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Fig. S1. PQD growth mechanism on single-layer graphene. 

 

 
 

Fig. S2. XPS core level spectra of pristine PQDs: Br3d (a), Pb4f (b), C1s (c), and N1s (d) spectra of pristine 

PQDs. 



 

 
 
Fig. S3. XPS core level spectra of G-PQDs: Br3d (a), Pb4f (b), C1s (c), and N1s (d) spectra of G-PQDs. 

 

 

 
 

 

 

 

 

 

 

 



 

 

Fig. S4. PQDs grown from graphene surface. (a) Methylammonium Bromide termination (MABr-T)), (b) 

Lead Bromide termination (PbBr-T). (Color codes of spheres: dark gray: Lead; Dark Blue: Bromine; Sky 

Blue: Carbon; purple: Nitrogen; pink: Hydrogen), Photo Credit: Deepak Pandey, UCF and David Fox, UCF. 
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Fig. S5. Graphene FET. (a) Optical images of the pristine graphene device on SiO2/Si substrate before 

growth of the PQDs. (b) Reproducibility:  Device to device variation of G-PQDs superstructure with respect 

to the measured photoresponsivity (R) in A/W. 

 

 



 

 

Fig. S6. Shift of Dirac point due to PQDs grown on graphene. Resistance as function of back gate voltage 

for G-PQDs superstructure before (black) and after PQD growth on graphene in dark conditions (red), at 

illumination (437 nm) of 3.9 μW/cm
2
 (blue) and at illumination (437 nm) of 9.5 μW/cm

2
 (pink).  

 

Section S1. Mobility calculation 

To calculate the mobility of the graphene channel (with and without PQD), total resistance of the device is 

plotted as a function of the back gate voltage (VBG) and the dirac point (Vdirac) has been noted down. Using a 

back gate capacitance (CBG) corresponding to the SiO2 insulating layer and neglecting the quantum 

capacitance of graphene (since it is much larger than the insulator capacitance), the carrier concentration; 

n(VBG) is obtained by the following equation. 

𝑛(𝑉𝐵𝐺) =
𝐶𝐵𝐺

𝑒
|𝑉𝐵𝐺 − 𝑉𝑑𝑖𝑟𝑎𝑐| where, e is the electronic charge. 

In a transistor, where carriers transport can be described by drift-diffusive model
43

, the total resistance is 

described by  

𝑅𝑡𝑜𝑡 =  𝑅𝑐 + 
𝐿

𝑊

1

𝑒𝜇√𝑛0
2 + 𝑛(𝑉𝐵𝐺)2

 

where Rc considers the contact resistance between source/drain, L and W specify the length and width of the 

channel respectively and n0 is the residual carrier concentration and μ is the mobility of the channel. By fitting 

this model to the measured data (Fig. S6), we can extract the mobility along with other parameters like n0 and 

Rc. 

 



 

Photonic Synapses 

 

Fig. S7. Transient photocurrent response. Transient characteristic of the device (VD = 0.5 V, VG = 10 V) 

showing the change in drain current due to a varying the off time (or delay) between two consecutive light 

pulses having pulse width of 5 s. Light intensity and wavelength remain constant at 1.1 μW/cm
2
 and 440 nm 

respectively.  

 

 

 



 

 

Fig. S8. Calculation of PPF from the transient characteristic of the device for two consecutive light 

pulses. 

 

 

Fig. S9. STP to LTP. Transient characteristic of the device (VD = 0.5 V, VG = 10 V) showing the change in 

drain current due to varying number of light pulses (1, 2, 5, 10, 20, 50) having on/off time of 5 s/5 s.  Light 

intensity and wavelength remain constant at 1.1 μW/cm
2
 and 440 nm respectively. The ratio of the final 

current to the initial current tends to increase as number of pulses increases. This clearly depicts the transition 

of the device from short term plasticity to long term plasticity. 

  



 

 

Table S1. Comparison of our work with previously reported works in the literature in terms of energy 

consumption. 

Active layer Spike Wavelength (nm) Energy consumption (nJ) Ref 

2D perovskite/ Graphene 520 0.592 44 

Carbon nanotube/ Graphene 405 and 532 250 45 

C8-BTBT 360 2160 46 

Indium gallium zinc oxide (IGZO)–

aluminum oxide (Al2O3) thin film 

structure 

365 2.4 47 

IGZO thin film 380 3.0 48 

CsPbBr3/PMMA/pentacene  365 76.5 36 

Perovskite quantum dot/ Graphene 430 0.0367 This work 

 

 

 

  



 

Section S2. Pattern recognition 

For pattern recognition, we conducted both facial recognition and number recognition. For facial 

recognition, we used portraits from 4 persons. In order to have testing dataset which has different 

images from the training set, we vary the light intensity and the face angle, which is shown in Fig. 

S10. The input neuron size is 7000, which is equal to the total pixels of one portrait (100×70). The 

output neuron size is 10 in order to have good accuracy. For MNIST dataset, the input neuron size is 

784 (28×28) and the output neuron size is 64. The results of MNIST dataset recognition are shown in 

Fig. S11, which show the synaptic weights of each output neurons and the accuracy is around 44.1% 

after 10 epochs. 

 

Fig. S10. Strategy to get testing dataset, which should be different from the images in the 

training dataset. Photo credit: Sreekanth Varma & Basudev Pradhan. 



 

 

Fig. S11. Synaptic weights of each output neurons from the training of MNIST dataset. 

 

For simulation, we followed the protocols described in
 41

. They were focused on electrical synapses 

while for our photonic synapses, both optical and electrical signals are used to change the 

conductance of the device. The add-on sensors will sense the external environmental signals and then 

transform them to presynaptic spikes. The postsynaptic current is integrated by output neurons. Once 

the summed postsynaptic current is beyond the threshold, the output neuron spikes and this signal 

goes back to the synapse to adjust its property with the input presynaptic spike. Compared to 

electrical synapses, the chip realization of our photonic synapses might need optical/electrical switch 

as well as both optical and electrical spike realizations.  An increase or decrease of the device 

conductance is fitted by 

 

∆𝐺 = 𝑎𝑝 + 𝑏𝑝𝑒
−𝑐𝑝

𝐺−𝐺𝑚𝑖𝑛
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛 

∆𝐺 = 𝑎𝑑 + 𝑏𝑑𝑒
−𝑐𝑑

𝐺𝑚𝑎𝑥−𝐺
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛 

 

However, in real biological system, the weight change of the synapse is also related to the time 

interval between the pre and post synaptic spikes. In our case, we considered the simplified STDP 

learning rule without considering the time interval effect, which makes the neuron circuits much 

easier to develop. 

 



 

 

 

 

 

 

 

 

 

 

Fig. S12. Fitted conductance change with pulse number of synapse. 

 

Neurons are leaky integrate-and-fire types, which integrate postsynaptic currents and spike once the 

currents reach the threshold. The characteristic can be modeled by a simple equation 

 

𝑑𝑉

𝑑𝑡
=

𝐼𝑝𝑜𝑠𝑡 − 𝐺𝑉

𝜏
 

 

where 𝜏 is a time constant, V is the state variable (voltage) of the neuron and Ipost is the summed post 

synaptic current which goes into the output neuron. In addition, to mimic the homeostasis inside of 

biological system, the following equation is included in the simulation for output neurons 

 

𝑑𝑉𝑡ℎ

𝑑𝑡
= 𝛾(𝐴 − 𝑇) 

 

where A is the mean firing rate of a neuron, T is the target firing rate and 𝛾 is a constant. The role of 

homeostasis is to adjust the thresholds of neurons. The meaning of the homeostasis is to adjust the 

thresholds of neurons. If the mean fire rate of the neuron is above the target, the threshold of this 

neuron will increase. This is to make sure all the output neurons are used and make each one 

specialized for the stimuli. 
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We performed unsupervised machine learning by simulation, of which the label work is done after 

training. After training/learning, we labeled each output neuron with its corresponding figure. Then 

when testing, we input different dataset from the training dataset and check the accuracy of the 

output with the labeling. 

 

Table S2. Fitting parameters for potentiation and depression. 

 a b c Gmax (uS)   Gmin (uS) 

Potentiation -28.98866 87.6852 1.03342 288 0.01 

Depression 17.05051 -1.04423 -2.70541 288 0.01 
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