such as MUAC, height, and weight, were taken from
each participant using standard techniques. Height (cm) was measured on a stadiometer (Easy
care) without shoes. Weight (kg) was measured using a digital weighing machine (Meditrin
Instruments) in light clothes and without shoes. MUAC (cm) was measured using a non-elastic
plastic tape at the midway between the olecranon and acromion processes on the upper left arm.

> During these measurements, the participant was in a comfortable standing position and was asked to look straight ahead with his/her shoulders in a neutral position. The participant's arm

was straightened, and we ensured that the tape was neither too tight nor too loose.

Statistical tools

Open Source Statistical Software PSPP version 1.0.1 was used for all analyses, and a p-value <0.05 was considered statistically significant. Mean and standard deviation (SD), median, inter-quartile range, and Z-scores for BMI and MUAC were computed by sex for participants with complete measurements. Z-scores were computed using age-specific and sex-specific reference data from the WHO [17]. The distribution of variables was calculated among all participants together and separately for boys and girls. Homogeneous subsets for BMI and tter, UAC were identitien alculated for both girls and boys. **Patient involvement** Patients were not directly involved in the design of this study. MUAC were identified in these three groups. Age-wise comparisons of BMI and MUAC were

BMJ Paediatrics Open

136 Results

The total number of participants was 1,444, comprising 424 girls and 1,020 boys. The
distribution of variables among all participants, girls and boys, is shown in Tables 1 and 2. Age,
height, weight, MUAC, and BMI were all significantly different between girls and boys; boys
had higher values for all parameters.

BMI and MUAC showed age-wise differences for all participants combined, and separately for boys and girls, between the ages of 3 to 16 years. Tukey's HSD tests for homogeneous subsetsrevealed a significant shift in mean BMI at 3, 6, and 10 years whereas for MUAC, the shift occurred at 4, 6, and 9 years. Thereafter, MUAC changed significantly almost every year until the age of 16. Thus, in contrast to BMI, MUAC had more age-dependent variability. BMI change with age was minimal in girls (only at age 14) compared to changes in boys at 6, 10, 12, and 14 years. Girls had six homogeneous subsets for MUAC, with the first significant rise at age of 4 years, compared to nine subsets in boys, with the first shift at age 5. Thus, changes in BMI and MUAC were more frequent in boys (supplementary files). Importantly, MUAC was positively correlated with weight, height, and BMI both in both girls and boys (Tables 3 and 4).

Based on BMI Z-scores, the following distribution of overweight children was found: obese (Zscores more than 3 SD) - 21 (1.5%), overweight (Z-scores between 2 and 3 SD) - 36 (2.5%), and
pre-obese (Z-scores between 1 and 2 SD)-136 (9.4%). At the other end of the spectrum, among
undernourished children, the following distribution was found: SAM (Z-scores less than 3 SD) 5(0.3%), moderate acute malnutrition (MAM; Z-scores between -2 and -3 SD) -146 (10.1%), and
undernourished at risk of sliding to MAM or SAM (Z-score between -1 and -2 SD) - 141 (9.8%)

158	(Table and Figure 2). Drawing parallels to BMI, the distribution of various categories of
159	children based on the MUAC Z-scores was as follows (Table 6 and Figure 3): obese-19 (1.3%),
160	overweight- 178 (12.3%), pre-obese-135 (9.3%), SAM- 7(0.5%), MAM- 181 (12.5%), and
161	undernourished at risk of MAM or SAM -181 (12.5%). BMI and MUAC categories had no
162	statistically significant association with gender (suppl. files). The distribution of nutrition
163	conditions, based on a modified WHO classification, is provided in (Table 7).
164	Discussion
165	The present study suggests that DBM has reached Indian school children of lower middle
166	or lower socioeconomic statuses, which calls for urgent action. Importantly, the present results
167	identify children at the brink of sliding into severe forms of over- and under-nutrition. The
168	present study also suggests using a single and simpler method, MUAC, for detecting both forms
169	of malnutrition by monitoring growth during routine health check-ups.
170	The World Health Assembly targets were considered in crafting the 2030 development
171	agenda and are referred to in target 2.2 of the Sustainable Development Goals to "end all forms
172	of malnutrition." The reference to "all forms of malnutrition" is important for acknowledging the
173	existence of the double burden of under-nutrition and overweight. While the drivers of the
174	double burden of malnutrition are varied and often insidious, their effects present a clear case for
175	urgent action and demand an integrated response. Using a single tool for detecting both forms of
176	malnutrition integrates and simplifies the process.
177	To our knowledge, few studies have focused on this aspect of growth among children in
178	India, as well as other emerging economies. Based on BMI Z-scores, 21(1.5%) and 36 (3.9%)
179	children were classified as obese and overweight, respectively. At the other end of the spectrum,

Page 11 of 34

BMJ Paediatrics Open

1	
2 3 4	18
- 5 6	18
7 8	18
9 10	18
11 12	18
12 13 14 15	18
15 16 17	18
18 19	
20 21	18
20 21 22 23 24 25	18
24 25 26	18
26 27 28	19
29 30	19
31 32	19
33 34	19
35 36 37	19
37 38 39	19
40 41	19
42 43	
44 45	19
46 47	19
48 49	19
50 51	20
52 53 54	20
54 55 56	
57	
58 59	
60	

180	a relatively small proportion, 5 (0.3%) and 5 (0.3%), belonged to SAM and MAM categories,
181	respectively. MUAC Z-scores suggested the following distribution: obesity -19(1.3%),
182	overweight -43(4.3%), SAM -1(0.1%), and MAM-(0.4%). An even greater number of children
183	were leaning towards obesity or overweight, as well as SAM or MAM. Children who are not yet
184	at the BMI-for-age threshold for the current definition of childhood obesity or overweight (and
185	SAM or MAM) may be at an increased risk of developing obesity or severe forms of under-
186	nutrition. One of the present study's aims was to identify these target groups so that these
187	children's needs could be addressed.
188	The first target group, pre-obese children (BMI or MUACZ-score between 1 and 2 SD),
189	is at risk of progressing to overweight/obesity. The second group, undernourished children (BMI
190	or MUACZ-score between -1 and -2 SD), is at risk of sliding into MAM or SAM. Based on the
191	BMI Z-scores, 136 (9.4%) were pre-obese, and 181 (12.5%) were undernourished. The
192	equivalent numbers for MUAC were 135 (9.3%) for obesity and 181 (12.5%) for SAM and
193	MAM risk, respectively. More children were at risk of severe undernutrition than of
194	overnutrition. These target groups may develop more severe forms of malnutrition if corrective
195	measures are delayed. The first step in that direction is to plan face-to-face counseling sessions
196	with parents and children. School programs are effective at preventing childhood obesity by
197	fostering more physical activities and recommending healthier diets [18]. Counseling for the
198	target groups will have to be done, keeping in mind that within low-resource settings, places for
199	play may be scarce, sports infrastructure may be poor, and recreational centers may be lacking
200	[19]. Similarly, low family income is linked to greater consumption of low-quality nutrition and
201	fast food [20].

1

Page 12 of 34

1 2		
3 4	202	Importantly, MUAC as a single tool can facilitate this cohesive intervention by detecting
5 6 7 8 9	203	both under and over-nutrition during routine growth monitoring without a height-dependent
	204	parameter, such as BMI (Figure1). This is because BMI and MUAC are significantly correlated
9 10 11	205	with each other. However, monitoring for obesity should begin even earlier, as the most rapid
12 13 14	206	weight gain occurs between ages 2 and 6 years among obese adolescents [21].
15 16 17	207	While India's economy has been growing at an impressive rate, the country still has the
17 18 19	208	highest number of stunted children in the world (46.8 million), representing one-third of the
20 21	209	global total of stunted children under age 5 [22]. Stunting is associated with being overweight
22 23	210	among children in countries that are undergoing a nutritional transition [23]. Economic
24 25 26	211	improvements are accompanied by a conspicuous change in dietary patterns in the form of
27 28	212	increased fat intake [5]. This, coupled with low physical activity, contributes to an increasing
29 30 31 32 33 34 35 36	213	prevalence of obesity among adults, which accompanies the first wave of a cluster of non-
	214	communicable diseases, such as hypertension and diabetes mellitus, called "the new world
	215	syndrome" [24].
37 38	216	It should be noted, however, that some children classified as obese under this system may
39 40 41	217	actually have a higher relative weight due to stunting rather than excess adiposity. Moreover,
42 43	218	classification of a child's or adolescent's weight status is complicated by the fact that height and
44 45	219	body composition are continually changing, and such changes often occur at different rates and
46 47 48	220	times within different populations. Charts showing BMI for healthy children by age indicate an
48 49 50	221	initial rapid rise in the first year, a subsequent decline for the next 5 years, and then a slow rise
51 52 53	222	into adulthood, making simple universal adiposity indices of little value. Therefore, there has not
55 54 55		
56 57		
58 59 60		https://mc.manuscriptcentral.com/bmjpo

BMJ Paediatrics Open

been the same level of agreement on the classification of obesity for children and adolescents as there is for adults [25].

To summarize, until recently, India has considered under-nutrition to be a major problem, and nutrition supplementation has been the key intervention. At the national level, India is at stage 1 of the obesity transition with wide sub-national variations [26]. Our study may help in the surveillance effort to address underserved populations [26]. With improved availability of food, a double burden of malnutrition is emerging that needs to be concurrently addressed. The present study observed the coexistence of obesity, overweight, pre-obese, and SAM, MAM, and undernourished states among Indian school children in lower-middle and lower socioeconomic levels. Second, the present results revealed a significant correlation between BMI and MUAC. This study provides evidence to suggest that MUAC is a valid, single measurement for identifying this dual problem of aberrant growth and over-nutrition on the one hand and under-nutrition on the other, through extended routine growth monitoring of children. However, more of thu studies are required to establish validity and reliability of this tool.

1 2		
2 3 4	237	What is known about the subject?
5 6 7	238	• Emerging economies face a dual problem of under-nutrition and over-nutrition.
7 8 9	239	• Detecting this problem using height-based parameters is not easy in a low-resource
10 11	240	setting.
12 13	241	What this study adds?
14 15 16	242	This study suggests that MUAC is a simple, valid, and single measure for identifying this dual
17 18	243	problem in a low-resource setting.
19 20	244	
21 22 23	245	Funding statement: This research received no specific grant from any funding agency in public,
23 24 25	246	commercial, or not-for-profit sectors.
26		
27 28 29 30 31	247	Declaration of interests: All authors have completed the ICMJE uniform disclosure form at and
	248	confirm no support from any organization for the submitted work; no financial relationships with
32 33	249	any organizations that might have an interest in the submitted work in the previous three years;
34 35 36	250	no other relationships or activities that could appear to have influenced the submitted work.
37 38 39	251	
40 41	252	Author contributions
42 43 44	253	SD-Conceptualization; Data analysis; Manuscript writing.
45 46	254	SD-Conceptualization; Data analysis; Manuscript writing.SM-Data collection; data analysis; manuscript writing.AK- Data analysis: manuscript writing.
47 48 49	255	AK- Data analysis; manuscript writing.
50 51	256	ED- Data collection; manuscript writing.
52 53 54	257	
55		
56 57		
58		
59 60		https://mc.manuscriptcentral.com/bmjpo

1	
2 3	258
4 5	
6 7	259
8 9	260
10 11	261
12	201
13 14 15	262
16 17	263
18 19	264
20 21	265
22 23	266
24 25	
26 27	267
28 29	268
30 31	200
32 33	269
34 35	270
36 37	271
38 39	272
40 41 42	273
42 43 44	274
45 46	
47	275
48 49	276
50 51	277
52 53	278
54 55	
56 57	279
58	
59 60	

258	References
259	1. Nestle M. Rethinking nutritional policies in developing countries taking into account the
260	double burden of malnutrition.2016 Oct 18 [Cited 2016 Oct 18]. In: Ideas4Development Blog
261	[Internet]. Available from: <u>https://ideas4development.org/en/rethinking-nutritional-policies</u>
262	2. Shrimpton R, Rokx C. Health, nutrition, and population (HNP) discussion paper: The double
263	burden of malnutrition: a review of global evidence. 2012. [cited12 Aug 2002].
264	[Internet].Washington (DC): The World Bank. Available from:
265	http://documents.worldbank.org/curated/en/905651468339879888/The-double-burden-of-
266	malnutrition-a-review-of global evidence.
267	3. Prentice AM. The double burden of malnutrition in countries passing through the economic
268	transition. Ann Nutr Metab. 2018; 72(suppl 3):47–54.doi: 10.1159/000487383.
269	4. Dinsa GD, Goryakin Y, Fumagalli E, Suhrcke M. Obesity and socioeconomic status in
270	developing countries: a systematic review. Obes Rev. 2012; 13(11):1067–1079. doi:
271	10.1111/j.1467-789X.2012.01017.5. Kennedy G, Nantel G, Shetty P. Assessment of the double
272	burden of malnutrition in six case study countries. In: The double burden of malnutrition: Case
273	studies from six developing countries.Rome, Italy: Food and Agriculture Organization of the
274	United Nations; 2006.pp. 1–18.
275	6.Ketal K. Two decades of annual medical examinations in Japanese obese children: do obese
276	children grow into obese adults? Int J Obes Relat Metab Disord.1997; 21:912–921. 7.de Wilde
277	JA, van Dommelen P, Middelkoop BJ. Appropriate body mass index cut-offs to determine
278	thinness, overweight and obesity in south Asian children in the Netherlands. PLoSOne.2013;
279	8(12): e82822.doi:10.1371/journal.pone.0082822.

Page 16 of 34

2
3
4
5
6
7
8
8 9 10
9
10
11 12 13
12
13
14
15
16
16 17
18
10
19 20
20
21
22
20 21 22 23 24 25 26 27 28 29
24
25
26
27
28
29
30
31
32
33
34 35
35
36
36 37 38
38
39
10
40
41
42
43
44
45
46
47
48
49
49 50
51
52
53
54
55
56
57
58
59

280	8. World Health Organization Expert Consultation. Appropriate body-mass index for Asian
281	populations and its implications for policy and intervention strategies.Lancet. 2004;363:157-
282	163.doi: 10.1016/S0140-6736(03)15268-3
283	9.Liu A, Hills AP, Hu X, Li Y, Du L, Xu Y, et al. Waist circumference cut-off values for the
284	prediction of cardiovascular risk factors clustering in Chinese school-aged children: a cross-
285	sectional study. BMC Public Health. 2010; 10:82. doi: 10.1186/1471-2458-10-82
286	10. Craig E, Bland R, Ndirangu J, Reilly JJ. Use of mid-upper arm circumference for
287	determining overweight and overfatness in children and adolescents. Arch Dis Child. 2014;
288	99:763-766. doi: 10.1136/archdischild-2013-305137 763.11. Chaput JP, Katzmarzyk PT, Barnes
289	JD, Fogelholm M, Hu G, Kuriyan R, et al. Mid-upper arm circumference as a screening tool for
290	identifying children with obesity: a 12-country study. Pediatr Obes. 2017; 12(6):439-445. doi:
291	10.1111/ijpo.12162.
292	12.Asif M, Aslam M, Altaf S. Mid-upper-arm circumference as a screening measure for
293	identifying children with elevated body mass index: a study for Pakistan. Korean J
294	Pediatr.2018;61(1):6–11.doi: 10.3345/kjp.2018.61.1.6
295	13. Jaiswal M, Bansal R, Agarwal A. Role of mid-upper arm circumference for determining

296 overweight and obesity in children and adolescents. J Clin Diagn Res. 2017; 11(8):SC05–

SC08.doi: 10.7860/JCDR/2017/27442.10422

298 14. Lu Q, Wang R, Lou DH, Ma CM, Liu XL, Yin FZ. Mid-upper-arm circumference and arm-

299 to-height ratio in evaluation of overweight and obesity in Han

³ 300 children.PediatrNeonatol.2014;55:14–19.doi: 10.1016/j.pedneo.2013.05.004.

Page 17 of 34

BMJ Paediatrics Open

1 2		
3 4	301	15. Talma H, van Dommelen P, Schweizer JJ, Bakker B, Kist-van Holthe JE, Chinpaw JMM, et
5 6	302	al. Is mid-upper arm circumference in Dutch children useful in identifying obesity? Arch Dis
7 8 9	303	Child. 2019; 104(2):159–165. doi: 10.1136/archdischild-2017-313528.
10 11 12	304	16.Roberfroid D, Hammami N, Lachat C, Weise Prinzo Z, Sibson V, Guesdon B, et al.
13 14	305	Utilization of mid-upper arm circumference versus weight-for-height in nutritional rehabilitation
15 16	306	programmes: A systematic review of evidence. Geneva, Switzerland: World Health
17 18 19	307	Organization; 2013.
20 21 22	308	17. WHO Multicentre Growth Reference Study Group. WHO child growth standards based on
23 24 25	309	length/height, weight and age. Acta Paediatr. 2006; 450(Suppl.):76-85.
26 27	310	18.Veugelers PJ, Fitzgerald AL. Effectiveness of school programs in preventing childhood
28 29 30	311	obesity: a multilevel comparison.Am J Pub Health. 2005; 95(3):432–435. doi:
30 31 32 33	312	10.2105/AJPH.2004.045898
34 35	313	19. Ludwig J, Sanbonmatsu L, Gennetian L, Adam E, Duncan GJ, Katz LF, et al.
36 37	314	Neighborhoods, obesity, and diabetes-a randomized social experiment. N Engl J
38 39 40	315	Med.2011;365:1509–1519.doi: 10.1056/NEJMsa1103216
41 42 43	316	20. Zenk SN, Powell LM, Rimkus L, Isgor Z, Barker DC, Ohri-Vachaspati P, Chaloupka F.
44 45	317	Relative and absolute availability of healthier food and beverage alternatives across communities
46 47	318	in the United States. Am J Pub Health.2014;104(11):2170–2178.doi:
48 49 50 51 52 53 54	319	10.2105/AJPH.2014.302113
55 56 57 58 59		https://mc.manuscriptcentral.com/bmjpo
60		https://ne.manascipteential.com/phijpo

2	
3 4	3
5	
6 7 8 9	Ċ
7 0	2
o 9	Ľ
10	
11	3
12 12	
14	3
11 12 13 14 15 16 17	
16	3
17	
18 19	3
20	
21	3
22 23	
24	2
25	
26 27	3
27 28	
29	~
30	Ċ
31 32	-
32 33	Ľ
34 35	3
35	-
36 37	
38	Ċ
39	-
40	Ċ
41 42	3
43	
44	
45 46	
40 47	
48	
49	
50 51	
52	
53	
54	
55 56	
56 57	
58	
59	
60	

320 21.Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in 321 early childhood and risk of sustained obesity. N Engl J Med.2018; 379:1303–1312. doi: 322 10.1056/NEJMoa1803527 323 22. UNICEF India.Stunting. December 2018. [Internet]. New Delhi, India: UNICEF. Available 324 from: http://unicef.in/Whatwedo/10/Stunting. 325 23, Popkin BM, Richards MK, Monteiro CA. Stunting is associated with overweight in children 326 in countries that are undergoing the nutrition transition.JNutr.1996; 126(12):3009-3016.doi: 327 10.1093/jn/126.12.3009. 328 24.Kolčić I. Double burden of malnutrition: a silent driver of double burden of disease in low-329 and middle-income countries.J Glob Health. 2012; 2(2):020303. doi: 10.7189/jogh.02.020303. 330 25. Chan RSM, WooJ.Prevention of overweight and obesity: how effective is the current public 331 health approach.Int J Environ Res Public Health. 2010; 7(3):765–783. 332 doi:10.3390/ijerph703076526 333 26. Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity 334 transition: stages of the global epidemic. Lancet Diabetes 335 Endocrinol.2019.http://dx.doi.org/10.1016/ S2213-8587(19)30026-9.

1 2 3 4 5 6 7 8 9 10	336 337 338	Table 1				
11 12	339 340	Comparis	on of various variables between gi	rls and boys		
13 14 15 16 17		bles ^	Girls (n=424)	Boys (n=1020)	5	

	Girls (n=	=424)			Boys (n=	=1020)			Test	mmey
Variables ^	Mean	SD	Median	IQR	Mean	SD	Median	IQR	Z-value	p-value
Age (years)	7.63	2.82	7.00	5.00	8.80	3.69	9.00	5.00	-5.162	2.44E- 07 *
Height (cm)	125.16	16.95	125.00	26.00	134.06	22.16	133.15	34.00	-6.626	3.44E- 11 *
Body weight (Kg)	22.48	8.83	20.20	10.40	28.93	14.96	24.20	19.40	-7.215	5.41E- 13 *
BMI	13.84	2.33	13.20	2.14	15.04	3.31	13.98	3.24	-7.374	1.66E- 13 *
MUAC	17.52	2.61	16.85	3.30	18.94	3.83	17.95	5.00	-6.233	4.59E- 10 *

Mann-Whitney

341 ^ All Data failed 'Normality Test'. Hence Mann-Whitney U Rank Sum Test applied.

*Difference is statistically significant.

343 BMI=Body Mass Index; MUAC=Mid-upper-arm circumference

344 Table 2

345 Distribution of variables among all Subjects346

Variables	Mean	SD	Median	IQR	Minimu m	Maximum
Age (years)	8.46	3.50	9.00	6.00	3.00	16.00
Body weight (Kg)	27.04	13.77	23.10	16.20	9.00	97.50
Height (cm)	131.45	21.16	130.00	32.00	84.00	188.00
Height (meters)	1.31	0.21	1.30	0.32	0.84	1.88
BMI	14.69	3.10	13.78	2.89	6.58	36.10
MAC	18.53	3.57	17.50	4.30	12.20	35.00

347 SD = standard deviation; IQR = inter-quartile range; BMI = Body Mass Index; MUAC =Mid-upper-arm circumference

349 Table 3

350 Correlations between anthropometric parameters among girls (N=424)

Variables		MUAC	Body weight (Kg)	Height (cm)	BMI
MUAC	Pearson Correlation	1	.897(**)	.700(**)	.826(**)
Wiene	p-value		7.34E-152	1.21E-63	6.86E-107
Body weight	Pearson Correlation	.897(**)	1	.866(**)	.776(**)
(Kg)	p-value	7.34E-152		2.85E-129	1.93E-86
Height	Pearson Correlation	.700(**)	.866(**)	1	.385(**)
(cm)	p-value	1.21E-63	2.85E-129		2.16E-16
BMI	Pearson Correlation	.826(**)	.776(**)	.385(**)	1
	p-value	6.86E-107	1.93E-86	2.16E-16	

** Correlation is significant at the 0.01 level (2-tailed).

https://mc.manuscriptcentral.com/bmjpo

354 Table 4

355 Correlations between anthropometric parameters among boys (N=1020)

Variables		MUAC	Body weight (Kg)	Height (cm)	BMI
MUAC	Pearson Correlation	1	.911(**)	.780(**)	.847(**)
Mone	p-value		0.0001	9.60E-210	2.21E-281
Body weight	Pearson Correlation	.911(**)	1	.886(**)	.861(**)
(Kg)	p-value	0.0001		0.0001	1.25E-301
Height	Pearson Correlation	.780(**)	.886(**)	1	.564(**)
(cm)	p-value	9.60E-210	0.0001		1.02E-86
BMI	Pearson Correlation	.847(**)	.861(**)	.564(**)	1
	p-value	2.21E-281	1.25E-301	1.02E-86	

357

** Correlation is significant at the 0.01 level (2-tailed).

Table 5

Distribution of BMI Z-scores

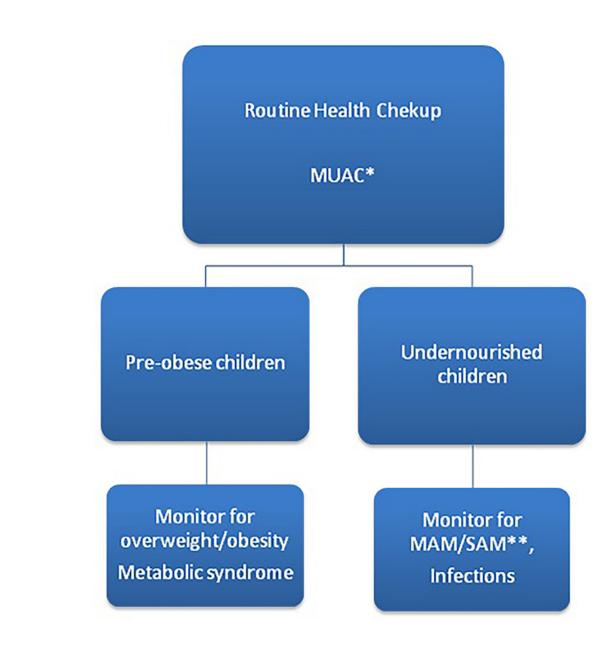
BMI (Z Score) Internal	No.	Percentage
>+3	21	1.5%
>+2 to <+3	36	2.5%
>+1 to <+2	136	9.4%
0 to +1	391	27.1%
>=-1 to 0	709	49.1%
>=-2 to <-1	141	9.8%
>= -3 to <-2	5	0.3%
<-3	5	0.3%
Total	1444	100.0%
3MI=Body Mass Index		

Table 6

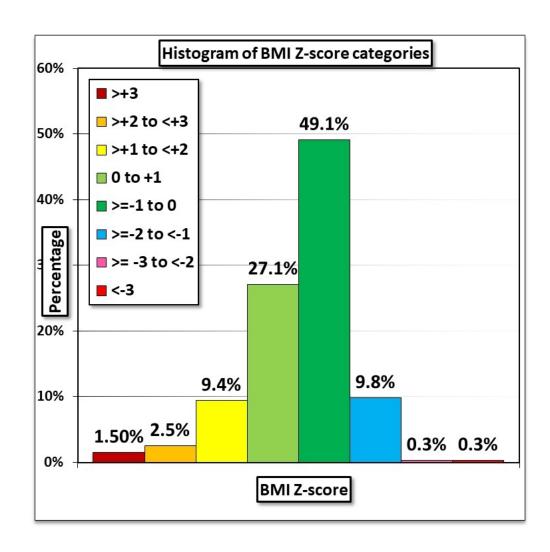
Distribution of MUAC Z-scores

<pre>>=-2 to <-1 >= -3 to <-2 <-3 Total //UAC=Mid-upper-arm circumference</pre>	19 43 135 418 641 181 6 1 1444	1.3% 3.0% 9.3% 28.9% 44.4% 12.5% 0.4% 0.1% 100.0%
<pre>>+1 to <+2 0 to +1 >=-1 to 0 >=-2 to <-1 >= -3 to <-2 <-3 Total //UAC=Mid-upper-arm circumference</pre>	135 418 641 181 6 1 1444	9.3% 28.9% 44.4% 12.5% 0.4% 0.1% 100.0%
0 to +1 >=-1 to 0 >=-2 to <-1 >= -3 to <-2 <-3 Total MUAC=Mid-upper-arm circumference	418 641 181 6 1 1444	28.9% 44.4% 12.5% 0.4% 0.1% 100.0%
>=-1 to 0 >=-2 to <-1 >= -3 to <-2 <-3 Total IUAC=Mid-upper-arm circumference	641 181 6 1 1444	44.4% 12.5% 0.4% 0.1% 100.0%
<pre>>= -3 to <-2 <-3 Total //UAC=Mid-upper-arm circumference</pre>	181 6 1 1444	12.5% 0.4% 0.1% 100.0%
>=-2 to <-1 >= -3 to <-2 <-3 Total //UAC=Mid-upper-arm circumference	6 1 1444	0.4% 0.1% 100.0%
<-3 Total //UAC=Mid-upper-arm circumference	1 1444	0.1%
Total IUAC=Mid-upper-arm circumference	1444	100.0%
/UAC=Mid-upper-arm circumference		

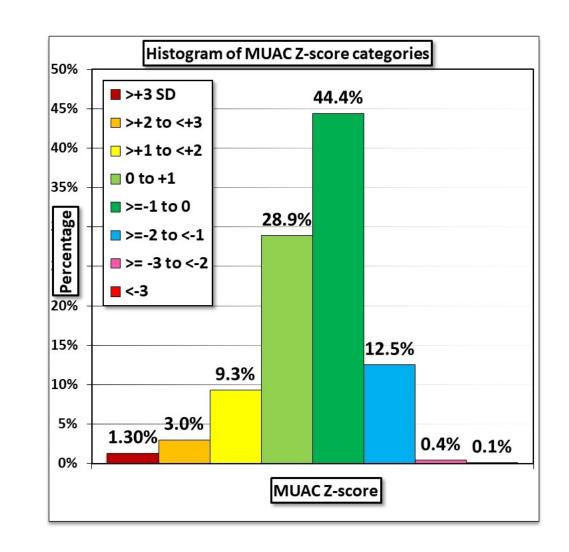
5	50
5	51
5	52
5	53
5	54
5	55
5	56
5	57
,	- 0


3	394	Table 7
-	395	Distribution of nutrition conditions based on BMI and MUAC Z-scores **
5	396	

Condition Based on BMI z-scores No (%)		Based on MUACZ-scores No (%)		
Pre-obese BMI >1 to 2 SD 136 (9.4%)		MUAC>1to 2SD 135 (9.3%)		
)verweight	BMI>2 to 3 SD 36 (2.5%)	MUAC>2 to 3SD 43 (3.0%)		
Obese BMI >3SD 21 (1.5%)		MUAC>3SD 19(1.3%)		
Possible risk of Inderweight	BMI <-1 to -2 SD 141 (9.8%)	MUAC \leq -1 to -2SD 181 (12.5%)		
ſhin	BMI <-2 to -3 SD 5 (0.3%)	MUAC<-2 to -3SD 6 (0.4%)		
Severely thin	BMI <-3SD 5 (0.3%)	MUAC<-3 SD 1(0.1%)		


31	
32	
33	

397 **Modified WHO Classification of nutrition conditions based on anthropometry


398 BMI = Body Mass Index; MUAC = Mid-upper-arm circumference

282x327mm (72 x 72 DPI)

158x157mm (120 x 120 DPI)

158x157mm (120 x 120 DPI)

Table 8
Age-wise distribution of BMI among all Subjects

Age (years)	BMI							
	Mean	SD	Median	IQR				
3	13.37	1.34	13.26	1.61				
4	13.04	1.69	13.07	1.46				
5	13.01	1.13	12.80	1.02				
6	13.85	2.09	13.39	1.55				
7	13.54	1.48	13.20	1.90				
8	13.94	2.22	13.37	2.01				
9	13.70	1.73	13.36	1.66				
10	14.74	2.84	13.97	2.77				
11	15.48	3.03	14.89	3.60				
12	15.89	3.01	15.63	3.87				
13	18.22	3.34	17.51	3.30				
14	18.33	3.88	17.28	4.53				
15	19.09	4.32	18.01	6.52				
16	21.38	5.89	23.55	11.09				
SD = standard deviation; IQR = inter-quartile range								

Table 9 Homogeneous Subsets: BMI: Tukey HSD

	Na	Subset for alpha = 0.05							
Age (years)	No.	1	2	3	4	5	6		
5	132	13.011							
4	146	13.038							
3	102	13.366	13.366						
7	156	13.537	13.537						
9	72	13.696	13.696						
6	109	13.852	13.852	13.852					
8	65	13.939	13.939	13.939					
10	220		14.740	14.740	14.740				
11	182			15.481	15.481				
12	77				15.892				
13	30					18.224			
14	72					18.325			
15	72			0.		19.094			
16	9						21.380		
Sig.		0.836	0.232	0.059	0.529	0.892	1.000		
Means for groups in homogeneous subsets are displayed. BMI = Body Mass Index									

Table 10
Age-wise distribution of MUAC among all Subjects

	MUAC						
Age (years)	Mean	SD	Median	IQR			
3	15.39	1.24	15.20	1.50			
4	15.50	1.16	15.50	1.10			
5	16.19	1.17	15.95	1.20			
6	16.83	2.07	16.50	1.95			
7	16.98	1.75	16.70	2.00			
8	17.97	2.11	17.50	1.61			
9	17.79	1.78	17.50	2.08			
10	19.02	2.63	18.50	3.45			
11	20.16	3.04	19.50	3.93			
12	20.87	2.79	20.50	4.00			
13	22.91	2.79	22.50	2.60			
14	23.53	3.64	23.00	4.95			
15	24.66	3.73	23.50	5.23			
16	25.81	4.63	27.20	7.75			

SD = standard deviation; IQR = inter-quartile range

Table 11

Homogeneous Subsets: MUAC: Tukey HSD (Table No. 4)

Age (years)	No.	Subset for alpha = 0.05								
		1	2	3	4	5	6	7	8	9
3	102	15.385								
4	146	15.500	15.500							
5	132	16.194	16.194							
6	109	16.826	16.826	16.826						
7	156		16.979	16.979						
9	72		2	17.794	17.794					
8	65			17.972	17.972					
10	220			%	19.015	19.015				
11	182					20.161	20.161			
12	77				0		20.871			
13	30							22.907		
14	72					2		23.532	23.532	
15	72								24.658	24.658
16	9									25.811
Sig.		0.102	0.08	0.421	0.314	0.423	0.961	0.987	0.452	0.412
Means for MUAC = N						yeu.				

Table 12
Association among the cases betweenBMI (Z-Score) Internal and Gender

PMI (7 Secre) Internel		Ger	Gender	
MI (Z Score) Internal >+3 >+2 to <+3 >+1 to <+2 0 to +1^ >=-1 to 0^ >=-2 to <-1^ >= -3 to <-2^ $<-3^{10}$		Female	Male	Total
N 12	No.	5	16	21
>+3	%	1.2%	1.6%	1.5%
	No.	11	25	36
>+2 10 <+3	%	2.6%	2.5%	2.5%
	No.	47	89	136
>+1 to <+2	%	11.1%	8.7%	9.4%
0.45 1.4.0	No.	109	282	391
0 to +1	%	25.7%	27.6%	27.1%
	No.	209	500	709
>=-1 to 0 *	%	49.3%	49.0%	49.1%
	No.	39	102	141
>=-2 to <-1 ~	%	9.2%	10.0%	9.8%
N= 040 4 0 A	No.	3	2	5
>= -3 10 <-2 **	%	0.7%	0.2%	0.3%
- 2 ^	No.	1	4	5
~-3	%	0.2%	0.4%	0.3%
Total	No.	424	1020	1444
Total	%	100.0%	100.0%	100.0%

Ch	i-Square Test	Value	df	p-value	Association is-
Pea	arson Chi-Square \$	5.199	7	0.636	Not significant
Pea	arson Chi-Square ^	2.262	3	0.520	Not significant

\$ 4 cells (25.0%) have expected count less than 5. ^ Row data pooled and Chi-Square test reapplied. BMI = Body Mass Index

Table 13 Association among the cases betweenMUAC (Z-Score) Internal and Gender

		Gender		Total
MUAC (Z Score) Internal		Female	Male	Total
2 12 CD	No.	3	16	19
>+3 SD	%	0.7%	1.6%	1.3%
> 10 40 410	No.	17	26	43
>+2 to <+3	%	4.0%	2.5%	3.0%
	No.	38	97	135
>+1 to <+2	%	9.0%	9.5%	9.3%
0.40.14.0	No.	131	287	418
0 to +1 ^	%	30.9%	28.1%	28.9%
	No.	178	463	641
>=-1 to 0 ^	%	42.0%	45.4%	44.4%
	No.	55	126	181
>=-2 to <-1 ^	%	13.0%	12.4%	12.5%
	No.	2	4	6
>= -3 to <-2 ^	%	0.5%	0.4%	0.4%
- 2 A	No.	0	1	1
<-3 ^	%	0.0%	0.1%	0.1%
Total	No.	424	1020	1444
-	%	100.0%	100.0%	100.0%

Chi-Square Test	Value	df	p-value	Association is-
Pearson Chi-Square \$	6.054	7	0.533	Not significant
Pearson Chi-Square ^	3.929	3	0.269	Not significant

\$ 4 cells (25.0%) have expected count less than 5. ^ Row data pooled and Chi-Square test e....ou reapplied.

MUAC = Mid-upper-arm circumference

BMJ Paediatrics Open

Double burden of malnutrition among Indian school children and its measurement: A cross-sectional study in a single school Short title: Measuring double burden of malnutrition

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2019-000505.R2
Article Type:	Original research
Date Submitted by the Author:	20-Sep-2019
Complete List of Authors:	Daga, Subhashchandra; Pacific Medical College and Hospital, Pediatrics Mhatre, Sameer; Smt Kashibai Navale Medical College and General Hospital, Paediatrics Kasbe, Abhiram ; Topiwala National Medical College DSouza, Eric; MIMER
Keywords:	General Paediatrics, Obesity, School Health, Tropical Paediatrics, Growth

1		
2 3 4	1	
5 6 7 8	2	
9 10 11 12 13	3	
14 15 16	4	Double burden of malnutrition among Indian school children and its
17 18 19	5	measurement: A cross-sectional study in a single school
20 21 22 23	6	Short title: Measuring double burden of malnutrition
24 25 26	7	
27 28 29	8	
30 31 32 33	9	SubhashchandraDaga ^{1*} , Sameer Mhatre ² , Eric Dsouza ³ , Abhiram Kasbe ⁴
34 35 36	10	
37 38 39	11	¹ Department of Pediatrics,
40 41 42 43	12	Pacific Medical College and Hospital, Udaipur, India
44 45 46	13	² Department of Pediatrics, Smt. KashibaiNavle Medical College, Pune, India
47 48 49	14	Smt. KashibaiNavle Medical College, Pune, India
50 51 52	15	³ Department of Pediatrics,
53 54 55 56 57	16	MIMER Medical College, Talegaon, India
57 58 59		

1	
2 3 4	17
5 6 7 8	18
o 9 10 11	19
12 13 14	20
15 16 17	21
18 19 20	22
21 22 23	23
24 25 26	24
27 28 29 30	25
31 32 33 34 35	26
36 37 38 39	27
40 41 42 43	28
44 45 46 47 48	29
49 50 51 52	30
53 54 55 56 57 58	31
58 59 60	,

17	⁴ Department of Pediatrics,
18	Topiwala Medical College, Mumbai, India
19	
20	
21	*Corresponding author
22	E-mail: <u>dagasubhash49@gmail.com</u> (SD)
23	Tel: +91-9960522259
24	
25	
26	
27	
28	
29	
30	

1 2		
3 4 5	32	
6 7 8 9	33	Abstract
10 11		
12 13	34	Objective
14 15 16	35	This cross-sectional study in a single school aimed to document the extent of double burden of
17 18	36	malnutrition (coexistence of over- and under-nutrition) among Indian schoolchildren from lower
19 20	37	socioeconomic groups, and to determine if mid-upper arm circumference (MUAC) can be used
21 22 23	38	as a proxy for body mass index (BMI).
24 25		
26 27	39	Design
28 29 30	40	A cross-sectional study in a single school
31 32 33	41	Setting
34 35	42	A school in the outskirts of a large city, with a majority of the children belonging to lower and
36 37 38	43	lower-middle socioeconomic categories.
39 40 41 42	44	Subjects
43 44	45	The total number of participants was 1,444, comprising 424 girls and 1,020 boys belonging to
45 46 47	46	playgroups and grades 1-7.
48 49 50 51	47	Measurements
52 53 54	48	Anthropometric measurements, such as participants' MUAC, height, and weight were measured
55 56 57	49	using standard techniques. Descriptive statistics for BMI and MUAC were obtained based on
58 59 60		https://mc.manuscriptcentral.com/bmjpo

50 gender; Z-scores were computed using age-specific and sex-specific WHO reference data. The

51 distribution of variables was calculated for three groups: all participants together and separately

52 for each gender. Homogeneous subsets for BMI and MUAC were identified in the three groups.

53 Age-wise comparisons of BMI and MUAC were conducted for each gender.

54 Main outcome measures

1. To know if MUAC and BMI are correlated among both boys and girls.

2. To study BMI and MUAC Z score distribution among the subjects.

57 Results

58 The MUAC positively correlated with BMI in both boys and girls. The following BMI Z-score

distribution was observed: severe acute malnutrition (SAM), 5(0.3%); moderate acute

60 malnutrition (MAM), 146 (10.1%); undernourished, at risk of MAM/SAM, 141 (9.8%); obese,

61 21 (1.5%); overweight, 36 (2.5%); pre-obese, 136 (9.4%). The distribution of categories of

62 children based on MUAC Z-scores was: SAM, 7(0.5%), MAM, 181 (12.5%), and

63 undernourished at risk of MAM or SAM, 181 (12.5%); obese, 19 (1.3%), overweight, 178

64 (12.3%), pre-obese, 135 (9.3%).

65 Conclusions

66 SAM/MAM/undernourished states and obesity/overweight/pre-obese, undernutrition more than

67 overweight, coexist among Indian schoolchildren from lower middle/lower socioeconomic

68 categories. BMI and MUAC were significantly correlated. MUAC identifies both under-

69 nutrition and over-nutrition by early detection of aberrant growth

70 Introduction

The double burden of under-nutrition and over-nutrition is emerging as a major problem. According to estimates from 129 countries with available data, 57 experience serious problems of both undernourished children and overweight adults [1]. The relationship between under-nutrition and overweight status and obesity is more than coexistence. The double burden of malnutrition (DBM) refers to the coexistence of both under-nutrition and over-nutrition within individuals, households, and populations and across the life course. "Across the life course" refers to the phenomenon that under-nutrition early in life contributes to an increased propensity for over-nutrition during adulthood [2]. The occurrence of DBM is attributed to a complex interplay of nutritional transitions (shifting from an active to a sedentary lifestyle, demographic transitions, etc.) from high fertility and early deaths to low fertility and aging populations and epidemiological transitions from communicable to non-communicable diseases [2].

Later in the life course, the double burden of disease is characterized by the coexistence of communicable (infectious disease) and non-communicable diseases. Prior to the 1970s, obesity was a relatively rare condition, even in the wealthiest of nations [3], whereas under-nutrition was a major problem, and nutrition supplementation was the main intervention. Thus, obesity is a relatively new problem in need of attention. A systematic review of obesity and socioeconomic status in developing countries concluded that child obesity is more prevalent among affluent groups within developing countries [4]. This may be attributed to improved access to surplus/excess food and a higher degree of urbanization and technological progress in these economies that render activities less laborious, resulting in less energy expenditure [5]. Furthermore, childhood obesity is a strong predictor of adult obesity. For instance, a Japanese

92 study revealed that approximately one-third of obese children grew into obese adults

93 [6]. Therefore, early detection of excessive weight gain, and action to prevent its progress,

94 is more likely to succeed than attempting to reverse obesity later.

Body mass index (BMI)-for-age, the internationally recommended measure of obesity,
suggests that Asians are at an increased risk of cardio-metabolic disorders, even at lower BMI
levels, because of a considerably higher body fat percentage [7]. Therefore, the World Health
Organization (WHO) recommends lowering the BMI cut-offs for "overweight" among Asian
adults [8] in light of the increased health risks. Therefore, early detection of an overweight status
has become very important in Asia.

The selection of height-based parameters, such as BMI for the detection of overweight/obese children in low-resource settings, has limitations because of the shortage of stadiometers and trained paramedical staff. A simpler proxy for BMI that parallels the use of abdominal girth for detecting visceral obesity needs to be developed [9]. The mid-upper arm circumference (MUAC) appears to be a promising alternative in this regard [10–14]. A recent study from the Netherlands reaffirmed that, compared with BMI,MUAC is a valid measure for detecting overweight/obesity, and thus is a good alternative to BMI [15]. Health workers are familiar with MUAC measurement, as it has been commonly used for identifying severe acute under-nutrition among young (6–60 months of age) children [16].

To our knowledge, few studies have focused on the coexistence of under- and overnutrition in India. The present study was conducted to document the extent of DBM among
Indian schoolchildren, a key group for intervention, using BMI and MUAC distributions. The

BMJ Paediatrics Open

study also examined whether MUAC can be used as a proxy for BMI, so that MUAC can detecttrends toward obesity or severe acute malnutrition (SAM).

Participants and Methods

116 Setting

A single school cross-sectional study was conducted with schoolchildren from the outskirts of Pune, India. This study was part of the MIMER medical college and hospital's outreach activities regarding annual school health check-ups. A schedule of class-wise health check-ups was developed in consultation with the school authorities who, in turn, sought parents' permission. The study had the approval of the ethics committee of MIMER medical college and hospital, Talegaon Dabhade. A majority of the children belonged to lower and lower-middle socioeconomic categories. Children between 3–5 years were from a playgroup, and those between 6-12 years belonged to grades 1-7.

125 Anthropometric measurements

Anthropometric measurements, such as MUAC, height, and weight, were taken from each participant using standard techniques. Height (cm) was measured on a stadiometer (Easy care) without shoes. Weight (kg) was measured using a digital weighing machine (Meditrin Instruments) in light clothes and without shoes. MUAC (cm) was measured using a non-elastic plastic tape at the midway between the olecranon and acromion processes on the upper left arm. During these measurements, the participant was in a comfortable standing position and was asked to look straight ahead with his/her shoulders in a neutral position. The participant's arm was straightened, and we ensured that the tape was neither too tight nor too loose.

	135	Open Source Statistical Software PSPP version 1.0.1was used for all analyses, and a <i>p</i> -
	136	value ≤ 0.05 was considered statistically significant. Mean and standard deviation (SD), median,
)	137	inter-quartile range, and Z-scores for BMI and MUAC were computed by sex for participants
2 3 1	138	with complete measurements. Z-scores were computed using age-specific and sex-specific
5	139	reference data from the WHO [17]. The distribution of variables was calculated among all
7 3 2	140	participants together and separately for boys and girls. Homogeneous subsets for BMI and
,) 	141	MUAC were identified in these three groups. Age-wise comparisons of BMI and MUAC were
2 3	142	calculated for both girls and boys.
+ 5 5	143	Patient involvement
7 3	144	Patients were not directly involved in the design of this study.
,) 	145	
2 3		
+ 5 5	146	
7 3	147	
) 		
<u>2</u> 3		
1 5 5		
7 3		
))		
2 3		
1 5		
5 7 3		
9		https://mc.manuscriptcentral.com/hmipo

148	Results
149	The total number of participants was 1,444, comprising 424 girls and 1,020 boys. The
150	distribution of variables among all participants, girls and boys, is shown in figures 1 and 2. Age,
151	height, weight, MUAC, and BMI were all significantly different between girls and boys; boys

had higher values for all parameters (Suppl. Files: table 1 and 2). As expected, BMI and MUAC

showed age-wise differences for all participants, combined and separately, for boys and girls,

between the ages of 3 to 16 years (Suppl. Files: tables 3 and 4). Tukey's HSD (honest significant

difference) tests for homogeneous subsets revealed a significant shift in mean BMI at 3, 6, and

10 years (Suppl. Files: table 5) whereas for MUAC, the shift occurred at 4, 6, and 9 years (Suppl.

files: table 6). Thereafter, MUAC changed significantly almost every year until the age of 16.

Thus, in contrast to BMI, MUAC had more age-dependent variability. BMI change with age was

minimal in girls (only at age 14) compared to changes in boys at 6, 10, 12, and 14 years. Girls

had six homogeneous subsets for MUAC, with the first significant rise at age of 4 years,

compared to nine subsets in boys, with the first shift at age 5. Thus, changes in BMI and MUAC were more frequent in boys. MUAC was positively correlated with weight, height, and BMI both

in girls and boys (Suppl. Files: tables 7 and 8).

Discussion

The present study suggests that DBM has reached Indian school children of lower middle or lower socioeconomic statuses, which calls for urgent action. Importantly, the present results identify children at the brink of sliding into severe forms of under – and over- nutrition. The

present study also suggests using a single and simpler method, MUAC, for detecting both formsof malnutrition by monitoring growth during routine health check-ups.

171 The World Health Assembly targets were considered in crafting the 2030 development 172 agenda and are referred to in target 2.2 of the Sustainable Development Goals to "end all forms 173 of malnutrition." The reference to "all forms of malnutrition" is important for acknowledging the 174 existence of the double burden of under-nutrition and overweight. While the drivers of the 175 double burden of malnutrition are varied and often insidious, their effects present a clear case for 176 urgent action and demand an integrated response. Using a single tool for detecting both forms of 177 malnutrition integrates and simplifies the process.

To our knowledge, few studies have focused on this aspect of growth among children in India, as well as other emerging economies. The girls were outnumbered by boys (424 vs. 1020). This may be because of the traditional gender norms that push girls into helping household chores and sibling care that result in dropouts. Based on BMI Z-scores, 5 (0.3%) and 5 (0.3%), belonged to SAM and MAM categories, respectively and 21(1.5%) and 36 (3.9%) children were classified as obese and overweight, respectively. MUAC Z-scores suggested the following distribution: SAM -1(0.1%), and MAM-(0.4%), obesity-19 (1.3%), overweight-43 (4.3%). An even greater number of children were leaning towards SAM or MAM as well as obesity or overweight. Children who are not yet at the BMI-for-age threshold for the current definition of SAM or MAM (and childhood obesity or overweight) may be at an increased risk of developing severe forms of under-nutrition or obesity. One of the present study's aims was to identify these target groups so that these children's needs could be addressed.

Page 11 of 30

BMJ Paediatrics Open

The first target group, undernourished children (BMI or MUAC Z-score between -1 and -2 SD), is at risk of sliding into MAM or SAM. The second group, pre-obese children (BMI or MUAC Z-score between 1 and 2 SD), is at risk of progressing to overweight/obesity. Based on the BMI Z-scores, 181 (12.5%) were undernourished and 136 (9.4%) were pre-obese. The equivalent numbers for MUAC were 181 (12.5%) for SAM and MAM risk and 135 (9.3%) for obesity, respectively. More children were at risk of severe undernutrition than of overnutrition. These target groups may develop more severe forms of malnutrition if corrective measures are delayed. The first step in that direction is to plan face-to-face counseling sessions with parents and children. School programs are effective at preventing childhood obesity by fostering more physical activities and recommending healthier diets [18]. Counseling for the target groups will have to be done, keeping in mind that within low-resource settings, places for play may be scarce, sports infrastructure may be poor, and recreational centers may be lacking [19]. Similarly, low family income is linked to greater consumption of low-quality nutrition and fast food [20].

Importantly, MUAC as a single tool can facilitate this cohesive intervention by detecting
both under and over-nutrition during routine growth monitoring without a height-dependent
parameter, such as BMI (Figure1). This is because BMI and MUAC are significantly correlated
with each other. However, monitoring for obesity should begin even earlier, as the most rapid
weight gain occurs between ages 2 and 6 years among obese adolescents [21].

While India's economy has been growing at an impressive rate, the country still has the highest
number of stunted children in the world (46.8 million), representing one-third of the global total
of stunted children under age 5 [22].Stunting is associated with being overweight among children

BMJ Paediatrics Open

1 2	
3	
4	4
4 5 6 7	
0 7	
8	
9	
10	
12	
13	4
14	
15 16	
17	
8 9 10 11 12 13 14 15 16 17 18	
19 20	
21	
22	
23 24	4
25	
26	
27 28	
20 29	
20 21 22 23 24 25 26 27 28 29 30 31 32 33	
31 32	
33	4
34	
35	
33 34 35 36 37 38 30	
38	
39 40	
41	
42	
43	
44 45	
46	
47 40	
48 49	
50	
51	
52 53	-
54	
55	
56 57	
57 58	
59	
60	

212	in countries that are undergoing a nutritional transition [23]. Economic improvements are
213	accompanied by a conspicuous change in dietary patterns in the form of increased fat intake [5]
214	compounded by exposure to food advertising on television leading to fast food and soft drink
215	consumption and obesity [24]. This, coupled with low physical activity, contributes to an
216	increasing prevalence of obesity among adults, which accompanies the first wave of a cluster of
217	non-communicable diseases, such as hypertension and diabetes mellitus, called "the new world
218	syndrome" [25]. It should be noted, however, that there has not been the same level of agreement
219	on the classification of obesity for children and adolescents as there is for adults [26].
220	To summarize, until recently, India has considered under-nutrition to be a major problem,
221	and nutrition supplementation has been the key intervention. At the national level, India is at
222	stage 1 of the obesity transition with wide sub-national variations [27]. Our study may help in the
223	surveillance effort to address underserved populations [27]. With improved availability of food, a
224	double burden of malnutrition is emerging that needs to be concurrently addressed. The present
225	study observed the coexistence of obesity, overweight, pre-obese, and SAM, MAM, and
226	undernourished states among Indian school children in lower-middle and lower socioeconomic
227	levels. Second, the present results revealed a significant correlation between BMI and MUAC.
228	This study provides evidence to suggest that MUAC is a valid, single measurement for
229	identifying this dual problem of aberrant growth and over-nutrition on the one hand and under-
230	nutrition on the other, through extended routine growth monitoring of children. However, more
231	studies are required to establish validity and reliability of this tool.
232	

1		
2 3 4	233	What is known about the subject?
5 6 7	234	• Emerging economies face a dual problem of under-nutrition and over-nutrition.
7 8 9	235	• Detecting this problem_using height-based parameters is not easy in a low-resource
10 11	236	setting.
12 13 14	237	What this study adds?
14 15 16	238	This study suggests that MUAC is a simple, valid, and single measure for identifying this dual
17 18	239	problem in a low-resource setting and, undernutrition is a bigger problem than obesity.
19 20	240	
21 22 23	241	
24 25	242	Funding statement: This research received no specific grant from any funding agency in public,
26 27 28 29	243	commercial, or not-for-profit sectors.
30 31	244	Declaration of interests: All authors have completed the ICMJE uniform disclosure form at and
32 33	245	confirm no support from any organization for the submitted work; no financial relationships with
34 35	246	any organizations that might have an interest in the submitted work in the previous three years;
36 37 38 39	247	no other relationships or activities that could appear to have influenced the submitted work.
40 41	248	
42 43 44	249	Author contributions
45 46	250	SD-Conceptualization ; Data analysis ; Manuscript writing . SM-Data collection; data analysis; manuscript writing.
47 48 49	251	SM-Data collection; data analysis; manuscript writing.
50 51	252	AK- Data analysis; manuscript writing.
52 53 54	253	ED- Data collection; manuscript writing.
55 56 57 58 59	254	
60		https://mc.manuscriptcentral.com/bmjpo

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

255	References
256	1. Nestle M. Rethinking nutritional policies in developing countries taking into account the
257	double burden of malnutrition.2016 Oct 18 [Cited 2016 Oct 18]. In: Ideas4Development Blog
258	[Internet]. Available from: <u>https://ideas4development.org/en/rethinking-nutritional-policies</u>
259	2. Shrimpton R, Rokx C. Health, nutrition, and population (HNP) discussion paper: The double
260	burden of malnutrition: a review of global evidence. 2012. [cited12 Aug 2002].
261	[Internet].Washington (DC): The World Bank. Available from:
262	http://documents.worldbank.org/curated/en/905651468339879888/The-double-burden-of-
263	malnutrition-a-review-of global evidence.
264	3. Prentice AM. The double burden of malnutrition in countries passing through the economic
265	transition. Ann Nutr_Metab. 2018; 72(suppl 3):47–54.doi: 10.1159/000487383.
266	4. Dinsa GD, Goryakin Y, Fumagalli E, Suhrcke M. Obesity and socioeconomic status in
267	developing countries: a systematic review. Obes Rev. 2012; 13(11):1067–1079. doi:
268	10.1111/j.1467-789X.2012.01017.
269	5. Kennedy G, Nantel G, Shetty P. Assessment of the double burden of malnutrition in six case
270	study countries. In: The double burden of malnutrition: Case studies from six developing
271	countries.Rome, Italy: Food and Agriculture Organization of the United Nations; 2006.pp. 1–18.
272	6. Ketal K. Two decades of annual medical examinations in Japanese obese children: do obese
273	children grow into obese adults? Int J Obes_Relat_Metab Disord.1997; 21:912–921.

BMJ Paediatrics Open

2		
3 4	274	7. de Wilde JA, van Dommelen P, Middelkoop BJ. Appropriate body mass index cut-offs to
5 6	275	determine thinness, overweight and obesity in south Asian children in the Netherlands.
7 8 9	276	PLoSOne.2013; 8(12): e82822.doi:10.1371/journal.pone.0082822.
10 11 12	277	8. World Health Organization Expert Consultation. Appropriate body-mass index for Asian
13 14	278	populations and its implications for policy and intervention strategies.Lancet. 2004;363:157-
15 16 17	279	163.doi: 10.1016/S0140-6736(03)15268-3
18 19 20	280	9.Liu A, Hills AP, Hu X, Li Y, Du L, Xu Y, et al. Waist circumference cut-off values for the
21 22	281	prediction of cardiovascular risk factors clustering in Chinese school-aged children: a cross-
23 24 25	282	sectional study. BMC Public Health. 2010; 10:82. doi: 10.1186/1471-2458-10-82
26 27	283	10. Craig E, Bland R, Ndirangu J, Reilly JJ. Use of mid-upper arm circumference for
28 29 30	284	determining overweight and overfatness in children and adolescents. Arch Dis Child. 2014;
30 31 32	285	99:763-766. doi: 10.1136/archdischild-2013-305137 763.11. Chaput JP, Katzmarzyk PT, Barnes
33 34	286	JD, Fogelholm M, Hu G, Kuriyan R, et al. Mid-upper arm circumference as a screening tool for
35 36 37	287	identifying children with obesity: a 12-country study. Pediatr Obes. 2017; 12(6):439-445. doi:
38 39 40	288	10.1111/ijpo.12162.
40 41 42	289	12. Asif M, Aslam M, Altaf S. Mid-upper-arm circumference as a screening measure for
43 44	290	identifying children with elevated body mass index: a study for Pakistan. Korean J
45 46 47	291	Pediatr.2018;61(1):6–11.doi: 10.3345/kjp.2018.61.1.6
48 49 50	292	13. Jaiswal M, Bansal R, Agarwal A. Role of mid-upper arm circumference for determining
50 51 52	293	overweight and obesity in children and adolescents. J Clin_Diagn Res. 2017; 11(8):SC05-
53 54 55 56	294	SC08.doi: 10.7860/JCDR/2017/27442.10422
57 58		
59 60		https://mc.manuscriptcentral.com/bmjpo

2		
3 4	295	14. Lu Q, Wang R, Lou DH, Ma CM, Liu XL, Yin FZ. Mid-upper-arm circumference and arm-
5 6	296	to-height ratio in evaluation of overweight and obesity in Han
7 8 9	297	children.PediatrNeonatol.2014;55:14-19.doi: 10.1016/j.pedneo.2013.05.004.
10 11 12	298	15. Talma H, van Dommelen P, Schweizer JJ, Bakker B, Kist-van Holthe JE, Chinpaw JMM, et
13 14	299	al. Is mid-upper arm circumference in Dutch children useful in identifying obesity? Arch Dis
15 16 17	300	Child. 2019; 104(2):159–165. doi: 10.1136/archdischild-2017-313528.
18 19 20	301	16. Roberfroid D, Hammami N, Lachat C, Weise Prinzo Z, Sibson V, Guesdon B, et al.
20 21 22	302	Utilization of mid-upper arm circumference versus weight-for-height in nutritional rehabilitation
23 24	303	programmes: A_systematic review of evidence. Geneva, Switzerland: World Health
25 26 27	304	Organization; 2013.
28 29 20	305	17. WHO Multicentre Growth Reference Study Group. WHO child growth standards based on
30 31 32 33	306	length/height, weight and age. Acta_Paediatr. 2006; 450(Suppl.):76-85.
34 35	307	18. Veugelers PJ, Fitzgerald AL. Effectiveness of school programs in preventing childhood
36 37	308	obesity: a multilevel comparison.Am J Pub Health. 2005; 95(3):432–435. doi:
38 39 40	309	10.2105/AJPH.2004.045898
41 42 43	310	19. Ludwig J, Sanbonmatsu L, Gennetian L, Adam E, Duncan GJ, Katz LF, et al.
44 45	311	Neighborhoods, obesity, and diabetes-a randomized social experiment. N Engl J Med.2011;
46 47 48	312	365:1509–1519.doi: 10.1056/NEJMsa1103216
49 50	313	20. Zenk SN, Powell LM, Rimkus L, Isgor Z, Barker DC, Ohri-Vachaspati P, Chaloupka F.
51 52 53 54 55 56 57	314	Relative and absolute availability of healthier food and beverage alternatives across communities
58 59 60		https://mc.manuscriptcentral.com/bmjpo

1 2		
2 3 4	315	in the United States. Am J Pub Health.2014;104(11):2170-2178.doi:
5 6 7	316	10.2105/AJPH.2014.302113
8 9	317	21.Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in
10 11 12	318	early childhood and risk of sustained obesity. N Engl J Med.2018; 379:1303–1312. doi:
13 14 15	319	10.1056/NEJMoa1803527
16 17	320	22. UNICEF India. Stunting. December 2018. [Internet]. New Delhi, India: UNICEF. Available
18 19 20	321	from: http://unicef.in/Whatwedo/10/Stunting.
21 22 23	322	23. Popkin BM, Richards MK, Monteiro CA. Stunting is associated with overweight in children
24 25	323	in countries that are undergoing the nutrition transition.JNutr.1996; 126(12):3009–30-16.doi:
26 27 28	324	10.1093/jn/126.12.3009.
29 30	325	24. Andreyeva T, Kelly IR, Harris JL. Exposure to food advertising on television: associations
31 32 33	326	with children's fast food and soft drink consumption and obesity. Econ Hum Biol. 2011 Jul;
34 35 36	327	9(3):221-33. doi: 10.1016/j.ehb.2011.02.004. Epub 2011 Mar 5.
37 38	328	25. Kolčić I. Double burden of malnutrition: a silent driver of double burden of disease in low-
39 40 41	329	and middle-income countries.J Glob Health. 2012; 2(2):020303. doi: 10.7189/jogh.02.020303.
42 43 44	330	26. Chan RSM, WooJ.Prevention of overweight and obesity: how effective is the current public
45 46	331	health approach.Int J Environ Res Public Health. 2010; 7(3):765–783.
47 48 49	332	doi:10.3390/ijerph703076526
50 51	333	27. Jaacks LM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity
52 53 54	334	transition: stages of the global epidemic. Lancet Diabetes
55 56 57 58 59	335	Endocrinol.2019.http://dx.doi.org/10.1016/ S2213-8587(19)300

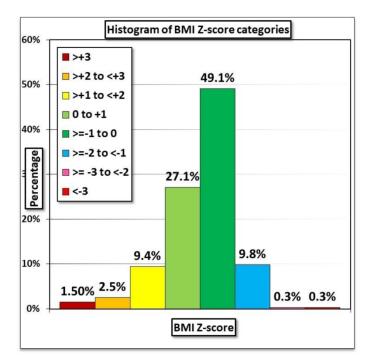
<mark>3</mark> 36				
337 338	Table 1			
339 340		n anthropometric parame	ters among girl	s (N=424)
)	Variables	MUAC	Body weight (Kg)	Height (cm)

Variables		MUAC	(Kg)	Height (cm)	BMI
MUAC	Pearson Correlation	1	.897(**)	.700(**)	.826(**)
	p-value		7.34E-152	1.21E-63	6.86E-107
Body weight	Pearson Correlation	.897(**)	1	.866(**)	.776(**)
(Kg)	p-value	7.34E-152		2.85E-129	1.93E-86
Height (cm)	Pearson Correlation	.700(**)	.866(**)	1	.385(**)
freight (cm)	p-value	1.21E-63	2.85E-129		2.16E-16
BMI	Pearson Correlation	.826(**)	.776(**)	.385(**)	1
	p-value	6.86E-107	1.93E-86	2.16E-16	

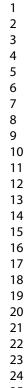
** Correlation is significant at the 0.01 level (2-tailed).

https://mc.manuscriptcentral.com/bmjpo

342	Table 2
343	Correlations between anthropometric parameters among boys (N=1020)


Variables		MUAC	Body weight (Kg)	Height (cm)	BMI
MUAC	Pearson Correlation	1	.911(**)	.780(**)	.847(**)
	p-value		0.0001	9.60E-210	2.21E-281
Body weight	Pearson Correlation	.911(**)	1	.886(**)	.861(**)
(Kg)	p-value	0.0001		0.0001	1.25E-301
Height (cm)	Pearson Correlation	.780(**)	.886(**)	1	.564(**)
	p-value	9.60E-210	0.0001		1.02E-86
BMI	Pearson Correlation	.847(**)	.861(**)	.564(**)	1
	p-value	2.21E-281	1.25E-301	1.02E-86	

2		
3	346	
4	347	
5	348	
6	349	
7	350	Table 3
8 9	351	Distribution of nutrition conditions based on BMI and MUAC Z-scores **
9 10	352	


Condition	Based on BMI Z-scores No (%)	Based on MUAC Z-scores No (%)		
Pre-obese	BMI >1 to 2 SD 136 (9.4%)	MUAC>1to 2SD 135 (9.3%)		
Overweight	BMI>2 to 3 SD 36 (2.5%)	MUAC>2 to 3SD 43 (3.0%)		
Obese	BMI >3SD 21 (1.5%)	MUAC>3SD 19(1.3%)		
Possible risk of underweight	BMI <-1 to -2 SD 141 (9.8%)	MUAC \leq -1 to -2SD 181 (12.5%)		
Thin	BMI <-2 to -3 SD 5 (0.3%)	MUAC<-2 to -3SD 6 (0.4%)		
Severely thin	BMI <-3SD 5 (0.3%)	MUAC<-3 SD 1(0.1%)		

**Modified WHO Classification of nutrition conditions based on anthropometry

BMI = Body Mass Index; MUAC = Mid-upper-arm circumference

215x279mm (300 x 300 DPI)

36 37

38 39

40 41

42 43 44

45 46

47 48

48 49

50 51

52 53

54 55

56 57

58 59

59 60

>+3 SD 44.4% 45% >+2 to <+3</p> 40% >+1 to <+2</p> 🔲 0 to +1 35% ≥=-1 to 0 Percentage 28.9% >=-2 to <-1</p> >= -3 to <-2</p> <-3 20% 15% 12.5% 9.3% 10% 1.30% 3.0% 5% 0.4% 0.1% 0% MUAC Z-score

Histogram of MUAC Z-score categories

50%

215x279mm (300 x 300 DPI)

Table 1 (S)Comparison of variables between girls and boys

< si	Girls (n=424)			Boys (n=1020)			Mann- Whitney Test			
Variables	Mean	SD	Median	IQR	Mean	SD	Median	IQR	Z-value	p-value
Age (years)	7.63	2.82	7.00	5.00	8.80	3.69	9.00	5.00	- 5.162	2.44E- 07 *
Height (cm)	125. 16	16.95	125.0 0	26.00	134.0 6	22.16	133.1 5	34.00	- 6.626	3.44E- 11 *
Body weight (kg)	22.4 8	8.83	20.20	10.40	28.93	14.96	24.20	19.40	- 7.215	5.41E- 13 *
BMI	13.8 4	2.33	13.20	2.14	15.04	3.31	13.98	3.24	- 7.374	1.66E- 13 *
MUAC	17.5 2	2.61	16.85	3.30	18.94	3.83	17.95	5.00	- 6.233	4.59E- 10 *

^ All data failed a" Normality Test," so a Mann-Whitney U Rank Sum Test was applied.
 * Difference is statistically significant.

BMI=Body Mass Index; MUAC=Mid-upper-arm circumference

Table2 (S) Distribution of variables among all participants

Variables	Mean	SD	Median	IQR	Minimum	Maximum
Age (years)	8.46	3.50	9.00	6.00	3.00	16.00
Body weight (kg)	27.04	13.77	23.10	16.20	9.00	97.50
Height (cm)	131.45	21.16	130.00	32.00	84.00	188.00
Height (meters)	1.31	0.21	1.30	0.32	0.84	1.88
ВМІ	14.69	3.10	13.78	2.89	6.58	36.10
MAC	18.53	3.57	17.50	4.30	12.20	35.00

SD = standard deviation; IQR = inter-quartile range; BMI = Body Mass Index; MUAC =Midupper-arm circumference

https://mc.manuscriptcentral.com/bmjpo

Table 3 (S) Age-wise distribution of BMI among all participants

	BMI						
Age (years)	Mean	SD	Median	IQR			
3	13.37	1.34	13.26	1.61			
4	13.04	1.69	13.07	1.46			
5	13.01	1.13	12.80	1.02			
6	13.85 💙	2.09	13.39	1.55			
7	13.54	1.48	13.20	1.90			
8	13.94	2.22	13.37	2.01			
9	13.70	1.73	13.36	1.66			
10	14.74	2.84	13.97	2.77			
11	15.48	3.03	14.89	3.60			
12	15.89	3.01	15.63	3.87			
13	18.22	3.34	17.51	3.30			
14	18.33	3.88	17.28	4.53			
15	19.09	4.32	18.01	6.52			
16	21.38	5.89	23.55	11.09			
) = standard devia	tion; IQR = inter-qua			1			

Table 4 (S) Age-wise distribution of MUAC among all participants

	MUAC							
Age (years)	Mean	SD	Median	IQR				
3	15.39	1.24	15.20	1.50				
4	15.50	1.16	15.50	1.10				
5	16.19	1.17	15.95	1.20				
6	16.83	2.07	16.50	1.95				
7	16.98	1.75	16.70	2.00				
8	17.97	2.11	17.50	1.61				
9	17.79	1.78	17.50	2.08				
10	19.02	2.63	18.50	3.45				
11	20.16	3.04	19.50	3.93				
12	20.87	2.79	20.50	4.00				
13	22.91	2.79	22.50	2.60				
14	23.53	3.64	23.00	4.95				
15	24.66	3.73	23.50	5.23				
16	25.81	4.63	27.20	7.75				
SD = standard devia	tion; IQR = inter-qu	artile range						

https://mc.manuscriptcentral.com/bmjpo

Table 5 (S) Homogeneous Subsets: BMI: Tukey HSD

1 2 3 4 5 6 5 132 13.011 Image: constraint of the state o		Ne	Subset for alpha = 0.05								
4 146 13.038 Image: constraint of the state of	Age (years)	No.	1	2	3	4	5	6			
3 102 13.366 13.366	5	132	13.011								
7 156 13.537 13.537 9 72 13.696 13.696 <	4	146	13.038								
9 72 13.696 13.696 Image: constraint of the state of the	3	102	13.366	13.366							
6 109 13.852 13.852 13.852 13.852 13.852 8 65 13.939 13.939 13.939 14.740 14.740 10 220 14.740 14.740 14.740 14.740 14.740 11 182 15.481 15.481 15.481 15.892 14.740 12 77 1 1 15.892 18.224 14.740 13 30 1 1 18.224 18.325 18.325 14 72 1 1 19.094 19.094 16 9 0.836 0.232 0.059 0.529 0.892 1.000 Means for groups in homogeneous subsets are displayed. BMI = Body Mass Index 1 1.000 1 1.000	7	156	13.537	13.537							
8 65 13.939 13.939 13.939 14.740 15.743	9	72	13.696	13.696							
10 220 14.740 14.740 14.740 14.740 11 182 15.481 15.481 15.481 1 12 77 1 1 15.481 15.892 1 13 30 1 1 18.224 1 14 72 1 1 18.325 1 15 72 1 1 1 1 1 1 16 9 1 0.836 0.232 0.059 0.529 0.892 1.000 Means for groups in homoseneous subsets are displayed. 1 100 100 100 100	6	109	13.852	13.852	13.852						
11 182 15.481 15.481 15.481 12 77 1 15.481 15.892 1 13 30 1 18.224 18.224 14 72 1 18.325 18.325 15 72 1 1 19.094 16 9 0.836 0.232 0.059 0.529 0.892 1.000 Means for groups in homogeneous subsets are displayed. BMI = Body Mass Index BMI = Body Mass Index I <td>8</td> <td>65</td> <td>13.939</td> <td>13.939</td> <td>13.939</td> <td></td> <td></td> <td></td>	8	65	13.939	13.939	13.939						
12 77 15.892 18.224 13 30 18.224 18.325 14 72 1 18.325 15 72 1 19.094 16 9 0.836 0.232 0.059 0.529 0.892 1.000 Means for groups in homogeneous subsets are displayed. BMI = Body Mass Index Image: State Sta	10	220		14.740	14.740	14.740					
13 30 and	11	182		O,	15.481	15.481					
14 72 Image: Constraint of the state of the stat	12	77			5	15.892					
15 72 Image: Constraint of the state of the stat	13	30			0		18.224				
16 9 Image: Constraint of the second	14	72					18.325				
Sig.0.8360.2320.0590.5290.8921.000Means for groups in homogeneous subsets are displayed. BMI = Body Mass IndexBMI = 0.000 Mass Index0.0000 Mass Index0.0000 Mass Index0.0000 Mass Index	15	72					19.094				
Means for groups in homogeneous subsets are displayed. BMI = Body Mass Index	16	9				4		21.380			
BMI = Body Mass Index	Sig.		0.836	0.232	0.059	0.529	0.892	1.000			
	Means for groups in BMI = Body Mass Ind	homog dex	eneous si	ubsets are displayed	1.	C	2				

Table 6 (S)
Homogeneous Subsets: MUAC: Tukey HSD (Table No. 4)

Age	No	Subset for alpha = 0.05								
(years)	No.	1	2	3	4	5	6	7	8	9
3	102	15.385								
4	146	15.500	15.500							
5	132	16.194	16.194							
6	109	16.826	16.826	16.826						
7	156		16.979	16.979						
9	72			17.794	17.794					
8	65			17.972	17.972					
10	220				19.015	19.015				
11	182					20.161	20.161			
12	77				0		20.871			
13	30							22.907		
14	72					2		23.532	23.532	
15	72								24.658	24.658
16	9									25.811
Sig.		0.102	0.08	0.421	0.314	0.423	0.961	0.987	0.452	0.412
Means for groups in homogeneous subsets are displayed. MUAC = Mid-upper-arm circumference										

https://mc.manuscriptcentral.com/bmjpo

Table 7 (S)
Association among the cases between BMI (Z-Score) internally and by gender

Internel DMI (7 Coore)		Gender		Totol	
Internal BMI (Z-Score)		Female	Male	Total	
• • • 2	No.	5	16	21	
>+3	%	1.2%	1.6%	1.5%	
1240 412	No.	11	25	36	
>+2 to <+3	%	2.6%	2.5%	2.5%	
>+1 to <+2	No.	47	89	136	
>+1 10 <+2	%	11.1%	8.7%	9.4%	
0 to +1 ^	No.	109	282	391	
010+1	%	25.7%	27.6%	27.1%	
	No.	209	500	709	
>=-1 to 0 ^	%	49.3%	49.0%	49.1%	
>=-2 to <-1 ^	No.	39	102	141	
>=-2 (0 <-1 ~	%	9.2%	10.0%	9.8%	
>= -3 to <-2 ^	No.	3	2	5	
>= -3 10 <-2 **	%	0.7%	0.2%	0.3%	
<-3 ^	No.	1	4	5	
<-3 **	%	0.2%	0.4%	0.3%	
Total	No.	424	1020	1444	
Total	%	100.0%	100.0%	100.0%	

Chi-Square Test	Value	df	p-value	Association
Pearson's Chi-Square \$	5.199	7	0.636	Not significant
Pearson's Chi-Square ^	2.262	3	0.520	Not significant

and Chi-Square te \$ 4 cells (25.0%) have expected count less than 5. ^ Row data pooled and Chi-Square test reapplied.

BMI = Body Mass Index

Table 8 (S) Association among the cases between MUAC (Z-Score) internally and by gender

		Ger	nder	Total
Internal MUAC (Z-Score)		Female	Male	Total
	No.	3	16	19
>+3 SD	%	0.7%	1.6%	1.3%
5 12 to 112	No.	17	26	43
>+2 to <+3	%	4.0%	2.5%	3.0%
>+1 to <+2	No.	38	97	135
>+1 to <+2	%	9.0%	9.5%	9.3%
0 to +1 ^	No.	131	287	418
010+1 ~	%	30.9%	28.1%	28.9%
>=-1 to 0 ^	No.	178	463	641
>=-1 to 0 ~	%	42.0%	45.4%	44.4%
>=-2 to <-1 ^	No.	55	126	181
>=-2 10 <-1 **	%	13.0%	12.4%	12.5%
>= -3 to <-2 ^	No.	2	4	6
>= -3 to <-2 ^	%	0.5%	0.4%	0.4%
<-3 ^	No.	0	1	1
<-ی ~	%	0.0%	0.1%	0.1%
Total	No.	424	1020	1444
	%	100.0%	100.0%	100.0%

Chi-Square Test	Value	df	p-value	Association
Pearson's Chi-Square \$	6.054	7	0.533	Not significant
Pearson's Chi-Square ^	3.929	3	0.269	Not significant

\$ 4 cells (25.0%) have expected count less than 5. ^ Row data pooled and Chi-Square test Junoquare reapplied.

MUAC = Mid-upper-arm circumference

BMJ Paediatrics Open

Double burden of malnutrition among Indian school children and its measurement: A cross-sectional study in a single school Short title: Measuring double burden of malnutrition

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2019-000505.R3
Article Type:	Original research
Date Submitted by the Author:	15-Nov-2019
Complete List of Authors:	Daga, Subhashchandra; Pacific Medical College and Hospital, Pediatrics Mhatre, Sameer; Smt Kashibai Navale Medical College and General Hospital, Paediatrics Kasbe, Abhiram ; Topiwala National Medical College DSouza, Eric; MIMER
Keywords:	General Paediatrics, Obesity, School Health, Tropical Paediatrics, Growth

1		
2 3		
4	1	
5		
6		
7	2	Double burden of malnutrition among Indian school shildren and its
8	2	Double burden of malnutrition among Indian school children and its
9		
10	3	measurement: A cross-sectional study in a single school
11	0	medsurement. It cross sectional study in a single sensor
12		
13 14	4	
15	4	Short title: Measuring double burden of malnutrition
16		
17	5	
18	5	
19		
20	6	SubhashchandraDaga ^{1*} , Sameer Mhatre ² , Eric Dsouza ³ , AbhiramKasbe ⁴
21	Ū	Suchashenanda uga , Sainter Innade, Ene Escaza, Fromaninasoe
22		
23 24	7	
2 4 25		
26		
27	8	¹ Department of Pediatrics, Pacific Medical College and Hospital, Udaipur, India
28		
29	•	
30	9	² Department of Pediatrics, Smt. KashibaiNavle Medical College, Pune, India
31		
32	10	³ Department of Dedictrics, MIMED Medical College Telegeon India
33 34	10	³ Department of Pediatrics, MIMER Medical College, Talegaon, India
35		
36	11	⁴ Department of Pediatrics, Topiwala Medical College, Mumbai, India
37		
38		
39	12	
40		
41 42		
43	13	
44		
45	14	*Corresponding author
46	14	Corresponding addition
47		*Corresponding author
48	15	E-mail: dagasubhash49@gmail.com (SD)
49 50		
50 51		
52	16	Tel: +91-9960522259
53		
54		
55	17	
56		
57		1
58 59		1
60		https://mc.manuscriptcentral.com/bmjpo

1 2 3 4 5	18	Abstract
6 7 8	19	Objective
9 10	20	This cross-sectional study set in a single school_on the outskirts of a large city_aimed to
11 12 13	21	document the extent of double burden of malnutrition (coexistence of over- and under-nutrition)
14 15	22	among Indian schoolchildren from lower socioeconomic groups, and to determine if mid-upper
16 17 18	23	arm circumference (MUAC) can be used as a proxy for body mass index (BMI).
19 20 21 22	24	Subjects
23 24	25	The total number of participants was 1,444, comprising 424 girls and 1,020 boys belonging to
25 26 27	26	playgroups and grades 1–7.
28 29 30 31	27	Measurements
32 33 34	28	Anthropometric measurements, such as participants'MUAC, height, and weight were measured
34 35 36	29	using standard techniques. Descriptive statistics for BMI and MUACwere obtained based on
37 38	30	gender; Z-scores were computed using age-specific and sex-specific WHO reference data. The
39 40	31	distribution of variables was calculated for three groups: girls, boys, and all participants.
41 42 43	32	Homogeneous subsets for BMI and MUAC were identified in the three groups. Age-wise
44 45 46	33	comparisons of BMI and MUACwere conducted for each gender.
47 48 49	34	Main outcome measures
50 51 52	35	1. To know if MUAC and BMI are correlated among boys and girls.
53 54 55 56	36	2. To study BMI and MUAC Z score distribution among the participants.
57 58		2
59 60		https://mc.manuscriptcentral.com/bmjpo

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

37	Results
38	MUACwas positively correlated with BMI inboth boys and girls. The following BMI Z-score
39	distribution was observed: severe acute malnutrition (SAM), 5(0.3%); moderate acute
40	malnutrition (MAM), 146 (10.1%); undernourished, at risk of MAM/SAM, 141 (9.8%); obese,
41	21 (1.5%); overweight, 36 (2.5%); pre-obese, 136 (9.4%). The distribution of categories of
42	children based on MUAC Z-scores was: SAM, 7(0.5%), MAM, 181 (12.5%), and
43	undernourished at risk of MAM or SAM, 181 (12.5%); obese, 19 (1.3%), overweight, 178
44	(12.3%), pre-obese, 135 (9.3%).
45	Conclusions
46	SAM/MAM/undernourished states and obesity/overweight/pre-obese states, indicating
47	undernutrition more than overweight, coexist among Indian schoolchildren from lower
48	middle/lower socioeconomic categories. BMI and MUAC were significantly correlated.
49	MUACidentifies both under-nutrition and over-nutrition by early detection of aberrant growth.
50	
51	Introduction
52	The double burden of under-nutrition and over-nutrition is an emerging international
53	problem. According to estimates from 129 countries with available data, 57 experience serious
54	problems of both undernourished children and overweight adults [1]. The relationship between
55	under-nutrition and overweight status and obesity is deeper than coexistence. The double burden
56	of malnutrition (DBM) refers to the coexistence of both under-nutrition and over-nutrition within
57	individuals, households, and populations and across the life course. "Across the life course"

BMJ Paediatrics Open

Page 4 of 30

refers to the phenomenon that under-nutrition early in life contributes to an increased propensity for over-nutrition during adulthood [2]. The occurrence of DBM is attributed to a complex interplay of nutritional transitions (shifting from an active to a sedentary lifestyle, demographic transitions, etc.) from high fertility and early deaths to low fertility and aging populations and epidemiological transitions from communicable to non-communicable diseases [2].

Later in the life course, the double burden of disease is characterized by the coexistence of communicable (infectious disease) and non-communicable diseases. Prior to the 1970s, obesity was a relatively rare condition, even in the wealthiest of nations [3], whereas under-nutrition was a major problem, and nutrition supplementation was the main intervention. Thus, obesity is a relatively new problem in need of attention. A systematic review of obesity and socioeconomic status in low and middle incomecountries concluded that child obesity is more prevalent among affluent groups in such countries [4]. This may be attributed to improved access to surplus/excess food and a higher degree of urbanization and technological progress in these economies that render activities less laborious, resulting in less energy expenditure [5]. Furthermore, childhood obesity is a strong predictor of adult obesity. For instance, a Japanese study revealed that approximately one-third of obese children grew into obese adults [6]. Therefore, early detection of excessive weight gain, and action to prevent its progress, is more likely to succeed than attempting to reverse obesity later.

Body mass index (BMI)-for-age, the internationally recommended measure of obesity,
suggests that Asians are at an increased risk of cardio-metabolic disorders, even at lower BMI
levels, because of a considerably higher body fat percentage [7]. Therefore, the World Health
Organization (WHO) recommends lowering the BMI cut-offs for being considered "overweight"

BMJ Paediatrics Open

among Asian adults [8]in light of the increased health risks. Early detection of overweight statushas become very important in Asia.

The selection of height-based parameters, such as BMI for the detection of overweight/obese children in low-resource settings, has limitations because of the shortage of stadiometers and trained paramedical staff. A simpler proxy for BMI that parallels the use of abdominal girth for detecting visceral obesity needs to be developed [9]. The mid-upper arm circumference (MUAC) appears to be a promising alternative in this regard [10-14]. A recent study from the Netherlands reaffirmed that, compared with BMI, MUAC is a valid measure for detecting overweight/obesity, and thus is a good alternative to BMI [15]. Health workers are familiar with MUAC measurement, as it has been commonly used for identifying severe acute under-nutrition among young (6–60 months of age) children [16].

91 To our knowledge, few studies have focused on the coexistence of under- and over92 nutrition in India. The present study was conducted to document the extent of DBM among
93 Indian schoolchildren, a key group for intervention, using BMI and MUAC distributions. The
94 study also examined whether MUAC can be used as a proxy for BMI, so that MUAC can detect
95 trends toward obesity or severe acute malnutrition (SAM).

Participants and Methods

97 Setting

98 A single schoolcross-sectional study was conducted with schoolchildren from the
99 outskirts of Pune, India. This study was part of the MIMER medical college and hospital's
100 outreach activities regarding annual school health check-ups. A schedule of class-wise health

BMJ Paediatrics Open

101 check-ups was developed in consultation with the school authorities who, in turn, sought parents'
102 permission. The study had the approval of the ethics committee of MIMER medical college and
103 hospital, TalegaonDabhade. A majority of the children belonged to lower and lower-middle
104 socioeconomic categories. Children between 3 and 5 years were from a playgroup, and those
105 between 6 and 12 years belonged to grades 1–7.

106 Anthropometric measurements

Anthropometric measurements, such as MUAC, height, and weight, were taken from each participant using standard techniques. Height (cm) was measured on a stadiometer (Easy Care) without shoes. Weight (kg) was measured using a digital weighing machine (Meditrin Instruments) in light clothes and without shoes. MUAC (cm) was measured using a non-elastic plastic tape at the midway between the olecranon and acromion processes on the upper left arm. During these measurements, the participant was in a comfortable standing position and was asked to look straight ahead with his/her shoulders in a neutral position. The participant's arm was straightened, and we ensured that the tape was neither too tight nor too loose.

115 Statistical tools

Open Source Statistical Software PSPP version 1.0.1was used for all analyses, and a pvalue ≤0.05 was considered statistically significant. Mean and standard deviation (SD), median,
inter-quartile range, and Z-scores for BMI and MUACwere computed by sex for participants
with complete measurements. Z-scores were computed using age-specific and sex-specific
reference data from the WHO [17]. The distribution of variables was calculated among all
participants together and separately for boys and girls. Homogeneous subsets for BMI and

1 2		
3 4	122	MUACwere identified in these three groups. Age-wise comparisons of BMI and MUACwere
5 6 7	123	calculated for both girls and boys.
8 9	124	Patient involvement
10 11 12 13	125	Patients were not directly involved in the design of this study.
14 15 16	126	Results
17 18 19	127	The total number of participants was 1,444, comprising 424 girls and 1,020 boys. The
20 21	128	distribution of Z- scores among all participants is shown in Figures 1 and 2. Age, height, weight,
22 23	129	MUAC, and BMI were all significantly different between girls and boys; boys had higher values
24 25 26	130	for all parameters (Suppl. Files: Tables 1 and 2). As expected, BMI and MUAC showed age-wise
27 28	131	differences for all participants, combined and separately, for boys and girls, between the ages of
29 30	132	3 to 16 years (Suppl. Files: Tables 3 and 4). Tukey's honest significant difference (HSD) test for
31 32	133	homogeneous subsets revealed a significant shift in mean BMI at 3, 6, and 10 years (Suppl.
33 34 35	134	Files: Table 5), whereas for MUAC, the shift occurred at 4, 6, and 9 years (Suppl. Files: Table
36 37	135	6). Thereafter, MUAC changed significantly almost every year until the age of 16. Thus, in
38 39	136	contrast to BMI, MUAC had more age-dependent variability. BMI change with age was minimal
40 41 42	137	in girls (only at age 14) compared to changes in boys at 6, 10, 12, and 14 years. Girls had six
43 44	138	homogeneous subsets for MUAC, with the first significant rise at age 4 years, compared to nine
45 46	139	subsets in boys, with the first shift at age 5. Thus, changes in BMI and MUAC were more
47 48 49	140	frequent in boys. MUAC was associated with weight, height, and BMI both in girls and boys
50 51 52	141	(Tables 1 and 2).
53 54 55	142 143	Table 1
56 57	144	Correlations between anthropometric parameters among girls (N=424)
58 59		7
59 60		https://mc.manuscriptcentral.com/bmjpo

Variables		MUAC	Body weight (kg)	Height (cm)	BMI
MUAC	Pearson Correlation	1	.897(**)	.700(**)	.826(**)
	<i>p</i> -value		7.34E-152	1.21E-63	6.86E-107
Body weight	Pearson Correlation	.897(**)	1	.866(**)	.776(**)
(kg)	<i>p</i> -value	7.34E-152		2.85E-129	1.93E-86
Height (cm)	Pearson Correlation	.700(**)	.866(**)	1	.385(**)
	<i>p</i> -value	1.21E-63	2.85E-129		2.16E-16
BMI	Pearson Correlation	.826(**)	.776(**)	.385(**)	1
	<i>p</i> -value	6.86E-107	1.93E-86	2.16E-16	

** Correlation is significant at the 0.01 level (2-tailed).

147 Table 2

148 Correlations between anthropometric parameters among boys (N=1020)

49						
	Variables		MUAC	Body weight (kg)	Height (cm)	BMI
	MUAC	Pearson Correlation	1	.911(**)	.780(**)	.847(**)
		<i>p</i> -value		0.0001	9.60E-210	2.21E-281
	Body weight (kg)	Pearson Correlation	.911(**)	1	.886(**)	.861(**)
		<i>p</i> -value	0.0001		0.0001	1.25E-301
	Height (cm)	Pearson Correlation	.780(**)	.886(**)	1	.564(**)
		<i>p</i> -value	9.60E-210	0.0001		1.02E-86
	BMI	Pearson Correlation	.847(**)	.861(**)	.564(**)	1
		<i>p</i> -value	2.21E-281	1.25E-301	1.02E-86	

** Correlation is significant at the 0.01 level (2-tailed).

- ⁵² 53 150

1 2 2				
3 4	151	The distri	bution of clinical categories of nutritior	al status with respect to BMI and
5 6 7	152	MUAC is shown	in Table 3.	
8 9 10 11	153 154 155	Table 3 Distribution of n	nutrition conditions based on BMI an	d MUAC Z-scores **
12 13 14 15		Condition	Based on BMI Z-scores No (%)	Based on MUACZ-scores No (%)
16 17 18 19		Pre-obese	BMI >1 to 2 SD 136 (9.4%)	MUAC>1to2SD 135 (9.3%)
20 21 22		Overweight	BMI>2 to 3 SD 36 (2.5%)	MUAC>2 to 3SD 43 (3.0%)
23 24 25 26		Obese	BMI >3SD 21 (1.5%)	MUAC>3SD 19(1.3%)
27 28 29 30		Possible risk of underweight	BMI <-1 to -2 SD 141 (9.8%)	MUAC \leq -1 to -2SD 181 (12.5%)
31 32 33		Thin	BMI <-2 to -3 SD 5 (0.3%)	MUAC<-2 to -3SD 6 (0.4%)
34 35 36 37		Severely thin	BMI <-3SD 5 (0.3%)	MUAC<-3 SD 1(0.1%)
38 39 40	156 157		Classification of nutrition conditions based Index; MUAC = Mid-upper-arm circumfe	
41 42 43	158			
44 45 46	159		Discussion	
47 48 49	160	The prese	nt study suggests that DBM has reached	d Indian school children of lower middle
50 51	161	or lower socioeco	pnomic statuses, which calls for urgent	action. Importantly, the present results
52 53 54 55 56	162	identify children	at the brink of sliding into severe forms	of under- and over-nutrition. The
57 58			9	
59 60			https://mc.manuscriptcentral.	com/bmjpo

present study also suggests using a single and simpler method, MUAC, for detecting both formsof malnutrition by monitoring growth during routine health check-ups.

165 The World Health Assembly targets were considered in crafting the 2030 development 166 agenda and are referred to in target 2.2 of the Sustainable Development Goals to "end all forms 167 of malnutrition." The reference to "all forms of malnutrition" is important for acknowledging the 168 existence of the double burden of under-nutrition and overweight status. While the drivers of the 169 double burden of malnutrition are varied and often insidious, their effects present a clear case for 170 urgent action and demand an integrated response. Using a single tool for detecting both forms of 171 malnutrition integrates and simplifies the process.

To our knowledge, few studies have focused on this aspect of growth among children in India, as well as other emerging economies. The girls were outnumbered by boys (424 vs. 1,020). This may be due to the traditional gender norms that push girls into helping with household chores and sibling care, resulting in school dropouts. Based on BMI Z-Scores, 5 (0.3%) and 5 (0.3%) belonged to SAM and MAM categories, respectively, and 21(1.5%) and 36 (3.9%) children were classified as obese and overweight, respectively. MUAC Z-scores suggested the following distribution: SAM -1(0.1%), MAM-(0.4%), obesity-19 (1.3%), overweight-43 (4.3%). An even greater number of children were leaning toward SAM or MAM as well as obesity or overweight. Children who are not yet at the BMI-for-age threshold for the current definition of SAM or MAM (and childhood obesity or overweight) may be at an increased risk of developing severe forms of under-nutrition or obesity. One of the present study's aims was to identify these target groups so that these children's needs could be addressed.

Page 11 of 30

1

BMJ Paediatrics Open

2	
3	
4	
5	
6	
6 7	
0	
8 9 10	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22 23 24 25	
22	
22	
2J 24	
24	
25	
26	
27	
28	
29	
30	
31 32	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
58 59	
60	

185 The first target group, undernourished children (BMI or MUACZ-score between -1 and -186 2 SD), is at risk of sliding into MAM or SAM. The second group, pre-obese children (BMI or 187 MUACZ-score between 1 and 2 SD), is at risk of progressing to overweight/obesity. Based on 188 the BMI Z-scores, 181 (12.5%) were undernourished, and 136 (9.4%) were pre-obese. The 189 equivalent numbers for MUACwere 181 (12.5%) for SAM and MAM risk and 135 (9.3%) for 190 obesity, respectively. More children were at risk of severe undernutrition than of overnutrition. 191 These target groups may develop more severe forms of malnutrition if corrective measures are 192 delayed. The first step in that direction is to plan face-to-face counseling sessions with parents 193 and children. School programs are effective at preventing childhood obesity by fostering more 194 physical activities and recommending healthier diets [18]. Counseling for the target groups will 195 have to be done, keeping in mind that within low-resource settings, places for play may be 196 scarce, sports infrastructure may be poor, and recreational centers may be lacking [19]. 197 Similarly, low family income is linked to greater consumption of low-quality nutrition and fast 198 food [20].

Importantly, MUAC as a single tool can facilitate this cohesive intervention by detecting
both under and over-nutrition during routine growth monitoring without a height-dependent
parameter, such as BMI (Figure1). This is because BMI and MUAC are significantly correlated
with each other. However, monitoring for obesity should begin even earlier, as the most rapid
weight gain occurs between ages 2 and 6yearsamong obese adolescents [21].

While India's economy has been growing at an impressive rate, the country still has the highest number of stunted children in the world (46.8 million), representing one-third of the global total of stunted children under age 5 [22].Stunting is associated with being overweight

2	
2 3 4	207
5 6	208
7 8	209
9 10	210
11 12 13	211
13 14 15	212
16 17	
18	213
19 20	214
21 22 23	215
23 24 25	216
26 27	
28	217
29 30 31	218
32 33	219
34 35	220
36 37	221
38 39	222
40 41 42	223
42 43 44	224
45 46	225
47 48	226
49 50	227
51 52	
53 54	
55 56	
57	
58 59	
60	

)7	among children in countries that are undergoing a nutritional transition [23]. Economic
)8	improvements are accompanied by a conspicuous change in dietary patterns in the form of
)9	increased fat intake [5]compounded by exposure to food advertising on television leading to fast
10	food and soft drink consumption and obesity [24]. This, coupled with low physical activity,
11	contributes to an increasing prevalence of obesity among adults, which accompanies the first
12	wave of a cluster of non-communicable diseases, such as hypertension and diabetes mellitus,
13	called "the new world syndrome" [25]. It should be noted, however, that there has not been the
14	same level of agreement on the classification of obesity for children and adolescents as there is
15	for adults [26].

To summarize, until recently, India has considered under-nutrition to be a major problem, 216 217 and nutrition supplementation has been the key intervention. At the national level, India is at 218 stage 1 of the obesity transition with wide sub-national variations [27]. Our study may help in the 219 surveillance effort to address underserved populations [27]. With improved availability of food, a 220 double burden of malnutrition is emerging that needs to be concurrently addressed. The present 221 study observed the coexistence of obesity, overweight, pre-obese, and SAM, MAM, and 222 undernourished states among Indian school children in lower-middle and lower socioeconomic 223 levels. Second, the present results revealed a significant correlation between BMI and MUAC. 224 This study provides evidence to suggest that MUAC is a valid, single measurement for 225 identifying this dual problem of aberrant growth and over-nutrition on the one hand and under-226 nutrition on the other, through extended routine growth monitoring of children. However, more 227 studies are required to establish the validity and reliability of this tool.

1 2		
2 3 4	228	What is known about the subject?
5 6	229	• Emerging economies face a dual problem of under-nutrition and over-nutrition.
7 8 9	230	• Detecting these problems using height-based parameters is not easy in a low-resource
10 11	231	setting.
12 13	232	What this study adds?
14 15 16	233	This study suggests that MUAC is a simple, valid, and single measure for identifying this dual
10 17 18	234	problem in a low-resource setting, and undernutrition is a bigger problem than obesity.
19 20	235	
21 22 22	236	Funding statement: This research received no specific grant from any funding agency in public,
23 24 25	237	commercial, or not-for-profit sectors.
26 27	220	Declaration of interests. All outhors have completed the ICMIE uniform disclosure form and
28 29	238	Declaration of interests: All authors have completed the ICMJE uniform disclosure form and
30 31	239	confirm no support from any organization for the submitted work; no financial relationships with
32 33	240	any organizations that might have an interest in the submitted work in the previous three years;
34 35	241	no other relationships or activities that could appear to have influenced the submitted work.
36 37 29	242	
38 39	242	
40 41	243	Author contributions
42 43 44	244	SD-Conceptualization; Data analysis; Manuscript writing.
45 46	245	SD-Conceptualization; Data analysis; Manuscript writing.SM-Data collection; data analysis; manuscript writing.AK-Data analysis: manuscript writing.
47 48	246	AK-Data analysis; manuscript writing.
49 50 51	247	ED-Data collection; manuscript writing.
52 53	248	
54 55 56		
56 57		
58 59		13
60		https://mc.manuscriptcentral.com/bmjpo

2 3 4	249	References
5 6 7	250	1. Nestle M. Rethinking nutritional policies in developing countries taking into account the
8 9	251	double burden of malnutrition.2016 Oct 18 [Cited 2016 Oct 18]. In: Ideas4Development Blog
10 11 12 13	252	[Internet]. Available from: https://ideas4development.org/en/rethinking-nutritional-policies
13 14 15	253	2. Shrimpton R, Rokx C. Health, nutrition, and population (HNP) discussion paper: The double
16 17	254	burden of malnutrition: a review of global evidence. 2012 [cited12 Aug 2002].
18 19	255	[Internet].Washington (DC): The World Bank. Available from:
20 21 22	256	http://documents.worldbank.org/curated/en/905651468339879888/The-double-burden-of-
23 24 25	257	malnutrition-a-review-of global evidence
26 27	258	3. Prentice AM. The double burden of malnutrition in countries passing through the economic
28 29 30 31	259	transition.AnnNutrMetab. 2018;72(suppl 3):47–54.doi: 10.1159/000487383.
31 32 33	260	4.Dinsa GD, Goryakin Y, FumagalliE,Suhrcke M. Obesity and socioeconomic status in
34 35	261	developing countries: a systematic review. Obes Rev. 2012;13(11):1067-1079. doi:
36 37 38	262	10.1111/j.1467-789X.2012.01017.
39 40	263	5. Kennedy G, Nantel G, Shetty P. Assessment of the double burden of malnutrition in six case
41 42 43	264	study countries. In: The double burden of malnutrition:case studies from six developing
44 45 46	265	countries.Rome, Italy: Food and Agriculture Organization of the United Nations; 2006.pp. 1–18.
47 48	266	6. Kotani K, Nishida M, Yamashita S, Funahashi T, Fujioka S, Tokunaga K, et al. Two decades
49 50	267	of annual medical examinations in Japanese obese children: do obese children grow into obese
51 52 53 54 55	268	adults? Int J ObesRelatMetabDisord.1997;21:912–921.
56 57 58		14
59 60		14 https://mc.manuscriptcentral.com/bmjpo

BMJ Paediatrics Open

1 2		
3 4	269	7. de Wilde JA, vanDommelen P, Middelkoop BJ. Appropriate body mass index cut-offs to
5 6	270	determine thinness, overweight and obesity in South Asian children in the Netherlands.
7 8 9	271	PLoSOne.2013;8(12):e82822.doi:10.1371/journal.pone.0082822.
10 11	272	8. World Health Organization Expert Consultation. Appropriate body-mass index for Asian
12 13 14	273	populations and its implications for policy and intervention strategies.Lancet.2004;363:157-
15 16 17	274	163.doi: 10.1016/S0140-6736(03)15268-3.
18 19	275	9.Liu A, Hills AP, Hu X, Li Y, Du L, Xu Y, et al. Waist circumference cut-off values for the
20 21 22	276	prediction of cardiovascular risk factors clustering in Chinese school-aged children: a cross-
23 24 25	277	sectional study. BMC Public Health. 2010;10:82. doi: 10.1186/1471-2458-10-82.
26 27	278	10. Craig E, Bland R, Ndirangu J, Reilly JJ.Use of mid-upper arm circumference for determining
28 29	279	overweight and overfatness in children and adolescents. Arch Dis Child. 2014;99:763-766. doi:
30 31 32	280	10.1136/archdischild-2013-305137 763.
33 34 35	281	11.Chaput JP, Katzmarzyk PT, Barnes JD, Fogelholm M, Hu G, Kuriyan R, et al. Mid-upper arm
36 37	282	circumference as a screening tool for identifying children with obesity: a 12-country
38 39 40	283	study.PediatrObes. 2017;12(6):439-445. doi: 10.1111/ijpo.12162.
41 42 43	284	12. Asif M, Aslam M, Altaf S. Mid-upper-arm circumference as a screening measure for
44 45	285	identifying children with elevated body mass index: a study for Pakistan. Korean J
46 47 48	286	Pediatr.2018;61(1):6–11.doi: 10.3345/kjp.2018.61.1.6.
49 50	287	13. Jaiswal M, Bansal R, Agarwal A. Role of mid-upper arm circumference for determining
51 52 53	288	overweight and obesity in children and adolescents. J ClinDiagn Res. 2017;11(8):SC05-
54 55	289	SC08.doi: 10.7860/JCDR/2017/27442.10422.
56 57 58		15
59 60		https://mc.manuscriptcentral.com/bmjpo
00		

3 4	290	14. Lu Q, Wang R, Lou DH, Ma CM, Liu XL, Yin FZ. Mid-upper-arm circumference and arm-
5 6	291	to-height ratio in evaluation of overweight and obesity in Han
7 8 9	292	children.PediatrNeonatol.2014;55:14–19.doi: 10.1016/j.pedneo.2013.05.004.
10 11 12	293	15. Talma H, van Dommelen P, Schweizer JJ, Bakker B, Kist-van Holthe JE, Chinpaw JMM, et
13 14	294	al. Is mid-upper arm circumference in Dutch children useful in identifying obesity? Arch Dis
15 16 17	295	Child. 2019;104(2):159–165. doi: 10.1136/archdischild-2017-313528.
18 19 20	296	16. Roberfroid D, Hammami N, Lachat C, Weise Prinzo Z, Sibson V, Guesdon B, et al.
20 21 22	297	Utilization of mid-upper arm circumference versus weight-for-height in nutritional rehabilitation
23 24	298	programmes: asystematic review of evidence. Geneva, Switzerland: World Health Organization;
25 26 27	299	2013.
28 29 30	300	17. WHOMulticentre Growth Reference Study Group. WHO child growth standards based on
31 32 33	301	length/height, weight and age. ActaPaediatr. 2006; 450(Suppl.):76-85.
34 35	302	18. Veugelers PJ, Fitzgerald AL. Effectiveness of school programs in preventing childhood
36 37	303	obesity: a multilevel comparison.Am J Pub Health. 2005;95(3):432–435. doi:
38 39 40	304	10.2105/AJPH.2004.045898.
41 42 43	305	19. Ludwig J, Sanbonmatsu L, Gennetian L, Adam E, Duncan GJ, Katz LF, et al.
44 45	306	Neighborhoods, obesity, and diabetes-a randomized social experiment. N Engl J
46 47 48	307	Med.2011;365:1509–1519.doi: 10.1056/NEJMsa1103216.
49 50 51	308	20. Zenk SN, Powell LM, Rimkus L, Isgor Z, Barker DC, Ohri-Vachaspati P, et al. Relative and
52 53	309	absolute availability of healthier food and beverage alternatives across communities in the
54 55 56	310	United States. Am J Public Health.2014;104(11):2170–2178.doi: 10.2105/AJPH.2014.302113.
57 58		16
59 60		https://mc.manuscriptcentral.com/bmjpo

Page 17 of 30

BMJ Paediatrics Open

1 2		
3 4	311	21.Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in
5 6	312	early childhood and risk of sustained obesity. N Engl J Med.2018; 379:1303-1312. doi:
7 8 9	313	10.1056/NEJMoa1803527.
10 11 12	314	22. UNICEF India. Stunting. December 2018. [Internet].New Delhi, India: UNICEF.Available
13 14	315	from: http://unicef.in/Whatwedo/10/Stunting
15 16 17	316	23. Popkin BM, Richards MK, Montiero CA. Stunting is associated with overweight in children
18 19	317	in countries that are undergoing the nutrition transition.JNutr.1996; 126(12):3009–3016.doi:
20 21 22	318	10.1093/jn/126.12.3009.
23 24 25	319	24.Andreyeva T, Kelly IR, Harris JL. Exposure to food advertising on television: associations
26 27	320	with children's fast food and soft drink consumption and obesity. Econ Hum Biol.
28 29 30	321	2011;9(3):221–233. doi: 10.1016/j.ehb.2011.02.004. Epub 2011 Mar 5.
31 32 33	322	25. Kolčić I. Double burden of malnutrition: asilent driver of double burden of disease in low-
34 35 36	323	and middle-income countries.J Glob Health. 2012;2(2):020303. doi: 10.7189/jogh.02.020303.
37 38	324	26. ChanRSM, WooJ.Prevention of overweight and obesity: how effective is the current public
39 40	325	health approach.Int J Environ Res Public Health. 2010;7(3):765–783.
41 42 43	326	doi:10.3390/ijerph703076526.
44 45 46	327	27. JaacksLM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity
47 48	328	transition: stages of the global epidemic. Lancet Diabetes Endocrinol.2019.doi: 10.1016/S2213-
49 50	329	8587(19)30026-9.
51 52 53	330	
54 55 56	331 332	Table 1
57 58		17
59 60		https://mc.manuscriptcentral.com/bmjpo

334		•	•	88	()	
	Variables		MUAC	Body weight (kg)	Height (cm)	BMI
	MUAC	Pearson Correlation	1	.897(**)	.700(**)	.826(**)
		p-value		7.34E-152	1.21E-63	6.86E-107
	Body weight	Pearson Correlation	.897(**)	1	.866(**)	.776(**)
	(kg)	p-value	7.34E-152		2.85E-129	1.93E-86
	Height (cm)	Pearson Correlation	.700(**)	.866(**)	1	.385(**)
	g ()	p-value	1.21E-63	2.85E-129		2.16E-16
	BMI	Pearson Correlation	.826(**)	.776(**)	.385(**)	1
		p-value	6.86E-107	1.93E-86	2.16E-16	

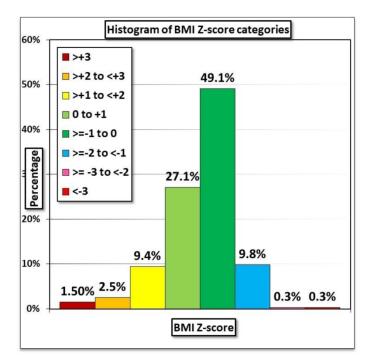
333 Correlations between anthropometric parameters among girls (N=424)

** Correlation is significant at the 0.01 level (2-tailed).

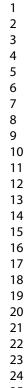
	336	Table 2
-	337	Correlations between anthropometric parameters among boys (N=1020)
·	228	

Variables		MUAC	Body weight (kg)	Height (cm)	BMI
MUAC	Pearson Correlation	1	.911(**)	.780(**)	.847(**)
wome	p-value		0.0001	9.60E-210	2.21E-281
Body weight	Pearson Correlation	.911(**)	1	.886(**)	.861(**)
(kg)	p-value	0.0001		0.0001	1.25E-301
Height (cm)	Pearson Correlation	.780(**)	.886(**)	1	.564(**)
incigite (em)	p-value	9.60E-210	0.0001		1.02E-86
BMI	Pearson Correlation	.847(**)	.861(**)	.564(**)	1
	p-value	2.21E-281	1.25E-301	1.02E-86	

** Correlation is significant at the 0.01 level (2-tailed).


https://mc.manuscriptcentral.com/bmjpo

2		
3	340	
4	341	
5	342	
6	343	
7	344	Table 3
8	-	
9	345	Distribution of nutrition conditions based on BMI and MUAC Z-scores **
10	346	


	1	
Condition	Based on BMI Z-scores No (%)	Based on MUACZ-scores No (%)
Pre-obese	BMI >1 to 2 SD 136 (9.4%)	MUAC>1to2SD 135 (9.3%)
Overweight	BMI>2 to 3 SD 36 (2.5%)	MUAC>2 to 3SD 43 (3.0%)
Obese	BMI >3SD 21 (1.5%)	MUAC>3SD 19(1.3%)
Possible risk of underweight	BMI <-1 to -2 SD 141 (9.8%)	MUAC \leq -1 to -2SD 181 (12.5%)
Thin	BMI <-2 to -3 SD 5 (0.3%)	MUAC<-2 to -3SD 6 (0.4%)
Severely thin	BMI <-3SD 5 (0.3%)	MUAC<-3 SD 1(0.1%)

**Modified WHO Classification of nutrition conditions based on anthropometry

BMI = Body Mass Index; MUAC = Mid-upper-arm circumference Mass Index, MOAC – Mid-upper-arm circumference

215x279mm (300 x 300 DPI)

36 37

38 39

40 41

42 43 44

45 46

47 48

48 49

50 51

52 53

54 55

56 57

58 59

59 60

>+3 SD 44.4% 45% >+2 to <+3</p> 40% >+1 to <+2</p> 🔲 0 to +1 35% ■ >=-1 to 0 Percentage 28.9% >=-2 to <-1</p> >= -3 to <-2</p> <-3 20% 15% 12.5% 9.3% 10% 1.30% 3.0% 5% 0.4% 0.1% 0% MUAC Z-score

Histogram of MUAC Z-score categories

50%

215x279mm (300 x 300 DPI)

Table 1 (S) Comparison of variables between girls and boys

v st		Girls	(n=424)			Boys (r	1020)			ann- ey Test
Variables	Mean	SD	Median	IQR	Mean	SD	Median	IQR	Z-value	p-value
Age (years)	7.63	2.82	7.00	5.00	8.80	3.69	9.00	5.00	- 5.162	2.44E- 07 *
Height (cm)	125. 16	16.95	125.0 0	26.00	134.0 6	22.16	133.1 5	34.00	- 6.626	3.44E- 11 *
Body weight (kg)	22.4 8	8.83	20.20	10.40	28.93	14.96	24.20	19.40	- 7.215	5.41E- 13 *
BMI	13.8 4	2.33	13.20	2.14	15.04	3.31	13.98	3.24	- 7.374	1.66E- 13 *
MUAC	17.5 2	2.61	16.85	3.30	18.94	3.83	17.95	5.00	- 6.233	4.59E- 10 *

^ All data failed a" Normality Test," so a Mann-Whitney U Rank Sum Test was applied.

* Difference is statistically significant.

BMI=Body Mass Index; MUAC=Mid-upper-arm circumference

Table2 (S) Distribution of variables among all participants

Variables	Mean	SD	Median	IQR	Minimum	Maximum
Age (years)	8.46	3.50	9.00	6.00	3.00	16.00
Body weight (kg)	27.04	13.77	23.10	16.20	9.00	97.50
Height (cm)	131.45	21.16	130.00	32.00	84.00	188.00
Height (meters)	1.31	0.21	1.30	0.32	0.84	1.88
BMI	14.69	3.10	13.78	2.89	6.58	36.10
MUAC	18.53	3.57	17.50	4.30	12.20	35.00

SD = standard deviation; IQR = inter-quartile range; BMI = Body Mass Index; MUAC =Midupper-arm circumference

Table 3 (S) Age-wise distribution of BMI among all participants

	BMI							
Age (years)	Mean	SD	Median	IQR				
3	13.37	1.34	13.26	1.61				
4	13.04	1.69	13.07	1.46				
5	13.01	1.13	12.80	1.02				
6	13.85	2.09	13.39	1.55				
7	13.54	1.48	13.20	1.90				
8	13.94	2.22	13.37	2.01				
9	13.70	1.73	13.36	1.66				
10	14.74	2.84	13.97	2.77				
11	15.48	3.03	14.89	3.60				
12	15.89	3.01	15.63	3.87				
13	18.22	3.34	17.51	3.30				
14	18.33	3.88	17.28	4.53				
15	19.09	4.32	18.01	6.52				
16	21.38	5.89	23.55	11.09				
= standard deviati	on; IQR = inter-quar	tile range						

Table 4 (S)	
Age-wise distribution of MUAC among all participants	

3 15. 4 15. 5 16. 6 16. 7 16. 8 17. 9 17. 10 19. 11 20. 12 20. 13 22. 14 23.	ean .39 .50 .19 .83 .98 .97 .79 .02 .16 .77	SD 1.24 1.16 1.17 2.07 1.75 2.11 1.78 2.63 3.04	Median 15.20 15.50 15.95 16.50 16.70 17.50 18.50	IQR 1.50 1.10 1.20 1.95 2.00 1.61 2.08 3.45
4 15. 5 16. 6 16. 7 16. 8 17. 9 17. 10 19. 11 20. 12 20. 13 22. 14 23. 15 24.	.50 .19 .83 .98 .97 .79 .02 .16	1.16 1.17 2.07 1.75 2.11 1.78 2.63	15.50 15.95 16.50 16.70 17.50 17.50 18.50	1.10 1.20 1.95 2.00 1.61 2.08 3.45
5 16. 6 16. 7 16. 7 16. 8 17. 9 17. 10 19. 11 20. 12 20. 13 22. 14 23. 15 24.	.19 .83 .98 .97 .79 .02 .16	1.17 2.07 1.75 2.11 1.78 2.63	15.95 16.50 16.70 17.50 17.50 18.50	1.20 1.95 2.00 1.61 2.08 3.45
6 16. 7 16. 8 17. 9 17. 10 19. 11 20. 12 20. 13 22. 14 23. 15 24.	.83 .98 .97 .79 .02 .16	2.07 1.75 2.11 1.78 2.63	16.50 16.70 17.50 17.50 18.50	1.95 2.00 1.61 2.08 3.45
7 16. 8 17. 9 17. 10 19. 11 20. 12 20. 13 22. 14 23. 15 24.	.98 .97 .79 .02 .16	1.75 2.11 1.78 2.63	16.70 17.50 17.50 18.50	2.00 1.61 2.08 3.45
8 17. 9 17. 10 19. 11 20. 12 20. 13 22. 14 23. 15 24.	.97 .79 .02 .16	2.11 1.78 2.63	17.50 17.50 18.50	1.61 2.08 3.45
9 17. 10 19. 11 20. 12 20. 13 22. 14 23. 15 24.	.79 .02 .16	1.78 2.63	17.50 18.50	2.08 3.45
10 19. 11 20. 12 20. 13 22. 14 23. 15 24.	.02 .16	2.63	18.50	3.45
11 20. 12 20. 13 22. 14 23. 15 24.	.16			
12 20. 13 22. 14 23. 15 24.		3.04	10.50	
13 22. 14 23. 15 24.	07		19.50	3.93
14 23. 15 24.	.07	2.79	20.50	4.00
15 24.	.91	2.79	22.50	2.60
	.53	3.64	23.00	4.95
16 25.	.66	3.73	23.50	5.23
	.81	4.63	27.20	7.75
= standard deviation; IQR =	= inter-quartile	range		

Table 5 (S) Homogeneous Subsets: BMI: Tukey HSD

1 2 3 4 5 5 132 13.011			N					
414613.038Image: selection of the selection of t	6	5	4	3	2	1	No.	Age (years)
3 102 13.366 13.366 13.366 1 1 1 1 1 7 156 13.537 13.537 1 1 1 1 1 9 72 13.696 13.696 1						13.011	132	5
7 156 13.537 13.537 <						13.038	146	4
9 72 13.696 13.696 1 1 1 1 6 109 13.852 13.852 13.852 13.852 13.852 1 8 65 13.939 13.939 13.939 13.939 1					13.366	13.366	102	3
6 109 13.852 13.939 13.939 13.939 13.939 13.939 14.740 14.740 14.740 14.740 14.740 14.740 14.740 14.740 15.892 12.000 1 13 30 140 15.891 16.824 18.224 1 14 72 140 140 140 18.325 1 15 72 140 140 140 19.094 1 16 9 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140					13.537	13.537	156	7
8 65 13.939 13.939 13.939 13.939 13.939 13.939 14.740 15.481 15.481 15.892 15.892 13.224 13.224 13.224 13.224 14.740 <t< td=""><td></td><td></td><td></td><td></td><td>13.696</td><td>13.696</td><td>72</td><td>9</td></t<>					13.696	13.696	72	9
10 220 14.740 14.740 14.740 14.740 14.740 14.740 11 182 1 15.481 15.481 15.481 1 1 12 77 1 1 1 15.892 1 1 13 30 1 1 1 18.224 1 1 14 72 1 1 1 1 18.325 1 1 15 72 1				13.852	13.852	13.852	109	6
11 182 12 15.481 15.481 15.481 15.481 15.481 12 77 10 10 15.892 10 1 13 30 10 10 18.224 18.224 18.325 18.325 18.325 18.325 18.325 19.094 19.094 19.094 1 <				13.939	13.939	13.939	65	8
12 77 10 15.892 1 13 30 1 18.224 18.325 14 72 1 18.325 18.325 15 72 1 19.094 2			14.740	14.740	14.740		220	10
13 30			15.481	15.481	0,		182	11
14 72 18.325 15 72 19.094 2 16 9 0.836 0.232 0.059 0.529 0.892 1			15.892				77	12
15 72 19.094 16 9 2 Sig. 0.836 0.232 0.059 0.529 0.892 1		18.224		0			30	13
16 9 Image: Constraint of the second se		18.325		1.			72	14
Sig. 0.836 0.232 0.059 0.529 0.892 1		19.094		6			72	15
	21.380		4				9	16
Means for groups in homogeneous subsets are displayed.	1.000	0.892	0.529	0.059	0.232	0.836		Sig.
BMI = Body Mass Index								

Table 6 (S)	
Homogeneous Subsets: MUAC: Tukey HSD (Table No. 4)	

Age	No.	Subset for alpha = 0.05								
(years)	NO.	1	2	3	4	5	6	7	8	9
3	102	15.385								
4	146	15.500	15.500							
5	132	16.194	16.194							
6	109	16.826	16.826	16.826						
7	156	C	16.979	16.979						
9	72		X	17.794	17.794					
8	65			17.972	17.972					
10	220				19.015	19.015				
11	182				\mathbf{h}	20.161	20.161			
12	77				0.		20.871			
13	30							22.907		
14	72					20		23.532	23.532	
15	72								24.658	24.658
16	9									25.81 ⁻
Sig.		0.102	0.08	0.421	0.314	0.423	0.961	0.987	0.452	0.412
/leans for (/IUAC = M					e display	ved.				

Table 7 (S) Association among the cases between BMI (Z-Score) internally and by gender

Internel DMI (7 Secre)		Ger	Total	
Internal BMI (Z-Score)		Female	Male	Total
> + 2 (Ohaaa)	No.	5	16	21
>+3 (Obese)	%	1.2%	1.6%	1.5%
> 12 to 112 (Overweight)	No.	11	25	36
>+2 to <+3 (Overweight)	%	2.6%	2.5%	2.5%
	No.	47	89	136
>+1 to <+2 (Pre-obese)	%	11.1%	8.7%	9.4%
	No.	109	282	391
0 to +1 ^ (Normal)	%	25.7%	27.6%	27.1%
b = 1 to 0.4 (Normal)	No.	209	500	709
>=-1 to 0 ^ (Normal)	%	49.3%	49.0%	49.1%
	No.	39	102	141
>=-2 to <-1 ^ (ROU**)	%	9.2%	10.0%	9.8%
~ -2 to < 2.4 MAM (Thin)	No.	3	2	5
>= -3 to <-2 ^ MAM (Thin)	%	0.7%	0.2%	0.3%
2 2 A SAM (Soverely thin)	No.	1	4	5
<-3 ^ SAM (Severely thin)	%	0.2%	0.4%	0.3%
Total	No.	424	1020	1444
Total	%	100.0%	100.0%	100.0%

BMI = Body Mass Index. ROU= Risk of underweight. MAM= Moderate acute are mainutrition

malnutrition. SAM= Severe acute malnutrition

Table 8 (S) Association among the cases between MUAC (Z-Score) internally and by gender

		Ger	Gender		
Internal MUAC (Z-Score)		Female	Male	Total	
	No.	3	16	19	
>+3 SD (Obese)	%	0.7%	1.6%	1.3%	
2 12 to 12 (Overweight)	No.	17	26	43	
>+2 to <+3 (Overweight)	%	4.0%	2.5%	3.0%	
$\sim 1 t_{0} < 2 (\text{Prophese})$	No.	38	97	135	
>+1 to <+2 (Pre-obese)	%	9.0%	9.5%	9.3%	
0 to 1 A (Normal)	No.	131	287	418	
0 to +1 ^ (Normal)	%	30.9%	28.1%	28.9%	
~ -1 to 0.4 (Normal)	No.	178	463	641	
>=-1 to 0 ^ (Normal)	%	42.0%	45.4%	44.4%	
~ 2 to < 1 (POU)	No.	55	126	181	
>=-2 to <-1 ^ (ROU)	%	13.0%	12.4%	12.5%	
~ -2 to < 2 \land (M \land M)	No.	2	4	6	
>= -3 to <-2 ^ (MAM)	%	0.5%	0.4%	0.4%	
- 3 A (SAM)	No.	0	1	1	
<-3 ^ (SAM)	%	0.0%	0.1%	0.1%	
Total	No.	424	1020	1444	
	%	100.0%	100.0%	100.0%	

MUAC = Mid-upper-arm circumference. ROU= Risk of underweight. MAM= Moderate

acute malnutrition. SAM= Severe acute malnutrition

https://mc.manuscriptcentral.com/bmjpo

BMJ Paediatrics Open

Double burden of malnutrition among Indian school children and its measurement: A cross-sectional study in a single school Short title: Measuring double burden of malnutrition

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2019-000505.R4
Article Type:	Original research
Date Submitted by the Author:	02-Dec-2019
Complete List of Authors:	Daga, Subhashchandra; Pacific Medical College and Hospital, Pediatrics Mhatre, Sameer; Smt Kashibai Navale Medical College and General Hospital, Paediatrics Kasbe, Abhiram ; Topiwala National Medical College DSouza, Eric; MIMER
Keywords:	General Paediatrics, Obesity, School Health, Tropical Paediatrics, Growth
	·

1		
2 3		
4	1	
5		
6		
7	2	Double burden of malnutrition among Indian school shildren and its
8	2	Double burden of malnutrition among Indian school children and its
9		
10	3	measurement: A cross-sectional study in a single school
11	5	medsurement. A cross sectional study in a single school
12		
13 14		
14 15	4	Short title: Measuring double burden of malnutrition
16		
17	5	
18	5	
19		
20	6	Subhashchandra_Daga ^{1*} , Sameer Mhatre ² , Eric Dsouza ³ , Abhiram_Kasbe ⁴
21		Subhashenandra_Daga , Sumeer Windre , Erre Dsouza , Monirani_Rasoe
22		
23 24	7	
24 25		
26		
27	8	¹ Department of Pediatrics, Pacific Medical College and Hospital, Udaipur, India
28		
29	-	
30	9	² Department of Pediatrics, Smt. KashibaiNavle Medical College, Pune, India
31		
32	10	
33	10	³ Department of Pediatrics, MIMER Medical College, Talegaon, India
34 25		
35 36	11	⁴ Department of Pediatrics, Topiwala Medical College, Mumbai, India
37		Department of Fediatrics, Topfwala Medical College, Multioal, India
38		
39	12	
40		
41		
42	13	
43		
44 45		*Corresponding author
45 46	14	*Corresponding author
47		
48	. –	
49	15	E-mail: <u>dagasubhash49@gmail.com</u> (SD)
50		
51	40	T 1 + 01 00(0522250
52	16	Tel: +91-9960522259
53		
54 55	47	
55 56	17	
50 57		
58		1
59		
60		https://mc.manuscriptcentral.com/bmjpo

1 2 3 4 5 6	18	Abstract
7 8	19	Objective
9 10 11	20	This cross-sectional study set in a single school_on the outskirts of a large city_aimed to
12 13	21	document the extent of double burden of malnutrition (coexistence of over- and under-nutrition)
14 15	22	among Indian schoolchildren from lower socioeconomic groups, and to determine if mid-upper
16 17 18	23	arm circumference (MUAC) can be used as a proxy for body mass index (BMI).
19 20 21 22	24	Subjects
23 24	25	The total number of participants was 1,444, comprising 424 girls and 1,020 boys belonging to
25 26 27	26	playgroups and grades 1–7.
28 29 30 31	27	Measurements
32 33 34	28	Anthropometric measurements, such as participants' MUAC, height, and weight were measured
35 36	29	using standard techniques. Descriptive statistics for BMI and MUAC were obtained based on
37 38	30	gender; Z-scores were computed using age-specific and sex-specific WHO reference data. The
39 40 41	31	distribution of variables was calculated for three groups: girls, boys, and all participants.
42 43	32	Homogeneous subsets for BMI and MUAC were identified in the three groups. Age-wise
44 45 46	33	comparisons of BMI and MUAC were conducted for each gender.
47 48 49	34	Main outcome measures
50 51 52	35	1. To know if MUAC and BMI are correlated among boys and girls.
53 54 55 56	36	2. To study BMI and MUAC Z score distribution among the participants.
57 58		2
59 60		https://mc.manuscriptcentral.com/bmjpo

1	
2	
3	
4	
5	
6	
-	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

37	Results
38	MUAC was positively correlated with BMI in both boys and girls. The following BMI Z-score
39	distribution was observed: severe acute malnutrition (SAM), 5(0.3%); moderate acute
40	malnutrition (MAM), 146 (10.1%); undernourished, at risk of MAM/SAM, 141 (9.8%); obese,
41	21 (1.5%); overweight, 36 (2.5%); pre-obese, 136 (9.4%). The distribution of categories of
42	children based on MUAC Z-scores was: SAM, 7(0.5%), MAM, 181 (12.5%), and
43	undernourished at risk of MAM or SAM, 181 (12.5%); obese, 19 (1.3%), overweight, 178
44	(12.3%), pre-obese, 135 (9.3%).
45	Conclusions
46	SAM/MAM/undernourished states and obesity/overweight/pre-obese states, indicating
47	undernutrition more than overweight, coexist among Indian schoolchildren from lower
48	middle/lower socioeconomic categories. BMI and MUAC were significantly correlated. MUAC
49	identifies both under-nutrition and over-nutrition by early detection of aberrant growth.
50	
51	Introduction
52	The double burden of under-nutrition and over-nutrition is an emerging international
53	problem. According to estimates from 129 countries with available data, 57 experience serious
54	problems of both undernourished children and overweight adults [1]. The relationship between
55	under-nutrition and overweight status and obesity is deeper than coexistence. The double burden
56	of malnutrition (DBM) refers to the coexistence of both under-nutrition and over-nutrition within
57	individuals, households, and populations and across the life course. "Across the life course"

BMJ Paediatrics Open

Page 4 of 30

refers to the phenomenon that under-nutrition early in life contributes to an increased propensity for over-nutrition during adulthood [2]. The occurrence of DBM is attributed to a complex interplay of nutritional transitions (shifting from an active to a sedentary lifestyle, demographic transitions, etc.) from high fertility and early deaths to low fertility and aging populations and epidemiological transitions from communicable to non-communicable diseases [2].

Later in the life course, the double burden of disease is characterized by the coexistence of communicable (infectious disease) and non-communicable diseases. Prior to the 1970s, obesity was a relatively rare condition, even in the wealthiest of nations [3], whereas under-nutrition was a major problem, and nutrition supplementation was the main intervention. Thus, obesity is a relatively new problem in need of attention. A systematic review of obesity and socioeconomic status in low and middle income countries concluded that child obesity is more prevalent among affluent groups in such countries [4]. This may be attributed to improved access to surplus/excess food and a higher degree of urbanization and technological progress in these economies that render activities less laborious, resulting in less energy expenditure [5]. Furthermore, childhood obesity is a strong predictor of adult obesity. For instance, a Japanese study revealed that approximately one-third of obese children grew into obese adults [6]. Therefore, early detection of excessive weight gain, and action to prevent its progress, is more likely to succeed than attempting to reverse obesity later.

Body mass index (BMI)-for-age, the internationally recommended measure of obesity,
suggests that Asians are at an increased risk of cardio-metabolic disorders, even at lower BMI
levels, because of a considerably higher body fat percentage [7]. Therefore, the World Health
Organization (WHO) recommends lowering the BMI cut-offs for being considered "overweight"

BMJ Paediatrics Open

among Asian adults [8] in light of the increased health risks. Early detection of overweight statushas become very important in Asia.

The selection of height-based parameters, such as BMI for the detection of overweight/obese children in low-resource settings, has limitations because of the shortage of stadiometers and trained paramedical staff. A simpler proxy for BMI that parallels the use of abdominal girth for detecting visceral obesity needs to be developed [9]. The mid-upper arm circumference (MUAC) appears to be a promising alternative in this regard [10–14]. A recent study from the Netherlands reaffirmed that, compared with BMI, MUAC is a valid measure for detecting overweight/obesity, and thus is a good alternative to BMI [15]. Health workers are familiar with MUAC measurement, as it has been commonly used for identifying severe acute under-nutrition among young (6–60 months of age) children [16].

91 To our knowledge, few studies have focused on the coexistence of under- and over92 nutrition in India. The present study was conducted to document the extent of DBM among
93 Indian schoolchildren, a key group for intervention, using BMI and MUAC distributions. The
94 study also examined whether MUAC can be used as a proxy for BMI, so that MUAC can detect
95 trends toward obesity or severe acute malnutrition (SAM).

Participants and Methods

97 Setting

98 A single school cross-sectional study was conducted with schoolchildren from the
99 outskirts of Pune, India. This study was part of the MIMER medical college and hospital's
100 outreach activities regarding annual school health check-ups. A schedule of class-wise health

BMJ Paediatrics Open

101 check-ups was developed in consultation with the school authorities who, in turn, sought parents'
102 permission. The study had the approval of the ethics committee of MIMER medical college and
103 hospital, Talegaon Dabhade. A majority of the children belonged to lower and lower-middle
104 socioeconomic categories. Children between 3 and 5 years were from a playgroup, and those
105 between 6 and 12 years belonged to grades 1–7.

106 Anthropometric measurements

Anthropometric measurements, such as MUAC, height, and weight, were taken from each participant using standard techniques. Height (cm) was measured on a stadiometer (Easy Care) without shoes. Weight (kg) was measured using a digital weighing machine (Meditrin Instruments) in light clothes and without shoes. MUAC (cm) was measured using a non-elastic plastic tape at the midway between the olecranon and acromion processes on the upper left arm. During these measurements, the participant was in a comfortable standing position and was asked to look straight ahead with his/her shoulders in a neutral position. The participant's arm was straightened, and we ensured that the tape was neither too tight nor too loose.

115 Statistical tools

Open Source Statistical Software PSPP version 1.0.1was used for all analyses, and a pvalue ≤0.05 was considered statistically significant. Mean and standard deviation (SD), median,
inter-quartile range, and Z-scores for BMI and MUAC were computed by sex for participants
with complete measurements. Z-scores were computed using age-specific and sex-specific
reference data from the WHO [17]. The distribution of variables was calculated among all
participants together and separately for boys and girls. Homogeneous subsets for BMI and

2		
3 4	122	MUAC were identified in these three groups. Age-wise comparisons of BMI and MUAC were
5 6 7	123	calculated for both girls and boys.
8 9	124	Patient involvement
10 11 12 13	125	Patients were not directly involved in the design of this study.
14 15 16	126	Results
17 18 19	127	The total number of participants was 1,444, comprising 424 girls and 1,020 boys. The
20 21	128	distribution of Z- scores among all participants is shown in Figures 1 and 2. Age, height, weight,
22 23	129	MUAC, and BMI were all significantly different between girls and boys; boys had higher values
24 25 26	130	for all parameters (Suppl. Files: Tables 1 (S) and 2 (S)). As expected, BMI and MUAC showed
27 28	131	age-wise differences for all participants, combined and separately, for boys and girls, between
29 30	132	the ages of 3 to 16 years (Suppl. Files: Tables 3 (S) and 4 (S). Tukey's honest significant
31 32 33	133	difference (HSD) test for homogeneous subsets revealed a significant shift in mean BMI at 3, 6,
34 35	134	and 10 years (Suppl. Files: Table 5 (S), whereas for MUAC, the shift occurred at 4, 6, and 9
36 37	135	years (Suppl. Files: Table 6 (S)). Thereafter, MUAC changed significantly almost every year
38 39	136	until the age of 16. Thus, in contrast to BMI, MUAC had more age-dependent variability. BMI
40 41 42	137	change with age was minimal in girls (only at age 14) compared to changes in boys at 6, 10,
43 44	138	12, and 14 years. Girls had six homogeneous subsets for MUAC, with the first significant rise at
45 46	139	age 4 years, compared to nine subsets in boys, with the first shift at age 5. Thus, changes in BMI
47 48 49	140	and MUAC were more frequent in boys. MUAC was associated with weight, height, and BMI
50 51 52	141	both in girls and boys (Tables 1 and 2).
53 54 55 56 57	 142	

143 144 Table 1 145 Correlations between anthropometric parameters among girls (N=424) 146

Variables		MUAC	Body weight (kg)	Height (cm)	BMI
MUAC	Pearson Correlation	1	.897(**)	.700(**)	.826(**)
	<i>p</i> -value		7.34E-152	1.21E-63	6.86E-107
Body weight	Pearson Correlation	.897(**)	1	.866(**)	.776(**)
(kg)	<i>p</i> -value	7.34E-152		2.85E-129	1.93E-86
Height (cm)	Pearson Correlation	.700(**)	.866(**)	1	.385(**)
	<i>p</i> -value	1.21E-63	2.85E-129		2.16E-16
BMI	Pearson Correlation	.826(**)	.776(**)	.385(**)	1
	<i>p</i> -value	6.86E-107	1.93E-86	2.16E-16	

- ** Correlation is significant at the 0.01 level (2-tailed).
 - https://mc.manuscriptcentral.com/bmjpo

1 2 3 4 5	155						
6 7 8 9	156 157 158	Table 2Correlations	between anthro	pometric parar	neters among bo	ys (N=1020)	
10 11		Variables		MUAC	Body weight (kg)	Height (cm)	BMI
12 13 14		MUAC	Pearson Correlation	1	.911(**)	.780(**)	.847(**)
15 16			<i>p</i> -value		0.0001	9.60E-210	2.21E-281
17 18		Body weight	Pearson Correlation	.911(**)	1	.886(**)	.861(**)
19 20		(kg)	<i>p</i> -value	0.0001		0.0001	1.25E-301
21 22		Height (cm)	Pearson Correlation	.780(**)	.886(**)	1	.564(**)

** Correlation is significant at the 0.01 level (2-tailed).

9.60E-210

.847(**)

2.21E-281

The distribution of clinical categories of nutritional status with respect to BMI and

0.0001

.861(**)

1.25E-301

.564(**)

1.02E-86

1.02E-86

MUAC is shown in Table 3.

Height (cm)

BMI

p-value

Pearson

p-value

Correlation

Table 3

Distribution of nutrition conditions based on BMI and MUAC Z-scores **

Condition	Based on BMI Z-scores No (%)	Based on MUACZ-scores No (%)
Pre-obese	BMI >1 to 2 SD 136 (9.4%)	MUAC>1to2SD 135 (9.3%)
Overweight	BMI>2 to 3 SD 36 (2.5%)	MUAC>2 to 3SD 43 (3.0%)

Obese	BMI >3SD 21 (1.5%)	MUAC>3SD 19(1.3%)
Possible risk of underweight	BMI <-1 to -2 SD 141 (9.8%)	MUAC \leq -1 to -2SD 181 (12.5%)
Thin	BMI <-2 to -3 SD 5 (0.3%)	MUAC<-2 to -3SD 6 (0.4%)
Severely thin	BMI <-3SD 5 (0.3%)	MUAC<-3 SD 1(0.1%)

**Modified WHO Classification of nutrition conditions based on anthropometry BMI = Body Mass Index; MUAC = Mid-upper-arm circumference

Discussion

The present study suggests that DBM has reached Indian school children of lower middle or lower socioeconomic statuses, which calls for urgent action. Importantly, the present results identify children at the brink of sliding into severe forms of under- and over-nutrition. The present study also suggests using a single and simpler method, MUAC, for detecting both forms of malnutrition by monitoring growth during routine health check-ups.

The World Health Assembly targets were considered in crafting the 2030 development agenda and are referred to in target 2.2 of the Sustainable Development Goals to "end all forms of malnutrition." The reference to "all forms of malnutrition" is important for acknowledging the existence of the double burden of under-nutrition and overweight status. While the drivers of the double burden of malnutrition are varied and often insidious, their effects present a clear case for urgent action and demand an integrated response. Using a single tool for detecting both forms of malnutrition integrates and simplifies the process.

Page 11 of 30

1

BMJ Paediatrics Open

2	
3	
4	
5	
б	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	4
50	1
51	4
52	
53	2
54	
55	,
55 56	4
57	
58	
59	

60

181	To our knowledge, few studies have focused on this aspect of growth among children in
182	India, as well as other emerging economies. The girls were outnumbered by boys (424 vs.
183	1,020). This may be due to the traditional gender norms that push girls into helping with
184	household chores and sibling care, resulting in school dropouts. Based on BMI Z-Scores, 5
185	(0.3%) and 5 (0.3%) belonged to SAM and MAM categories, respectively, and 21(1.5%) and 36
186	(3.9%) children were classified as obese and overweight, respectively. MUAC Z-scores
187	suggested the following distribution: SAM -1(0.1%), MAM-(0.4%), obesity-19 (1.3%),
188	overweight-43 (4.3%). An even greater number of children were leaning toward SAM or MAM
189	as well as obesity or overweight. Children who are not yet at the BMI-for-age threshold for the
190	current definition of SAM or MAM (and childhood obesity or overweight) may be at an
191	increased risk of developing severe forms of under-nutrition or obesity. One of the present
192	study's aims was to identify these target groups so that these children's needs could be
193	addressed.

194 The first target group, undernourished children (BMI or MUACZ-score between -1 and -195 2 SD), is at risk of sliding into MAM or SAM. The second group, pre-obese children (BMI or 196 MUACZ-score between 1 and 2 SD), is at risk of progressing to overweight/obesity. Based on 197 the BMI Z-scores, 181 (12.5%) were undernourished, and 136 (9.4%) were pre-obese. The 198 equivalent numbers for MUAC were 181 (12.5%) for SAM and MAM risk and 135 (9.3%) for 199 obesity, respectively. More children were at risk of severe undernutrition than of overnutrition. 200 These target groups may develop more severe forms of malnutrition if corrective measures are 201 delayed. The first step in that direction is to plan face-to-face counseling sessions with parents 202 and children. School programs are effective at preventing childhood obesity by fostering more 203 physical activities and recommending healthier diets [18]. Counseling for the target groups will

BMJ Paediatrics Open

have to be done, keeping in mind that within low-resource settings, places for play may be
scarce, sports infrastructure may be poor, and recreational centers may be lacking [19].
Similarly, low family income is linked to greater consumption of low-quality nutrition and fast
food [20].

Importantly, MUAC as a single tool can facilitate this cohesive intervention by detecting
both under and over-nutrition during routine growth monitoring without a height-dependent
parameter, such as BMI (Figure1). This is because BMI and MUAC are significantly correlated
with each other. However, monitoring for obesity should begin even earlier, as the most rapid
weight gain occurs between ages 2 and 6 years among obese adolescents [21].

While India's economy has been growing at an impressive rate, the country still has the highest number of stunted children in the world (46.8 million), representing one-third of the global total of stunted children under age 5 [22]. Stunting is associated with being overweight among children in countries that are undergoing a nutritional transition [23]. Economic improvements are accompanied by a conspicuous change in dietary patterns in the form of increased fat intake [5] compounded by exposure to food advertising on television leading to fast food and soft drink consumption and obesity [24]. This, coupled with low physical activity, contributes to an increasing prevalence of obesity among adults, which accompanies the first wave of a cluster of non-communicable diseases, such as hypertension and diabetes mellitus, called "the new world syndrome" [25]. It should be noted, however, that there has not been the same level of agreement on the classification of obesity for children and adolescents as there is for adults [26].

Page 13 of 30

BMJ Paediatrics Open

To summarize, until recently, India has considered under-nutrition to be a major problem, and nutrition supplementation has been the key intervention. At the national level, India is at stage 1 of the obesity transition with wide sub-national variations [27]. Our study may help in the surveillance effort to address underserved populations [27]. With improved availability of food, a double burden of malnutrition is emerging that needs to be concurrently addressed. The present study observed the coexistence of obesity, overweight, pre-obese, and SAM, MAM, and undernourished states among Indian school children in lower-middle and lower socioeconomic levels. Second, the present results revealed a significant correlation between BMI and MUAC. This study provides evidence to suggest that MUAC is a valid, single measurement for identifying this dual problem of aberrant growth and over-nutrition on the one hand and under-nutrition on the other, through extended routine growth monitoring of children. However, more studies are required to establish the validity and reliability of this tool.

1 2								
2 3 4	237	What is known about the subject?						
5 6 7	238	• Emerging economies face a dual problem of under-nutrition and over-nutrition.						
7 8 9	239	• Detecting these problems using height-based parameters is not easy in a low-resource						
10 11	240	setting.						
12 13	241	What this study adds?						
14 15 16	242	This study suggests that MUAC is a simple, valid, and single measure for identifying this dual						
10 17 18	243	problem in a low-resource setting, and undernutrition is a bigger problem than obesity.						
19 20	244							
21 22 23	245	Funding statement: This research received no specific grant from any funding agency in public,						
23 24 25 26 27 28 29	246	commercial, or not-for-profit sectors.						
	247	Declaration of interests: All authors have completed the ICMJE uniform disclosure form and						
29 30 31	248	confirm no support from any organization for the submitted work; no financial relationships with						
32 33	249	any organizations that might have an interest in the submitted work in the previous three years;						
34 35 36	250	no other relationships or activities that could appear to have influenced the submitted work.						
37 38 39	251							
40 41	252	Author contributions						
42 43 44	253	SD-Conceptualization; Data analysis; Manuscript writing.						
45 46	254	SD-Conceptualization; Data analysis; Manuscript writing.SM-Data collection; data analysis; manuscript writing.AK-Data analysis: manuscript writing.						
47 48 49	255	AK-Data analysis; manuscript writing.						
50 51	256	ED-Data collection; manuscript writing.						
52 53 54 55	257							
56 57 58		14						
58 59 60		14 https://mc.manuscriptcentral.com/bmjpo						

2 3 4 5	258	References						
6 7	259	1. Nestle M. Rethinking nutritional policies in developing countries taking into account the						
8 9	260	double burden of malnutrition.2016 Oct 18 [Cited 2016 Oct 18]. In: Ideas4Development Blog						
10 11 12 13	261	[Internet]. Available from: https://ideas4development.org/en/rethinking-nutritional-policies						
14 15	262	2. Shrimpton R, Rokx C. Health, nutrition, and population (HNP) discussion paper: The double						
16 17	263	burden of malnutrition: a review of global evidence. 2012 [cited12 Aug 2002].						
18 19 20	264	[Internet].Washington (DC): The World Bank. Available from:						
20 21 22	265	http://documents.worldbank.org/curated/en/905651468339879888/The-double-burden-of-						
23 24 25	266	malnutrition-a-review-of global evidence						
26 27	267	3. Prentice AM. The double burden of malnutrition in countries passing through the economic						
28 29 30	268	transitionAnn Nutr Metab. 2018; 72(suppl 3):47–54.doi: 10.1159/000487383.						
31 32 33	269	4.Dinsa GD, Goryakin Y, FumagalliE,Suhrcke M. Obesity and socioeconomic status in						
34 35	270	developing countries: a systematic review. Obes Rev. 2012; 13(11):1067–1079. doi:						
36 37 38	271	10.1111/j.1467-789X.2012.01017.						
39 40 41	272	5. Kennedy G, Nantel G, Shetty P. Assessment of the double burden of malnutrition in six case						
42 43	273	study countries. In: The double burden of malnutrition:case studies from six developing						
44 45 46	274	countries.Rome, Italy: Food and Agriculture Organization of the United Nations; 2006.pp. 1–18.						
47 48	275	6. Kotani K, Nishida M, Yamashita S, Funahashi T, Fujioka S, Tokunaga K, et al. Two decades						
49 50 51	276	of annual medical examinations in Japanese obese children: do obese children grow into obese						
52 53 54 55 56	277	adults? Int J ObesRelatMetabDisord.1997;21:912–921.						
57 58 59		15						

278	7. de Wilde JA, vanDommelen P, Middelkoop BJ. Appropriate body mass index cut-offs to					
279	determine thinness, overweight and obesity in South Asian children in the Netherlands.					
280	PLoSOne.2013;8(12):e82822.doi:10.1371/journal.pone.0082822.					
281	8. World Health Organization Expert Consultation. Appropriate body-mass index for Asian					
282	populations and its implications for policy and intervention strategies.Lancet.2004;363:157-					
283	163.doi: 10.1016/S0140-6736(03)15268-3.					
284	9.Liu A, Hills AP, Hu X, Li Y, Du L, Xu Y, et al. Waist circumference cut-off values for the					
285	prediction of cardiovascular risk factors clustering in Chinese school-aged children: a cross-					
286	sectional study. BMC Public Health. 2010;10:82. doi: 10.1186/1471-2458-10-82.					
287	10. Craig E, Bland R, Ndirangu J, Reilly JJ.Use of mid-upper arm circumference for determinin					
288	overweight and overfatness in children and adolescents. Arch Dis Child. 2014;99:763–766. doi:					
289	10.1136/archdischild-2013-305137 763.					
290	11.Chaput JP, Katzmarzyk PT, Barnes JD, Fogelholm M, Hu G, Kuriyan R, et al. Mid-upper arm					
291	circumference as a screening tool for identifying children with obesity: a 12-country					
292	study.PediatrObes. 2017;12(6):439–445. doi: 10.1111/ijpo.12162.					
293	12. Asif M, Aslam M, Altaf S. Mid-upper-arm circumference as a screening measure for					
294	identifying children with elevated body mass index: a study for Pakistan. Korean J					
295	Pediatr.2018;61(1):6–11.doi: 10.3345/kjp.2018.61.1.6.					
296	13. Jaiswal M, Bansal R, Agarwal A. Role of mid-upper arm circumference for determining					
297	overweight and obesity in children and adolescents. J ClinDiagn Res. 2017;11(8):SC05-					
298	SC08.doi: 10.7860/JCDR/2017/27442.10422.					
	16					
	https://mc.manuscriptcentral.com/bmjpo					
	279 280 281 282 283 284 285 286 287 288 289 290 291 292 291 292 293 294 295 294 295 296 297					

Page 17 of 30

BMJ Paediatrics Open

1 2							
3 4	299	14. Lu Q, Wang R, Lou DH, Ma CM, Liu XL, Yin FZ. Mid-upper-arm circumference and arm-					
5 6	300	to-height ratio in evaluation of overweight and obesity in Han					
7 8 9	301	children.PediatrNeonatol.2014;55:14-19.doi: 10.1016/j.pedneo.2013.05.004.					
10 11	302	15. Talma H, van Dommelen P, Schweizer JJ, Bakker B, Kist-van Holthe JE, Chinpaw JMM, et					
12 13	303	al. Is mid-upper arm circumference in Dutch children useful in identifying obesity? Arch Dis					
14 15	304	Child. 2019;104(2):159–165. doi: 10.1136/archdischild-2017-313528.					
16 17	504	Clind. 2017,104(2).137–103. doi: 10.1130/archdischild-2017-313326.					
18 19 20	305	16. Roberfroid D, Hammami N, Lachat C, Weise Prinzo Z, Sibson V, Guesdon B, et al.					
20 21 22	306	Utilization of mid-upper arm circumference versus weight-for-height in nutritional rehabilitation					
23 24	307	programmes: asystematic review of evidence. Geneva, Switzerland: World Health Organization;					
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	308	2013.					
	200	17 WIIO Multisentre Crowth Deference Study Crown WIIO shild growth stondards haved on					
	309	17. WHOMulticentre Growth Reference Study Group. WHO child growth standards based on					
	310	length/height, weight and age. ActaPaediatr. 2006; 450(Suppl.):76-85.					
	311	18. Veugelers PJ, Fitzgerald AL. Effectiveness of school programs in preventing childhood					
	312	obesity: a multilevel comparison.Am J Pub Health. 2005;95(3):432-435. doi:					
	313	10.2105/AJPH.2004.045898.					
41 42 43	314	19. Ludwig J, Sanbonmatsu L, Gennetian L, Adam E, Duncan GJ, Katz LF, et al.					
44	315	Neighborhoods, obesity, and diabetes-a randomized social experiment. N Engl J					
44 45 46 47 48 49 50 51 52	316	Med.2011;365:1509–1519.doi: 10.1056/NEJMsa1103216.					
	317	20. Zenk SN, Powell LM, Rimkus L, Isgor Z, Barker DC, Ohri-Vachaspati P, et al. Relative and					
	318	absolute availability of healthier food and beverage alternatives across communities in the					
54 55 56	319	United States. Am J Public Health.2014;104(11):2170–2178.doi: 10.2105/AJPH.2014.302113.					
57 58		17					
59 60		https://mc.manuscriptcentral.com/bmjpo					

1 2		
3 4	320	21.Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of BMI in
5 6	321	early childhood and risk of sustained obesity. N Engl J Med.2018; 379:1303-1312. doi:
7 8 9	322	10.1056/NEJMoa1803527.
10 11 12	323	22. UNICEF India. Stunting. December 2018. [Internet].New Delhi, India: UNICEF.Available
13 14	324	from: http://unicef.in/Whatwedo/10/Stunting
15 16 17	325	23. Popkin BM, Richards MK, Montiero CA. Stunting is associated with overweight in children
18 19	326	in countries that are undergoing the nutrition transition.JNutr.1996; 126(12):3009-3016.doi:
20 21 22	327	10.1093/jn/126.12.3009.
23 24 25	328	24Andreyeva T, Kelly IR, Harris JL. Exposure to food advertising on television: associations
26 27	329	with children's fast food and soft drink consumption and obesity. Econ Hum Biol.
28 29 30	330	2011;9(3):221-233. doi: 10.1016/j.ehb.2011.02.004. Epub 2011 Mar 5.
31 32 33	331	25. Kolčić I. Double burden of malnutrition: asilent driver of double burden of disease in low-
34 35 36	332	and middle-income countries.J Glob Health. 2012;2(2):020303. doi: 10.7189/jogh.02.020303.
37 38	333	26. ChanRSM, WooJ.Prevention of overweight and obesity: how effective is the current public
39 40	334	health approach.Int J Environ Res Public Health. 2010;7(3):765–783.
41 42 43	335	doi:10.3390/ijerph703076526.
44 45 46	336	27. JaacksLM, Vandevijvere S, Pan A, McGowan CJ, Wallace C, Imamura F, et al. The obesity
47 48	337	transition: stages of the global epidemic. Lancet Diabetes Endocrinol.2019.doi: 10.1016/S2213-
49 50	338	8587(19)30026-9.
51 52 53	339	
54 55	340	
56 57		10
58 59 60		18 https://mc.manuscriptcentral.com/bmjpo
60		

2 3 4 5 6	341 342 343 344	Table 1 Correlations between anthropometric parameters among girls (N=424)								
7 8 9	•••	Variables		MUAC	Body weight (kg)	Height (cm)	BMI			
10 11 12		MUAC	Pearson Correlation	1	.897(**)	.700(**)	.826(**)			
13			p-value		7.34E-152	1.21E-63	6.86E-107			
14 15 16		Body weight	Pearson Correlation	.897(**)	1	.866(**)	.776(**)			
17 18		(kg)	p-value	7.34E-152		2.85E-129	1.93E-86			
19 20		Height (cm)	Pearson Correlation	.700(**)	.866(**)	1	.385(**)			
21 22			p-value	1.21E-63	2.85E-129		2.16E-16			

.826(**)

6.86E-107

.776(**)

1.93E-86

.385(**)

2.16E-16

 BMI

01 level (2-tan. ** Correlation is significant at the 0.01 level (2-tailed).

Pearson

p-value

Correlation

https://mc.manuscriptcentral.com/bmjpo

346	Table 2
347	Correlations between anthropometric parameters among boys (N=1020)
348	

Variables		MUAC	Body weight (kg)	Height (cm)	BMI
MUAC	Pearson Correlation	1	.911(**)	.780(**)	.847(**)
Mone	p-value		0.0001	9.60E-210	2.21E-281
Body weight	Pearson Correlation	.911(**)	1	.886(**)	.861(**)
(kg)	p-value	0.0001		0.0001	1.25E-301
Height (cm)	Pearson Correlation	.780(**)	.886(**)	1	.564(**)
meight (em)	p-value	9.60E-210	0.0001		1.02E-86
BMI	Pearson Correlation	.847(**)	.861(**)	.564(**)	1
	p-value	2.21E-281	1.25E-301	1.02E-86	

** Correlation is significant at the 0.01 level (2-tailed).

Based on MUACZ-scores

No (%)

MUAC>1to2SD

MUAC>2 to 3SD

 $MUAC \leq$ -1 to -2SD

MUAC<-2 to -3SD

135 (9.3%)

43 (3.0%)

19(1.3%)

MUAC>3SD

181 (12.5%)

MUAC<-3 SD

6 (0.4%)

1(0.1%)

1 2 3 4 5 6 7 8 9	350 351 352 353 354 355	Table 3 Distribution of nutrition conditions based on BMI and MUAC Z-scores **
9	355	Distribution of nutrition conditions based on BMI and MUAC Z-scores **
10	356	

No (%)

BMI >1 to 2 SD

BMI>2 to 3 SD

 $BMI \leq -1$ to -2 SD

 $BMI \leq -2$ to -3 SD

136 (9.4%)

36 (2.5%)

BMI >3SD

21 (1.5%)

141 (9.8%)

5 (0.3%)

5 (0.3%)

BMI <-3SD

Based on BMI Z-scores

7	'
8	;
9)
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	5

Condition

Pre-obese

Overweight

Possible risk of

underweight

Severely thin

Obese

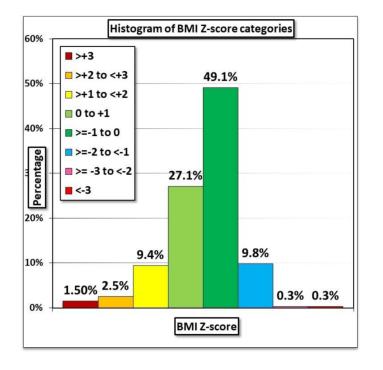
Thin

20
21
22
23
24
25
26
27
28
29
30
31
32
33

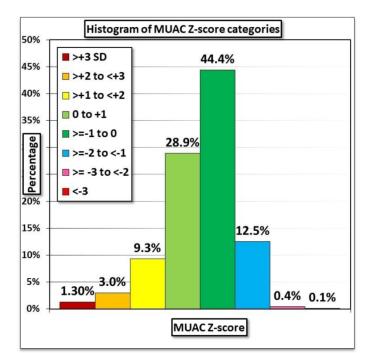
34

35 36

37


357 **Modified WHO Classification of nutrition conditions based on anthropometry

358 BMI = Body Mass Index; MUAC = Mid-upper-arm circumference



https://mc.manuscriptcentral.com/bmjpo

215x279mm (300 x 300 DPI)

215x279mm (300 x 300 DPI)

Table 1 (S) Comparison of variables between girls and boys

< si	Girls (n=424)			Boys (n=1020)				Mann- Whitney Test		
Variables	Mean	SD	Median	IQR	Mean	SD	Median	IQR	Z-value	p-value
Age (years)	7.63	2.82	7.00	5.00	8.80	3.69	9.00	5.00	- 5.162	2.44E- 07 *
Height (cm)	125. 16	16.95	125.0 0	26.00	134.0 6	22.16	133.1 5	34.00	- 6.626	3.44E- 11 *
Body weight (kg)	22.4 8	8.83	20.20	10.40	28.93	14.96	24.20	19.40	- 7.215	5.41E- 13 *
BMI	13.8 4	2.33	13.20	2.14	15.04	3.31	13.98	3.24	- 7.374	1.66E- 13 *
MUAC	17.5 2	2.61	16.85	3.30	18.94	3.83	17.95	5.00	- 6.233	4.59E- 10 *

^ All data failed a" Normality Test," so a Mann-Whitney U Rank Sum Test was applied.

* Difference is statistically significant.

BMI=Body Mass Index; MUAC=Mid-upper-arm circumference

Table2 (S)Distribution of variables among all participants

Variables	Mean SD		Median	IQR	Minimum	Maximum	
Age (years)	8.46	3.50	9.00	6.00	3.00	16.00	
Body weight (kg)	27.04	13.77	23.10	16.20	9.00	97.50	
Height (cm)	131.45	21.16	130.00	32.00	84.00	188.00	
Height (meters)	1.31	0.21	1.30	0.32	0.84	1.88	
BMI	14.69	3.10	13.78	2.89	6.58	36.10	
MUAC	18.53	3.57	17.50	4.30	12.20	35.00	

SD = standard deviation; IQR = inter-quartile range; BMI = Body Mass Index; MUAC =Midupper-arm circumference

Table 3 (S) Age-wise distribution of BMI among all participants

	BMI						
Age (years)	Mean	SD	Median	IQR			
3	13.37	1.34	13.26	1.61			
4	13.04	1.69	13.07	1.46			
5	13.01	1.13	12.80	1.02			
6	13.85 💙	2.09	13.39	1.55			
7	13.54	1.48	13.20	1.90			
8	13.94	2.22	13.37	2.01			
9	13.70	1.73	13.36	1.66			
10	14.74	2.84	13.97	2.77			
11	15.48	3.03	14.89	3.60			
12	15.89	3.01	15.63	3.87			
13	18.22	3.34	17.51	3.30			
14	18.33	3.88	17.28	4.53			
15	19.09	4.32	18.01	6.52			
16	21.38	5.89	23.55	11.09			
) = standard devia	tion; IQR = inter-qua	artile range					

Table 4 (S) Age-wise distribution of MUAC among all participants

	MUAC							
Age (years)	Mean	SD	Median	IQR				
3	15.39	1.24	15.20	1.50				
4	15.50	1.16	15.50	1.10				
5	16.19	1.17	15.95	1.20				
6	16.83	2.07	16.50	1.95				
7	16.98	1.75	16.70	2.00				
8	17.97	2.11	17.50	1.61				
9	17.79 ♀	1.78	17.50	2.08				
10	19.02	2.63	18.50	3.45				
11	20.16	3.04	19.50	3.93 4.00 2.60				
12	20.87	2.79	20.50					
13	22.91	2.79	22.50					
14	23.53	3.64	23.00	4.95				
15	24.66	3.73	23.50	5.23				
16	25.81	4.63	27.20	7.75				
D = standard devia	ntion; IQR = inter-qu	artile range						

https://mc.manuscriptcentral.com/bmjpo

Table 5 (S) Homogeneous Subsets: BMI: Tukey HSD

	Ne	Subset for alpha = 0.05						
Age (years)	No.	1	2	3	4	5	6	
5	132	13.011						
4	146	13.038						
3	102	13.366	13.366					
7	156	13.537	13.537					
9	72	13.696	13.696					
6	109	13.852	13.852	13.852				
8	65	13.939	13.939	13.939				
10	220		14.740	14.740	14.740			
11	182		O	15.481	15.481			
12	77				15.892			
13	30			0		18.224		
14	72					18.325		
15	72					19.094		
16	9				4		21.380	
Sig.		0.836	0.232	0.059	0.529	0.892	1.000	
Means for groups in BMI = Body Mass Ind		eneous si	ubsets are displayed	J.	C	34		

1	
2	
3	
4 5	
6	
7 8	
9	
10	
11 12	
13	
14	
15 16	
17	
18 19	
20	
21	
22 23	
24	
25	
26 27	
28	
29	
30 31	
32	
33 24	
34 35	
36	
37 38	
39	
40	
41 42	
43	
44	
45 46	
47	
48 49	
49 50	
51	
52 53	
54	
55	
56 57	
58	
59	

Table 6 (S) Homogeneous Subsets: MUAC: Tukey HSD (Table No. 4)

Age (years)	Na	Subset for alpha = 0.05								
	No.	1	2	3	4	5	6	7	8	9
3	102	15.385								
4	146	15.500	15.500							
5	132	16.194	16.194							
6	109	16.826	16.826	16.826						
7	156		16.979	16.979						
9	72			17.794	17.794					
8	65			17.972	17.972					
10	220			.	19.015	19.015				
11	182					20.161	20.161			
12	77				0		20.871			
13	30							22.907		
14	72					2		23.532	23.532	
15	72					Č,			24.658	24.65
16	9									25.81
Sig.		0.102	0.08	0.421	0.314	0.423	0.961	0.987	0.452	0.412

Means for groups in homogeneous subsets are displayed. MUAC = Mid-upper-arm circumference