Supplemental Material

Ticagrelor Enhances Release of Anti-Hypoxic Cardiac Progenitor Cell-Derived Exosomes Through Increasing Cell Proliferation In Vitro

Valentina Casieri MSc¹, Marco Matteucci PhD¹, Emilio M. Pasanisi MD², Angela Papa Msc², Lucio Barile PhD^{3,4}, Regina Fritsche-Danielson PhD⁵, Vincenzo Lionetti MD, PhD^{1,2*} ¹Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; ²Fondazione Toscana G. Monasterio, Pisa, Italy; ³Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland; ⁴Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900 Lugano, Switzerland; ⁵Research and early clinical development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.

Supplemental figure legends

Supplemental Figure 1. Surface marker expression profile in cardiac progenitor cells isolated form human auricle analysed by flow cytometry. Cardiac-derived mesenchymal progenitor cells express mesenchymal/stromal markers (CD90, CD73, CD105), but not the common leukocyte antigen CD45. CD117 is almost absent.

Supplemental Figure 2. Western blot representative image of P2Y₁₂ (52KDa MW) expression in human cardiac progenitor cells (hCPCs) and human vascular smooth muscle cells (VSMCs) in presence of normal protein loading as shown by glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 37KDa MW) bands.

Supplemental Figure 3. Long-term treatment for 72h of human cardiac progenitor cells (hCPCs) with increasing dose of ticagrelor (Tic) does not alter intracellular expression of heat shock protein (HSP)-70. Representative images of cropped densitometric bands of proteins HSP70 are showed in panel A and full-length Western blots are showed in panel B. Levels of HSP70 are normalized on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) levels and values are expressed as arbitrary units (a.u.). The full-length blots/gels of HSP70 and GAPDH proteins are shown in panel B. All measurements are mean ± SD.

Supplemental Figure 4. Representative images of dynamic light scatter analyses of particle size and concentrations in each experimental condition by NanoSight Technology.

Supplemental Figure 5. Western blots assay of hCPCs-derived exosomes. Panel A and B show the full-length Western blots corresponding to cropped blots in the main text.

Supplemental Figure 6. Western blots assay of explant-derived hCPCs. It is shown the full-length Western blots corresponding to cropped blots in the main text.

Supplemental Figure 7. Western blots assay of explant-derived hCPCs (A) and hCPCs-derived exosomes (B). Panel A and B show the full-length Western blots corresponding to cropped blots in the main text.

Supplemental Figure 8. Western blots assay of HL1 cardiomyocytes. Panel A and B show the full-length Western blots corresponding to cropped blots in the main text.

Supplemental Figure 9. Western blots assay of explant-derived hCPCs (A) and hCPCs-derived exosomes (B). Panel A and B show the full-length Western blots corresponding to cropped blots in the main text. Panel A and B show the full-length Western blots corresponding to cropped blots in the main text.

Supplemental Figure 10. Western blots assay of HL1 cardiomyocytes. Panel A and B show the full-length Western blots corresponding to cropped blots in the main text.

Supplemental Figure 1.

Supplemental Figure 2

Supplemental Figure 3.

Supplemental Figure 4.

Supplemental Figure 5.

V= Vehicle T1= TICAGRELOR 1μM T10= TICAGRELOR 10μM A= ADENOSINE 10μM AT1= ADENOSINE 10μM+Ticagrelor 1μM AT10 = ADENOSINE 10μM+Ticagrelor 10μM

Supplemental Figure 6.

В

V= Vehicle T1= TICAGRELOR 1µM T10= TICAGRELOR 10µM A = ADENOSINE 10µM+Ticagrelor 1µM AT1= ADENOSINE 10µM+Ticagrelor 10µM

Supplemental Figure 7

V= Vehicle T= TICAGRELOR 1μM S= SNS314-mesylate 10μM ST= SNS314-mesylate 10μM+ TICAGRELOR 1μM

Supplemental Figure 8.

А

V= Vehicle eV5= exo-VEHICLE 5 MINUTES eT5 = exo-TICAGRELOR 1 μ M 5 MINUTES

V= Vehicle eV $^{30}=$ exo-VEHICLE 30 MINUTES eT $^{30}=$ exo-TICAGRELOR 1 μM 30 MINUTES

V= Vehicle eV⁵= exo-VEHICLE 5 MINUTES eA⁵= exo-ADENOSINE 10 μ M 5 MINUTES eAT⁵ = exo-ADENOSINE 10 μ M+TICAGRELOR 1 μ M 5 MINUTES

V= Vehicle e^{V3B} exx-VEHICLE 30 MINUTES $e^{A^{3D}}$ exx-ADENOSINE 10 μ M 30 MINUTES e^{AT3D} exx-ADENOSINE 10 μ M+TICAGRELOR 1 μ M 30 MINUTES

Supplemental Figure 9

Supplemental Figure 10.

V= Vehicle eV= exo-VEHICLE eCLO= exo-20xo-CLOPIDOGREL 3.75µM Vh= VEHICLE HYPOXIA eVh= exo-VEHICLE HYPOXIA eCLOh= exo-20x0-CLOPIDOGREL 3.75µM HYPOXIA eA= exo-ADENOSINE 10µM eACLO= exo-ADENOSINE 10µM+20x0-CLOPIDOGREL 3.75µM eAh= exo-ADENOSINE 10µMH20x0-CLOPIDOGREL 3.75µM HYPOXIA eACLOh= exo-ADENOSINE 10µM+20x0-CLOPIDOGREL 3.75µM HYPOXIA