Supplemental Material

Redox requirements for ubiquitin-like urmylation of Ahp1, a 2-Cys peroxiredoxin from

yeast

Cindy Brachmann^{a,§}, Lars Kaduhr^{a,§}, André Jüdes^{a,§}, Keerthiraju Ethiraju Ravichandran^{b,c},

James D. West^d, Sebastian Glatt^b and Raffael Schaffrath^{a,*}

^a Universität Kassel, Institut für Biologie, Fachgebiet Mikrobiologie, Heinrich-Plett-Str. 40, 34132 Kassel, Germany

^b Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland

^c Postgraduate School of Molecular Medicine, 02-091Warsaw, Poland

^d Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA

[§] These authors contributed equally to this study

* corresponding author:

Prof. Dr. Raffael Schaffrath Phone: +49-561-804-4175 FAX: +49-561-804-4337 eMail: schaffrath@uni-kassel.de

1) Supplemental Figures

Fig. S1.

Supplemental Fig. S1. TAP-Urm1•Ahp1 conjugation *in vivo*. Shown are EMSAs under reducing (left panels) and non-reducing (right panels) conditions with protein extracts from indicated strains expressing *TAP-URM1* (+) or not (-). NEM-stabilized urmylation was studied with anti-TAP (top panels) diagnostic for free TAP-Urm1 (~37 kDa), urmylated Ahp1 (~55 kDa) and Ahp1 intersubunit disulfide (AID ~100 kDa) forms as well as Urm1-modified forms of c-Myc tagged Ahp1 (~65 kDa) and AIDs (~135 kDa). anti-Cdc19 blots (bottom panels) served as loading control. Reproduced in part from permission by Jüdes *et al.* (2016): *Microb Cell* 3: 554-564 (doi: 10.15698/mic2016.11.539).

Fig. S2.

Supplemental Fig. S2. t-BOOH cytotoxicity assay *in vivo*. Using ten-fold serial cell dilutions, growth of an *ahp1* Δ yeast strain carrying empty vector (ev), wild-type peroxiredoxin (*AHP1*) gene or indicated Cys substitutions of Ahp1 (C31S; C62S; C120S; C31,62S; C31,120S; C62,120S) was monitored at 30°C in the presence of the denoted t-BOOH doses.

Fig. S3.

Supplemental Fig. S3. Ahp1 urmylation by the human homolog of yeast Urm1, hURM1, requires peroxidatic Cys-62. Shown are EMSA under reducing conditions from indicated strains expressing human HA-tagged hURM1 (+) or not (-). NEM-stabilized HA-hURM1 conjugation was studied by anti-HA blot (top panel) diagnostic for free HA-hURM1 and urmylated Ahp1 (~36 kDa). anti-Ahp1 (middle panel) detects unmodified Ahp1 (~19 kDa) and anti-Cdc19 (bottom panel) served as internal standard.

2) Supplemental Tables

Supplemental Table S1. Yeast strains used in this study.

Strain	Genotype	Source
BY4741	MATa his3 ${}^{\Delta}$ 1 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	Euroscarf
Y01400	BY4741, <i>urm1</i> ∆:: <i>kanMX4</i>	Euroscarf
Y02720	BY4741, ahp1∆::kanMX4	Euroscarf
FEY14	BY4741, urm1∆::kanMX4 AHP1-c-myc::ScHIS3	[20]
FEY16	BY4741, ahp1∆::kanMX4 urm1∆::ScHIS3	[20]
FEY18	BY4741, yap1∆::kanMX4 ahp1∆::SpHIS5	This study
FEY42	BY4741, <i>urm1∆::kanMX4 trx1∆::SpHIS5</i>	This study
FEY43	BY4741, <i>trx2∆::kanMX4 urm1∆::KIURA3</i>	This study
FEY47	BY4741, urm1∆::kanMX4 trx1∆::SpHIS5 trx2∆::KILEU2	This study
RK101	BY4741, <i>urm1</i> ∆:: <i>kanMX4 trr1</i> ∆::SpHIS5	This study
RK53	BY4741, yap1∆::kanMX4 urm1∆::SpHIS5	This study

Supplemental Table S2. Primers used in this study.

Primer	Sequence (5'-3')	Application
AHP1_C31S_FW	CAGTGAATCTAGTAAGATGCCACAAAC	AHP1 SM *
AHP1_C31S_RV	GTTTGTGGCATCTTACTAGATTCACTG	AHP1 SM
AHP1_C62S_FW	CTTTCTCCCCAACCAGTACTGTCAGCCATATTC	AHP1 SM
AHP1_C62S_RV	GAATATGGCTGACAGTACTGGTTGGGGAGAAA	AHP1 SM
AHP1_C120S_FW	CGACCCAGGCAGTGCTTTCACCAAATC	AHP1 SM
AHP1_C120S_RV	GATTTGGTGAAAGCACTGCCTGGGTCG	AHP1 SM
AHP1_F58A_FW	CCGGTGCTCCAGCTGCTGCTTCCCCAACCTGTACTG	AHP1 SM
AHP1_F58A_RV	CAGTACAGGTTGGGGAAGCAGCAGCTGGAGCACCGG	AHP1 SM
AHP1_F95A_FW	GTTACTGTTGACAACCCGGCTGCTAACCAAGCGTGGGC	AHP1 SM
AHP1_F95A_RV	GCCCACGCTTGGTTAGCAGCCGGGTTGTCAACAGTAAC	AHP1 SM
AHP1_K32R_FW	CAGTGAATCTTGTAGGATGCCACAAAC	AHP1 SM
AHP1_K32R_RV	GTTTGTGGCATCCTACAAGATTCACTG	AHP1 SM
AHP1_K156R_FW	CTTACGCTGCCAGGGAAACCAACC	AHP1 SM
AHP1_K156R_RV	GGTTGGTTTCCCTGGCAGCGTAAG	AHP1 SM
AHP1_FW_HindIII	GGGAAGCTTCCTTGGCCTCGATCTATTGC	Sequencing
AHP1_RV_EcoRI	GGGGAATTCCTGCTCCAACTCACTCTGTC	Sequencing
KO_URM1_FW	CAATACTGATTTCTGATACTAAAACGAGATAGGTTAATAGCA	URM1 KO **
	AAATCGGGCAGCTGAAGCTTCGTACGC	
KO_URM1_RV	CTTTATATATATATATGTAGCTGCTTCTTAAAAATTATTTGCT	URM1 KO
	GCTATTTGCATAGGCCACTAGTGGATCTG	
AHP1KOF	ATTTCAACAAACCAGAACAACACAAGTACTACCAATAACCAC	AHP1 KO
	AACAAAACCAGCTGAAGCTTCGTACGC	
AHP1KOR	TTTTGAATTTTTTTTTATATAAACATGGTTTTATTGTCTATTACA	AHP1 KO
	TAGCATGCATAGGCCACTAGTGGATCTG	
KO_TRX1_FW	CCCTGAAACTGCATTAGTGTAATAGAAGACTAGACACCTCG	TRX1 KO
	ATACAAATACAGCTGAAGCTTCGTACGC	
KO_TRX1_RV	TATATAACAAACACAGTATAGAAACACAATATATCGGTCATT	TRX1 KO
	GGGTGAGTGCATAGGCCACTAGTGGATCTG	
KO_IRX2_FW	CACGCACACATACACGAGAGICTACGATATCTTTAAATAACA	TRX2 KO
KO_IRX2_RV		TRX2 KO
		7004140
KO_IRR1_FW		IRR1 KO
KU_IKK1_KV		IRR1 KU
	AATTGATGGATAGGGGAGTAGTGGATGTG	

* SM: site-directed mutagenesis ** KO: gene knock-out generation

Plasmid	Description	Reference
pRS426	2µ ori, ScURA3	[81]
YCplac33	ARS1-CEN4, ScURA3	[80]
YCplac111	ARS1-CEN4, ScLEU2	[80]
pHA-URM1	HA-URM1 cloned into pRS426 _{Smal}	[17]
pCB45	PGAL1-TAP-URM1 cloned into YCplac33 _{HindIII/Sall}	[20]
pAJ46	PADH1-(HA)3-hURM1-TCYC1 cloned into	[20]
	YCplac33 _{Hindlll/Sall}	
pAJ31	AHP1 cloned into YCplac111 _{HindIII/EcoRI}	This study
pAJ33	C31S in pAJ31 by SM	This study
pAJ35	K32R in pAJ31 by SM	This study
pAJ39	C62S in pAJ31 by SM	This study
pAJ55	K156R in pAJ31 by SM	This study
pAJ57	<i>K32,156R</i> in pAJ31 by SM	This study
pAJ67	C31,62S in pAJ31 by SM	This study
pLK1	C120S in pAJ31 by SM	This study
pLK2	C31, 120S in pAJ33 by SM	This study
pLK3	<i>C62,120</i> S in pAJ39 by SM	This study
pLK90	C62S in pAJ35 by SM	This study
pLK91	C62S in pAJ55 by SM	This study
pLK92	C31S in pAJ55 by SM	This study
pLK93	C62S in pAJ57 by SM	This study
pCiB40	F58A in pAJ31 by SM	This study
pCiB19	F95A in pAJ31 by SM	This study
pCiB39	<i>F58,95A</i> in pCiB19 by SM	This study
pMT173	ScUrm1-COSH in Intein system	[29]

Supplemental Table S3. Plasmids used in this study.

3) Supplemental References

- [17] K. Furukawa, N. Mizushima, T. Noda, and Y. Ohsumi, A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes, J Biol Chem 275 (2000) 7462-7465.
- [20] A. Jüdes, F. Ebert, C. Bar, K.L. Thuring, A. Harrer, R. Klassen, M. Helm, M.J. Stark, and R. Schaffrath, Urmylation and tRNA thiolation functions of ubiquitin-like Uba4.Urm1 systems are conserved from yeast to man, FEBS Lett 589 (2015) 904-909.
- [29] M. Termathe and S.A. Leidel, The Uba4 domain interplay is mediated via a thioester that is critical for tRNA thiolation through Urm1 thiocarboxylation, Nucleic Acids Res 46 (2018) 5171-5181.
- [80] R.D. Gietz and A. Sugino, New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites, Gene 74 (1988) 527-534.
- [81] T.W. Christianson, R.S. Sikorski, M. Dante, J.H. Shero, and P. Hieter, Multifunctional yeast high-copy-number shuttle vectors, Gene 110 (1992) 119-122.