Supporting information for

ORIGINAL ARTICLE

Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for

PD-L1 attenuation and enhanced antitumor immunity

Huan Deng^{a,†,} Songwei Tan^{a,†}, Xueqin Gao^a, Chenming Zou^a, Chenfeng Xu^a, Kun Tu^a, Qingle Song^a, Fengjuan Fan^b, Wei Huang^c, Zhiping Zhang^{a,d,e,*}

^aSchool of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

^bInstitute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

^cDepartment of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

^dNational Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China

^eHubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China

[†]These authors made equal contributions to this work.

*Corresponding author.

E-mail address: zhipingzhang@hust.edu.cn (Zhiping Zhang)

Target locus	Sequence	Primer F	Primer R
sgCdk5-1	CAGGCTGGAT	TCTGAAGACCCTA	GCCTCTAACATCC
	GATGACGATG	CTTGCAGTCCCA	CAATACCAGCCC
sgCdk5-2	GTGTGCCAAG	GCCTTTGCCCTGA	AGGCAAGTAGTCC
	TTCAGCCCTC	GAACTTACCCTT	TTGGTAGGCAGA
sgCdk5-3	CCGGGAAACT	CCTTAGCAATCTC	TTAGCCACATCTC
	CATGAGATTG	TGTGGACCAGCC	CAAGTTGGCCTC
sgCdk5-4	GGTCCCTATG	TTGTACTCCCACA	GCCAGGCCAAAAT
	TAGCACGTTG	CATCCCTCCAGT	CAGCCAATTTCA

Table S1 Four potential target sites of *Cdk5* gene in mouse genome and the primers respectively.

Table S2 Primers utilized for qRT-PCR analysis.

Target locus	Primer F	Primer R
Cdk5	ACAGCCGCAACGTGCTACAT AG	CATGTCGATGGACGTGGAG TACA
<i>p35</i>	AAGAACCTATCTGACATGCT GCTAT	ACAAAATTCTCCTGGTTCGC
PD-L1	AGCTACGGTGGTGCGGACTA	GGTGACACTTCTCTTCCCAC TCAC
GAPDH	GAGAGTGTTTCCTCGTCCCG TA	TGAGGTCAATGAAGGGGTC G

Table S3 Stability and zeta potential of aPBAE/Cas9-Cdk5 ((80:1) in 24 h.
--	-----------------

	Diameter (nm)	ζ -potential (mV)
aPBAE/Cas9-Cdk5	246.3±30.1	23.8±2.0
aPBAE/Cas9-Cdk5 (after 24 h)	270.3±88.6	22.4±3.3

1 0	-			
Ratio	PBS	Naked pDNA	aPBAE/Cas9-null	aPBAE/Cas9-Cdk5
CD8 ⁺ to CD4 ⁺	0.82	0.92	0.98	1.55
	0.87	1.20	1.08	2.02
	0.93	1.33	1.23	2.00
	0.92	0.74	0.87	1.65
CD4 ⁺ Foxp3 ⁺	0.6	0.7	0.6	0.1
	0.5	0.6	0.3	0.1
	0.8	0.5	0.6	0.2
	0.6	0.6	0.5	0.2

Table S4 Representative flow cytometry data about $CD8^+$ to $CD4^+$ ratio and percentage of $CD4^+Foxp3^+$ cells.

Table S5 The particle size characterization of aPBAE/Cas9-Cdk5 at different ratios.

No.	Diameter of particle (nm) at different ratio						
	10:1	20:1	40:1	60:1	80:1	100:1	120:1
1	242	288.2	118.8	185.4	138	285	276.3
2	294.4	401.2	232.2	250.6	181.6	301.8	336.5
3	358.1	490.6	246.4	266.7	196.3	319.5	358
4	529.9	599.8	261.4	283.9	212.2	338.3	380.8
5	644.6	683.3	277.4	302.1	259.3	358.2	445.2
6	435.6	480.5	394.4	351.6	313.1	379.3	370.9
Average	417.4	490.6	255.1	273.3	216.7	330.3	361.2

Figure S1 The construction of four potential target sites of *Cdk5* gene sequences into pX330 vector.

A

Figure S2 (A) Synthetic scheme of PBAE copolymer. (B) ¹H NMR spectra of PBAE and aPBAE (solvent: $CDCl_3$).

Figure S3 Scatter plots for the transfection efficiency of aPBAE/pMax-GFP with different weight ratios in B16F10 cells, PEI 25K and HP reagent used as controls.

Figure S4 The transfection efficiency of aPBAE/pMax-GFP with different weight ratios in 4T1 cells, PEI 25K and HP reagent used as controls. The scale bar is 200 µm.

Figure S5 Scatter plots for the transfection efficiency of aPBAE/pMax-GFP with different weight ratios in 4T1 cells, PEI 25K and HP reagent used as controls.

Figure S6 Representative indel mutation sequences after aPBAE/Cas9-Cdk5 treatment *in vitro*.

Figure S7 T7EI assay was performed from the tumor tissues of melanoma bearing mice after aPBAE/Cas9-Cdk5 treatment compared to PBS group *in vivo*.

Figure S8 Survival rate of mice treated with PBS, naked pDNA, aPBAE/Cas9-Cdk5 and anti-PD-L1 antibody, respectively (n=10). Data were expressed as mean \pm SD. *P < 0.05.

Figure S9 CRISPR-Cas9 mediated PD-L1 attenuation suppressed B16F10 tumor growth. (A) Photographs of tumor dissected from C57BL/6 mice treated with PBS, aPBAE/Cas9-Cdk5 or anti-PD-L1 antibody (n=5). (B) Tumor weight of the mice (n=5). (C) Tumor growth curve of the mice after different treatments (n=5). Data were expressed as mean \pm SD. *P<0.05, **P<0.01, ***P<0.005.

Figure S10 H&E staining sections of the B16F10 tumors after treatment. The scale bars are 200 μ m and 100 μ m respectively.

Figure S11 H&E staining sections of the 4T1 tumors after treatment. The scale bars are 200 μ m and 100 μ m, respectively.

Figure S12 Mice body weight after treatment. (A) B16F10 tumor model, C57BL/6 mice (n=6). (B) 4T1 tumor model, BALB/c mice (n=6). Data were expressed as mean ±SD.

Figure S13 Scatter plots of CD4⁺Foxp3⁺ cells in B16F10 tumors after treatment.

Figure S14 Ratios of CD8⁺ T cells to CD4⁺Foxp3⁺ T cells and CD4⁺Foxp3⁻ T cells to CD4⁺Foxp3⁺ T cells in B16F10 tumors (n=6). Data were expressed as mean \pm SD. **P*<0.05, ****P*<0.005

Figure S15 Representative protein expression of IRF2 and IRF2BP2 in (A) melanoma (PBS (G1), naked pDNA (G2), aPBAE/Cas9-null (G3), aPBAE/Cas9-Cdk5 (G4)) and (B) breast cancer models (PBS (G1), naked pDNA (G2), aPBAE/Cas9-Cdk5 (G3), anti-PD-L1 antibody (G4)) after treatments.

Figure S16 Serum chemistry indexes in C57BL/6 mice after treatment. (A) ALT, (B) AST, (C) BUN, (D) Cre and (E) LDH (n=6). Data were expressed as mean ±SD.

Figure S17 H & E staining sections of organs from C57BL/6 mice after treatment. (A) PBS, (B) naked pDNA, (C) aPBAE/Cas9-null and (D) aPBAE/Cas9-Cdk5. The scale bars are 200 μ m.

Appendix S1 Deep sequencing of Cas9-Cdk5 plasmid.

AATGACGATCGCTCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGGTG GGGTGGGGCAGGACAGCAAGGGGGGGGGGGGGGGAGGAAGAGAGAATAGCAGGCA TGCTGGGGAGCGGCCGCAGGAACCCCTAGTGATGGAGTTGGCCACTCCCT CTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGA CCTGCAGGGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT TCACACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCAT TAAGCGCGGCGGGTGTGGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCC TCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGGCTCCCTTTAGGGTTCC GATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATG GTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTT GGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACT CAACTCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGG TCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAA CAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATCTGCTCT GATGCCGCATAGTTAAGCCAGCCCGACACCCGCCAACACCCGCTGACGC

GCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGAC CGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACG CGCGAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATG ATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGGAAATGTGCGC **GGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATG** AGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATG AGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCT TCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGA TCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAA GATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTT TAAAGTTCTGCTATGTGGCGCGGGTATTATCCCGTATTGACGCCGGGCAAGAG CAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCA CCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGC ACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGA AAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGC GCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAAT AGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCC TTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGAA GCCGCGGTATCATTGCAGCACTGGGGGCCAGATGGTAAGCCCTCCCGTATCG TAGTTATCTACACGACGGGGGGGGGGGGCAGTCAGGCAACTATGGATGAACGAAATAGAC AGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACC AAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAA GGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACG TGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATC CCACCCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCT TTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCT TCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCC TACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGAT AAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCG CAGCGGTCGGGCTGAACGGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCG AACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCG CCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGG GTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGT ATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTT CCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTGAGGGCC TATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAG ATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGT GACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTT AAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGG CTTTATATATCTTGTGGAAAGGACGAAACACCGGGTCCCTATGTAGCACGTT

GGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAAC TTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGTTTTAGAGCTAGAAATAG CAAGTTAAAATAAGGCTAGTCCGTTTTTAGCGCGTGCGCCAATTCTGCAGA CAAATGGCTCTAGAGGTACCCGTTACATAACTTACGGTAAATGGCCCGCCT GGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAGTAACGCCAATA GGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCAC TTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCA ATGACGGTAAATGGCCCGCCTGGCATTGTGCCCAGTACATGACCTTATGGG ACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTC CCCCCAATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATGGGGGC GCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCGGCCCTAT CCGTGCCCGGCCGCCGCCGCCGCCGCCGCCCGGCCCGGCTCTGACTG GGTATTAATGTTTAATTACCTGGAGCACCTGCCTGAAATCACTTTTTTCAG GTTGGACCGGTGCCACCATGGACTATAAGGACCACGACGAGACTACAAG GATCATGATATTGATTACAAAGACGATGACGATAAGATGGCCCCAAAGAAG AAGCGGAAGGTCGGTATCCACGGAGTCCCAGCAGCCGACAAGAAGTACAG CGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACC GGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGC GAAACAGCCGAGGCCACCCGGCTGAAGAAGAACCGCCAGAAGAAGAAGAACA CCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAG GGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCG TGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGA GGCCCTGGCCCACATGATCAAGTTCCGGGGGCCACTTCCTGATCGAGGGCGA CCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGC AGACCTACAACCAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTG GACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGCAGACGGCTGGA AAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCGGAA ACCTGATTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCG ACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACCTACGACGAC GACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTT TCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAG AGTGAACACCGAGATCACCAAGGCCCCCTGAGCGCCTCTATGATCAAGA GATACGACGAGCACCACGAGGACCTGACCCTGCTGAAAGCTCTCGTGCGG CAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAGAA CGGCTACGCCGGCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACA

AGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTC GTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACA ACGGCAGCATCCCCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGC GGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGATC GAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGG GGAAACAGCAGATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCAC CCCCTGGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTCCGCCCAGAGCT TCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGAGAAGGTG CTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTG ACCAAAGTGAAATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTGAG CGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCAACCGGA AAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGC TTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTG GGCACATACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGAC AATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGACCCTGACACT GTTTGAGGACAGAGAGAGATGATCGAGGAACGGCTGAAAACCTATGCCCACC TGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGC TGGGGCAGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTC CGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAACAGAA ACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCC AGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCC AATCTGGCCGGCAGCCCGCCATTAAGAAGGGCATCCTGCAGACAGTGAA GGTGGTGGACGAGCTCGTGAAAGTGATGGGCCCGGCACAAGCCCGAGAAC ATCGTGATCGAAATGGCCAGAGAGAGAACCAGACCACCCAGAAGGGACAGA AGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAGCT GGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCCAGCTGCAG AACGAGAAGCTGTACCTGTACTACCTGCAGAATGGGCGGGGATATGTACGTG GACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGTGGACCATATC GTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGAC CAGAAGCGACAAGAACCGGGGGCAAGAGCGACAACGTGCCCTCCGAAGAG GTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCT GATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCC TGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAAACC CGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAACAC TAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCC TGAAGTCCAAGCTGGTGTCCGATTTCCGGAAGGATTTCCAGTTTTACAAAG TGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCC GTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTT CGTGTACGGCGACTACAAGGTGTACGACGTGCGGAAGATGATCGCCAAGA GCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTACAGCAAC ATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGG AAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGGAGATCGTGTGGGA TAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAG TGAATATCGTGAAAAAGACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAG CTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTC TGTGCTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAG AGTGTGAAAGAGCTGCTGGGGGATCACCATCATGGAAAGAAGCAGCTTCGA GAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAA AGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACG GCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGA GAGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGT GGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCGAGT TCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCG CCTACAACAAGCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATC ATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTGCCGCCTTCAAGTAC TTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCT GGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGA TCGACCTGTCTCAGCTGGGAGGCGACAAAAGGCCGGCGGCCACGAAAAA GGCCGGCCAGGCAAAAAAGAAAAGTAAGAATTCCTAGAGCTCGCTGATC AGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTGCCCCCTCCCCC GTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAA AATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGG GTGGGGTGGGGCAGGACAGCAAGGGGGGGGGGGGGGAGGAAGAGAGAATAGCAG GCATGCTGGGGGGGCGGCCGCAGGAACCCTAGTGATGGAGTGGCTCCCCCC TTTTGGGGGGGGGG