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SUMMARY

Condensin is a multi-subunit protein complex regu-
lating chromosome condensation and segregation
during cell division. In Plasmodium spp., the causa-
tive agent of malaria, cell division is atypical and
the role of condensin is unclear. Here we examine
the role of SMC2 and SMC4, the core subunits of
condensin, during endomitosis in schizogony and
endoreduplication in male gametogenesis. During
early schizogony, SMC2/SMC4 localize to a distinct
focus, identified as the centromeres by NDC80 fluo-
rescence and chromatin immunoprecipitation
sequencing (ChIP-seq) analyses, but do not form
condensin I or II complexes. In mature schizonts
and during male gametogenesis, there is a diffuse
SMC2/SMC4 distribution on chromosomes and in
the nucleus, and both condensin I and condensin II
complexes form at these stages. Knockdown of
smc2 and smc4 gene expression reveals essential
roles in parasite proliferation and transmission.
The condensin core subunits (SMC2/SMC4) form
different complexes and may have distinct functions
at various stages of the parasite life cycle.

INTRODUCTION

Cellular proliferation in eukaryotes requires chromosome replica-

tion and segregation, followed by cell division, to ensure that

daughter cells have identical copies of the genome. During clas-

sical open mitosis in many eukaryotes, chromosome condensa-

tion, centrosome migration, and formation of the mitotic spindle

are followed by dissolution of the nuclear envelope (G€uttinger
Cell Re
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et al., 2009). In contrast, in some unicellular organisms such as

the budding yeast Saccharomyces cerevisiae, mitosis is closed:

the nuclear membrane remains intact, and chromosomes are

separated by spindles assembled within the nucleus (Sazer

et al., 2014). The mechanisms and the various regulatory mole-

cules involved in cell division have been well studied in many

eukaryotes. The cell division regulators include cyclins, cyclin-

dependentkinases (CDKs), componentsof theanaphase-promot-

ing complex (APC), and other protein kinases and phosphatases

(Chang et al., 2014; Fisher et al., 2012; Harashima et al., 2013).

An essential component of chromosome dynamics is a family

of structural maintenance of chromosomes proteins, originally

described in budding yeast as stability of minichromosomes

(SMC) proteins, which are implicated in chromosome segrega-

tion and condensation (Hirano, 2016; Uhlmann, 2016). Most eu-

karyotes have at least six genes encoding SMC proteins (each

110–170 kDa, with a central hinge region and N- and C-terminal

globular domains with Walker A andWalker B motifs forming the

ATPase head domain). The six SMCs can be classified as sub-

units of condensin (SMC2 and SMC4, required for chromosomal

condensation), cohesin (SMC1 and SMC3, required for chromo-

somal segregation), and the SMC5-SMC6 complex (involved in

DNA repair and homologous recombination) (Hirano, 2016; Uhl-

mann, 2016).

Higher eukaryotic organisms have two condensin complexes,

condensin I and condensin II, whereas many single-celled or-

ganisms such as yeast have only one condensin complex.

SMC2 and SMC4 form the core structure for both condensin I

and condensin II in higher eukaryotes (Hirano, 2016) and interact

with three additional non-SMC components: one kleisin

(Schleiffer et al., 2003) and two Heat protein subunits (Neuwald

and Hirano, 2000). Kleisin Ig (CAP-H), Heat IA (CAP-D2), and

Heat IB (CAP-G) form the condensin I complex, whereas Kleisin

IIb (CAP-H2), Heat IIA (CAP-D3), and Heat IIB (CAP-G2) form the

condensin II complex (Hirano, 2016; Uhlmann, 2016; Figure 1A).
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Figure 1. Architecture of Condensin (SMC2/SMC4) in Plasmodium berghei

(A) Composition of two conventional condensin complexes (condensin I and condensin II), which are composed of heterodimeric core subunits, SMC2 and

SMC4, along with non-SMC regulatory subunits: Kleisin and a pair of Heat subunits specific for either condensin I or II. CAP-H, CAP-D2, and CAP-G form the

condensin I complex, whereas CAP-H2, CAP-D3, and CAP-G2 form the condensin II complex (modified from Hirano, 2016, and Uhlmann, 2016).

(B) Domain architecture of P. berghei SMC2 and SMC4.

(C) Sequence coverage and amino acid identity of P. berghei SMC2 and SMC4 with H. sapiens, S. cerevisiae, and A. thaliana proteins.

(D) Homology-based predicted three-dimensional structures of P. berghei SMC2 and SMC4 showing coiled backbone extension without the hinge domain but

with ATPase head formation, required for condensin complex.

See also Figure S1.
Electron microscopy and protein-protein interaction studies

have revealed the characteristic architecture and geometry of

condensin complexes (Anderson et al., 2002; Onn et al., 2007).

Condensin plays a vital role in cell division processes such as

chromosomal condensation, correct folding and organization

of chromosomes before anaphase, and proper chromosome

segregation and separation (Hirano, 2016; Kschonsak et al.,

2017; Ono et al., 2013; Rawlings et al., 2011; Uhlmann, 2016).

Both SMC and non-SMC components are necessary for full

function; for example, chromosomal condensation is not

observed in the absence of kleisin, showing its critical role for

complex formation and condensation (Cuylen et al., 2011; Raw-

lings et al., 2011).

Plasmodium, the apicomplexan parasite that causes malaria,

undergoes two types of atypical mitotic division during its life cy-

cle: one in the asexual stages (schizogony in the liver and blood

stageswithin the vertebrate host, and sporogony in themosquito

gut) and the other in male gametogenesis (endoreduplication)

during the sexual stage (Arnot et al., 2011; Sinden, 1991b). Divi-
1884 Cell Reports 30, 1883–1897, February 11, 2020
sion during schizogony/sporogony resembles closed endomi-

tosis with repeated asynchronous nuclear divisions, followed

by a final synchronized set of nuclear division forming a multinu-

cleated syncytium before cytokinesis. An intact nuclear enve-

lope is maintained, wherein the microtubule organizing center

(MTOC), known as the centriolar plaque or spindle pole body

(SPB), is embedded, and rounds of mitosis and nuclear division

proceed without chromosome condensation (Arnot et al., 2011;

Francia and Striepen, 2014; Gerald et al., 2011; Sinden, 1991a,

1991b; Sinden et al., 1976). In male gametogenesis, exposure

of the male gametocyte to the mosquito midgut environment

leads to activation of mitosis, which results in three rounds

of rapid chromosome replication (endoreduplication) within

8–10 min and atypical chromosomal condensation, followed by

nuclear and cell division to produce eight motile male gametes

(exflagellation) (Guttery et al., 2012b; Sinden, 1991b; Sinden

et al., 1976, 2010). During exflagellation, each condensed

haploid nucleus and its associated MTOC, together with a basal

body, axoneme, and flagellum, form the microgamete that
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egresses from the main cellular body (Guttery et al., 2012b; Sin-

den, 1991b; Sinden et al., 1976, 2010).

The atypical cell division and proliferation of malaria parasites

is controlled by, among others, unique and divergent Apicom-

plexa-specific CDKs, aurora-like kinases (ARKs), mitotic protein

phosphatase 1 (PP1), and only four APC components (Guttery

et al., 2014; Roques et al., 2015; Wall et al., 2018; Ward et al.,

2004; Wilkes and Doerig, 2008). However, there are no known

classical group 1 cyclins, polo-like kinases (that are major regu-

lators in mitotic entry), or classical mitotic protein phosphatases

(CDC14 and CDC25) encoded in the genome (Guttery et al.,

2014; Tewari et al., 2010; Ward et al., 2004; Wilkes and Doerig,

2008).

In Plasmodium, the role of condensin during cell division and

general chromosome dynamics is unknown. Here, we investi-

gated the location and function of the core subunits of condensin

(SMC2 and SMC4) during two mitotic division stages in the Plas-

modium life cycle: during schizogony in the host’s blood and dur-

ing male gametogenesis in the mosquito vector. This study was

performed using the rodent malaria model Plasmodium berghei.

For this analysis, we used a combination of cell biology, prote-

omics, transcriptomics, chromatin immunoprecipitation, and

reverse genetics approaches. Spatiotemporal localization using

live cell imaging indicates a dynamic profile for both SMC2 and

SMC4, with either discrete foci during early schizogony or

more diffuse nuclear localization during late schizogony and

male gametogenesis. Genome-wide distribution studies using

chromatin immunoprecipitation sequencing (ChIP-seq) experi-

ments suggested that both components (SMC2/SMC4) are

located at or near the centromeres during early schizogony,

but this strong interaction was not observed during gametogen-

esis. Interestingly, we identified a differential composition of the

condensin complex between the distinct mitotic stages, sug-

gesting divergent mechanisms at the molecular level. Our data

demonstrate that the condensin core subunits (SMC2/SMC4)

have distinct functions at different stages of the parasite life cy-

cle. Functional analyses using a conditional gene knockdown

approach indicate that condensins are required for parasite pro-

liferation and transmission.

RESULTS

Bioinformatic Analysis Shows SMC2/SMC4, the Core
Subunits of Condensin, Are Encoded in the Plasmodium

Genome
To identify condensin in Plasmodium, we screened for the core

subunit genes in the P. berghei genome using PlasmoDB
Figure 2. Temporal Dynamics of Condensin (SMC2 and SMC4) in Tw

Gametogenesis) Undergoing Atypical Mitotic Division

(A–D) Live cell imaging of SMC2GFP and SMC4GFP expressed during schizogon

(C and D). Time points indicate imaging done for the schizont and gametocyte

discrete localization in male gametes. DIC, differential interference contrast; mer

(E and F) Live cell imaging of SMC4GFP and NDC80mCherry localization during

mCherry. Scale bar, 2 mm.

(G and H) Immunofluorescence fixed-cell imaging of SMC4GFP and colocaliza

schizonts, 1003magnification in G; male gametocytes, 633magnification in H). T

See also Figures S2 and S3.
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version 42, revealing both core SMC components of condensin,

SMC2 and SMC4 (Bahl et al., 2002). Domain analysis revealed

a conserved domain architecture for both SMC2 and SMC4

(Figure 1B). A comparative sequence analysis revealed low

sequence similarity and identity (�29%–34%), except for the

SMC4 homolog in Arabidopsis thaliana (65%) (Figure 1C),

although there was similarity in size and overall domain structure

when comparedwith the proteins in the other studied organisms.

We found the P. berghei SMC4 N-terminal ATPase domain

divided in two by a 44 amino acid insertion; a similar pattern

has been observed in other Plasmodium species. Subsequently,

we generated a 3D model of the P. berghei SMC2 and SMC4

ATPase head domains and partial coiled region using homol-

ogy-based 3D structure modeling (Figure 1D). Root-mean-

square deviation (RMSD) analysis of the 10 ns molecular

dynamics (MD) simulation trajectory of the proteins showed a

stable conformation comparable to pre-simulation energy-mini-

mized structures. Radius of gyration analysis also confirmed a

stable conformation for the predicted SMC2 and SMC4 domain

structures during the 10 ns MD simulation (Figure S1). In this

model of the SMC subunits, the N- and C-terminal ATP-binding

cassette (ABC) ATPase head and coiled-coil arms connecting

the hinge domain (Figure 1D) are present, as in other organisms.

It is most likely that the heads of Plasmodium SMC2 and SMC4

undergo ATP-dependent engagement and disengagement, and

they may perform chromosomal functions similar to those in

other eukaryotes (Hirano, 2016).

Condensin Core Subunits Are Expressed at Every
Proliferative Stage of the Parasite Life Cycle and Have a
Centromeric Location during Early Schizogony
To locate the condensin SMC subunits during two proliferative

stages (schizogony and male gametogenesis) of the Plasmo-

dium life cycle, transgenic parasite lines were created to express

GFP-tagged SMC2 and SMC4 using single-crossover homolo-

gous recombination (Figure S2A). Integration PCR and western

blot experiments were used to confirm the successful generation

of transgenic lines (Figures S2B and S2C). We found that SMC2

and SMC4 are expressed during both schizogony and male

gametogenesis. In early schizonts within host red blood cells,

we observed discrete foci in the parasite cell adjacent to the nu-

clear DNA for both SMC2 and SMC4, whereas in mature schiz-

onts, the signal was dispersed throughout the nucleus (Figures

2A and 2B). During male gametogenesis, the proteins were

also dispersed throughout the nucleus (Figures 2C and 2D). To

validate the SMC4 subcellular location, fractionation of cyto-

plasmic and nuclear extracts derived from purified gametocytes
o Distinct Plasmodium Proliferative Stages (Schizogony and Male

y (1003magnification) (A and B) and male gametogenesis (633magnification)

after the start of respective cultures. The white arrows in (C) and (D) indicate

ge shows Hoechst and GFP. Scale bar, 2 mm.

schizogony (E) and male gametogenesis (F). Merge shows Hoechst, GFP, and

tion with antibodies specific for centrin and a-tubulin in mitotic cells (early

he white arrow in (H) indicates an exflagellating male gamete. Scale bar, 2 mm.



revealed the presence of SMC4 in the nucleus (Figure S2D). In

addition, we observed SMC4GFP distributed either as dispersed

in the nucleus or at a discrete focus adjacent to the DNA

throughout the parasite life cycle, including in female gameto-

cytes, in ookinetes, during oocyst development, and in the liver

stages (Figures S3A–S3C), suggesting that condensin core sub-

units are likely involved at all proliferative stages of the parasite

life cycle. To examine whether these foci are centromeric or cen-

trosomal, we used two approaches: we performed a colocaliza-

tion experiment using parasites expressing SMC4GFP crossed

with those expressing NDC80mCherry, a kinetochore/centro-

meric marker protein (Cheeseman, 2014; McKinley and Cheese-

man, 2016; Musacchio and Desai, 2017; Pandey et al., 2019),

and we performed immunofluorescence assays using anti-cen-

trin and anti-a-tubulin, together with anti-GFP antibodies. Live

imaging using the SMC4GFP and NDC80mCherry genetic cross

showed colocalization of SMC4 and NDC80 in early schizonts

and discrete foci of NDC80mCherry alone in gametocytes (Fig-

ures 2E and 2F). A similar pattern was observed in ookinetes

and oocysts, with centromeric colocalization of SMC4 and

NDC80 (Figure S3D). In early schizonts, immunofluorescence

assays with anti-centrin antibodies revealed that SMC4 is

located between centrin and DAPI-stained nuclear DNA, con-

firming the non-centrosomal localization of SMC4 (Figure 2G).

However, partial colocalization was observed with anti-a-tubulin

antibodies in schizonts (Figure 2G) and during male gametogen-

esis (Figure 2H).

To identify the SMC2 and SMC4 DNA binding sites in a

genome-wide manner, we performed ChIP-seq experiments

for the schizont stage (after 8 h in culture) and gametocyte stage

(6 min post-activation) using SMC2GFP- and SMC4GFP-tagged

parasites. A wild-type (WT) strain (WTGFP) was used as a nega-

tive control. Binding of the SMC2 and SMC4 subunits was

restricted to a region close to the previous computationally an-

notated centromeres (centromere locations of P. berghei chro-

mosomes had been predicted using P. falciparum as a reference

and the conservation of genomic sequences among Plasmo-

dium spp.) of all 14 chromosomes at the early schizont stage

(Figure 3A; Iwanaga et al., 2012). At this stage, we observed sig-

nificant ChiP-seq peaks with an average of 14.6- and 12.7-fold

change (FC) compared with background in all pericentromeric

regions for SMC2 and SMC4, respectively. This restriction was

not observed during gametogenesis, which instead had a

random distribution of condensin core subunits. Although non-

significant peaks (less than 1.5 FC) were detected in pericentro-

meric regions for SMC2, an even smaller increase in ChIP-seq

coverage in pericentromeric regions (1.08 FC) observed for

SMC4 lead us to believe that the small peak observed during

gametogenesis for SMC2 could be explained by a weak interac-

tion of SMC2 or residual asexual signal in gametocyte samples.

Identical patterns were obtained between biological replicates

for each condition analyzed, confirming the reproducibility of

the ChIP-seq experiments and suggesting a distinct function

for the core subunits in these two mitotic stages (Figure 3A).

To confirm the location of the kinetochores/centromeres, we

also performed ChIP-seq with activated gametocytes from the

NDC80GFP line (Pandey et al., 2019). Strong ChIP-seq peaks

with an average of 74.8 FC were observed at the centromeres
of all 14 chromosomes with perfect overlap with SMC2/SMC4

signals. These data clearly confirmed that the SMC2/SMC4

location during early schizogony was the centromeric location

of NDC80 (Figure 3A).

The chromosome binding sites detected for NDC80 and for

SMC2 and SMC4 were slightly offset from the locations previ-

ously annotated as centromeres (Iwanaga et al., 2012). However,

the ChIP-seq peaks for all 14 chromosomes were centered on

distinct regions of very low GC content that are not present in

the previously annotated centromeric regions (shown for chro-

mosomes 11 and 14 in Figure 3B). AT-rich troughs have been

associated with centromeres in yeasts (Lynch et al., 2010). The

peaks located within extended intergenic regions indicate the

NDC80/SMC binding sites as experimentally validated centro-

meres for all 14 P. berghei chromosomes (Table S1).

The Full Condensin Complex Is Present during Male
Gametogenesis and in Mature Schizonts, but Ancillary
Proteins Are Absent from Early Schizonts
To examine the colocalization of SMC2 and SMC4 proteins,

we generated transgenic parasite lines expressing either

SMC2mCherry or SMC4GFP and crossed them genetically.

The progeny, expressing both SMC2mCherry and SMC4GFP,

showed colocalization of the two proteins during schizogony

and gametogenesis (Figure 4A) consistent with SMC2 and

SMC4 heterodimer complex formation at both stages.

Next, we directly investigated the interaction between SMC2

and SMC4 and the presence of other potential interacting part-

ner proteins, such as other condensin components (Figure 1A).

We immunoprecipitated SMC2GFP and SMC4GFP from lysates

of cells undergoing asexual endomitotic division at two time

points (early schizogony, following 8 h incubation in schizont cul-

ture medium in vitro, when most parasites are undergoing nu-

clear division and show discrete SMC2/SMC4 foci, and after

24 h incubation in schizont culturemedium, whenmost parasites

are mature schizonts or free merozoites with a dispersed SMC2/

SMC4 location). We also immunoprecipitated the proteins from

parasites undergoing gametogenesis (at 6 min after activation,

when the chromosomes are beginning to condense and cells

are in the last phase before cytokinesis). Immunoprecipitated

proteins were then digested with trypsin, and the resultant pep-

tides were analyzed by liquid chromatography-tandem mass

spectrometry (LC-MS/MS). From all three samples, we recov-

ered peptides from both SMC subunits, confirming SMC2-

SMC4 heterodimer formation during both schizogony and male

gametogenesis (Figure 4B). From early schizonts, only SMC2-

and SMC4-derived peptides were recovered, whereas from

mature schizonts and gametocytes, we detected kleisins and

other components of canonical condensin I and II complexes,

together with the SMC subunits except for CAP-G (Figure 4B;

Table S2). In some early schizont samples, condensin II Heat

subunits (CAP-G2 and CAP-D3) were observed; however, kleisin

was never recovered in five early schizont experimental repli-

cates; therefore, we assume that formation of the complete

condensin II complex does not occur at this stage (Table S2).

All conventional condensin I and II complex subunits were iden-

tified by in silico analysis of the Plasmodium genome; for

example, a BLAST search using fission yeast CAP-G revealed
Cell Reports 30, 1883–1897, February 11, 2020 1887



Figure 3. ChIP-Seq Analysis of SMC2GFP, SMC4GFP, and NDC80 Profiles

(A) Genome-wide ChIP-seq signal tracks for SMC2GFP and SMC4GFP for all 14 chromosomes in schizont and gametocyte stages. The SMC schizont tracks and

the NDC80 track each represent the average of two biological replicates, while the SMC4 gametocyte track represents the average of four biological replicates,

one of which had two technical replicates averaged together. The locations of previously annotated centromeres are indicated by blue circles. SMC2 and SMC4

proteins bind near the putative centromere in each of the 14 chromosomes (distance from centromere is shown in ± kilobases). The centromeric location was

confirmed by genome-wide ChIP-seq signal tracks for NDC80GFP for all 14 chromosomes in the gametocyte stage. The scale for all SMC tracks is between 0 and

20 normalized read counts, while the NDC80 track is between 0 and 150 normalized read counts because of the considerable FC enrichment observed for the

NDC80 ChIP-seq signal.

(B) Zoom-in regions associated with the identified ChIP-seq peak. Low GC content at the centers of peaks shown for chromosome 11 and chromosome 14

suggests association of the proteins with these newly defined centromeres in the schizont stage. Signals are plotted on a normalized read per million (RPM) basis.

See also Table S1.
Plasmodium merozoite organizing protein (MOP) to be Plasmo-

dium CAP-G. This is in agreement with the immunoprecipitation

data in which we detected CAP-H, CAP-D2, and CAP-G (anno-

tated as MOP) from the condensin I complex, and CAP-H2,

CAP-D3, and CAP-G2 from the condensin II complex. The pre-

dicted domain architecture of these subunits from P. berghei is

shown in Figure 4C. We also investigated the expression profile

of condensin complex subunits in schizont and gametocyte
1888 Cell Reports 30, 1883–1897, February 11, 2020
stages of the parasite life cycle. We performed qRT-PCR for all

eight components of the condensin complexes. The results re-

vealed comparatively high expression of all condensin subunits

in gametocytes comparedwith schizonts (Figure 4D). In addition,

levels of non-SMC condensin II components expressed in schiz-

onts were lower than those of non-SMC condensin I compo-

nents, whereas in gametocytes, comparable expression levels

were observed for condensin I and II components except for



Figure 4. Differential Condensin Complex Formation during Schizogony and Male Gametogenesis, and Phylogenetic Analysis of Kleisin

(A) Colocalization of SMC4GFP (green) and SMC2mCherry (red). Merge shows Hoechst, GFP, and mCherry. Scale bar, 2 mm.

(B) Venn diagram displays the unique and shared proteins in the condensin complex of schizonts and gametocytes. Analysis of SMC2GFP and SMC4GFP protein

complexes was done by tryptic digestion and LC-MS/MS following GFP-specific immunoprecipitation from a lysate of schizonts maintained in culture for 8 h and

24 h, and gametocytes were activated for 6min. The representative live cell pictures have been taken from Figure 2. The list of all identified proteins is provided as

Table S2.

(legend continued on next page)
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CAP-G (Figure 4D). In ookinetes, the expression of non-SMC

condensin components was low, except for CAP-H, which

showed a level similar to that of the SMC components (Fig-

ure S4). Chromosome condensation in schizonts has not been

reported, so why all components of both condensin complexes

are present in mature schizonts is unclear. The presence of

both condensin I and condensin II in male gametocytes is

consistent with the potentially atypical chromosomal condensa-

tion that has been previously observed in male gametocytes just

before exflagellation (Sinden, 1991b; Sinden et al., 1976; Sinden

and Hartley, 1985).

In viewof the importance of kleisin to the structure and function

of the condensin complexes, we examined the evolutionary rela-

tionships of kleisin among someapicomplexans andother organ-

isms, including S. cerevisiae, A. thaliana, andHomo sapiens. The

phylogenetic analysis indicated that kleisin is clustered into two

groups, which correspond to components of condensin I and

condensin II (Figures 1Aand4E). Thepresenceof both condensin

I and condensin II component genes only in Plasmodium and

Cryptosporidium shows that the requirement for both condensin

complexes is not a universal feature of Apicomplexa (Figure 4F).

Other apicomplexans, for example, Toxoplasma and Eimeria,

have only condensin I components, similar to yeast homologs.

These data suggest that Plasmodium and Cryptosporidium

possess features of chromosome condensation and segregation

that are distinct from those of other members of the phylum.

Knockdown of Condensin (SMC2 and SMC4) Expression
Affects Parasite Proliferation and Impairs Parasite
Transmission
To examine further the functions of SMC2 and SMC4, we first at-

tempted to delete the two genes. In both cases, we were unable

to produce gene knockout (KO) mutants (Figure S5A). Similar re-

sults have been reported previously from large-scale genetic

screens in P. berghei (Bushell et al., 2017; Schwach et al.,

2015). Altogether, these data indicate that the condensin sub-

units SMC2 and SMC4 are likely essential for asexual blood

stage development (schizogony). To investigate the function of

SMC2 and SMC4 during cell division in male gametogenesis,

we used a promoter trap double homologous recombination

(PTD) approach to downregulate gene expression at this stage

by placing each of the two genes under the control of the

AMA1 promoter (Figure S5B). AMA1 is known to be highly

expressed in asexual blood stages, but not during sexual differ-

entiation. This strategy resulted in the successful generation

of two transgenic parasite lines: Pama1smc2 (SMC2PTD) and

Pama1smc4 (SMC4PTD) (Figure S5C).
(C) Different domain architecture for subunits of condensin I and condensin II co

length in the respective complex subunits.

(D) qRT-PCR analysis of condensin complex subunit expression in schizont and

(E) Maximum likelihood phylogeny based on the alignment of kleisin subunits fro

Babesia bovis, and Eimeria tenella) and other selected organisms. Topological s

selected organisms have been provided in Data S1.

(F) Distribution of condensin components across Apicomplexa and other organism

in each genome. Asterisk represents 4 Plasmodium spp., namely, P. falciparum, P

D. melanogaster.

See also Figure S4, Table S2, and Data S1.
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Because SMC2PTD and SMC4PTD had similar phenotypes,

we performed a global transcriptome analysis only on SMC4PTD

to identify other affected genes and regulators involved in cell di-

vision and proliferation. This analysis of SMC4PTD gametocytes

30 min after activation (when chromosome condensation and

exflagellation are complete) confirmed the nearly complete abla-

tion of smc4 gene expression (Figure 5A). For pairs of the two

biological samples (WTGFP and SMC4PTD), Spearman correla-

tion coefficients of 0.97 and 0.99 respectively, demonstrate the

reproducibility of this experiment (Figure 5B). In addition to

SMC4, expression of a further 104 geneswas significantly down-

regulated, while expression of only 5 genes was significantly up-

regulated (Figure 5C; Table S3). Gene Ontology (GO) enrichment

analysis of the downregulated genes identified several associ-

ated with microtubule and cytoskeletal function (Figure 5D).

The reduced expression levels of 10 of these genes was also

examined by qRT-PCR (Figure 5E). By this method, there was

a statistically significant difference in the level of expression of

9 of these genes when comparing samples from WTGFP and

SMC4PTD (Figure 5E). Of particular interest are AP2-O2 (an

AP2 domain transcription factor) and HMG (putative high-

mobility group protein B3), which act as transcription regulators

in ookinetes; a putative SET domain protein which is known to be

involved in methyl group transfer from S-adenosyl-L-methionine

(AdoMet) to a lysine residue in histones and most likely associ-

ated with transcriptional repression; and finally RCC, a protein

predicted to be involved in chromosome condensation and chro-

mosomal dynamics (Bahl et al., 2002). Other genes that were

significantly downregulated include FRM2, involved in cytoskel-

eton organization; CCRNOT2 and NOT that form the CCR4-NOT

complex, a key regulator of eukaryotic gene expression; and

SEC7, involved in regulation of ARF protein signal transduction.

Other significantly downregulated genes, include AP2 transcrip-

tion factor AP2-Sp; molecular motor kinesin-4, a putative regu-

lator of chromosome condensation (PBANKA_0820800); and

SMC1, amember of the SMC family, are all known to be involved

in either gene expression or chromatid segregation.

Although we were unable to detect any particular impaired

phenotype in the SMC2PTD and SMC4PTD lines at the asexual

blood stage (schizogony), and the parasite formed a similar num-

ber of schizonts and nuclei compared with the WTGFP line

(Figure 6A), we observed an �50% reduction in the number of

exflagellation centers during male gametogenesis (Figure 6B).

Fertilization and zygote formation leading to ookinete conversion

was reduced to 10%–15% compared with the WTGFP line (Fig-

ure 6C). The ookinete motility assay showed normal movement

of SMC4PTD ookinetes compared with WT (Videos S1 and
mplexes. The schematic figure displays the domain composition and protein

gametocyte stages of the parasite life cycle. Error bar, ± SD, n = 3.

m apicomplexan species (Plasmodium spp., Toxoplasma gondii, C. parvum,

upport from bootstrapping is shown at the nodes. The protein sequences for

s. Presence (green circle) or absence (gray circle) of condensin complex genes

. vivax, P. berghei, and P. yoelii; hashmark denotes H. sapiens, A. thaliana, and



Figure 5. Global Transcriptomic Analysis for SMC4PTD in Activated Gametocytes by RNA-Seq

(A) Confirmation of successful depletion of SMC4 transcript in the SMC4PTD line. Tracks shown each represent the average of two biological replicates.

(B) Log-normalized scatterplots demonstrating high correlation between replicates for genome-wide expression. The Spearman correlation was calculated using

read counts normalized by number of mapped reads per million.

(C) MA plot summarizing RNA-seq results. M, log ratio; A, mean average. Every gene is placed according to its log fold expression change in the SMC4PTD line

compared with the WT line (y axis), and average expression level across replicates of both lines (x axis). Red indicates statistical significance of differential

expression at the false-positive threshold of 0.05. 105 genes are downregulated in the SMC4PTD line, and 5 genes are upregulated.

(D) GO enrichment analysis of genes with log10 fold expression change of �0.5 or lower in the SMC4PTD line.

(E) qRT-PCR analysis of selected genes identified as downregulated in (C), comparing transcript levels in WT and SMC4PTD samples. Error bar, ± SEM, n = 3.

Unpaired t test was performed for statistical analysis: *p < 0.05 **p < 0.001, ***p < 0.0001, and ****p < 0.00001. See also Figure S5 and Tables S3 and S4.
S2). In the mosquito gut on 9, 14, and 21 days post-infection, we

detected significantly fewer oocysts in the SMC2PTD and

SMC4PTD lines (Figures 6D and 6E). Furthermore, the oocysts

were considerably smaller compared with those of WTGFP (Fig-

ures 6D and 6F), with unequal distribution and clusters of DNA

in some oocysts at 14 and 21 days post-infection. No sporogony

or endomitosis was observed within oocysts (Figure 6G). We

were also unable to detect sporozoites in the mosquito salivary

glands (Figure 6H); hence, no parasite transmission from in-

fected mosquitoes to mice was observed for either SMC2PTD

or SMC4PTD parasite lines in bite-back experiments (Fig-

ure S5D), indicating that condensins are required for parasite

transmission.

DISCUSSION

Condensins are multi-subunit complexes that are involved in

chromosomal condensation, organization, and segregation

and have been widely studied in many eukaryotes (Hirano,

2016; Uhlmann, 2016). The role of condensins inmany unicellular

protozoans such as Plasmodium remained elusive. Here we
describe the structure, localization, and functional role of the

condensin core subunits (SMC2/SMC4) in the mouse malaria-

causing parasite P. berghei using MD, live cell imaging, ChIP-

seq, protein pull-down, and conditional gene knockdown

approaches. Plasmodium shows atypical features of closed

mitotic division resembling endomitosis during schizogony

(with no observed chromosomal condensation and extensive

asynchronous nuclear division followed by a final round of

synchronous nuclear division before cytokinesis) and endoredu-

plication in male gametogenesis (with rapid chromosome

replication and atypical condensation before nuclear division,

cytokinesis, and exflagellation) (Arnot et al., 2011; Sinden,

1991b). Our previous studies have identified an unusual reper-

toire of proteins involved in the regulation of the parasite cell cy-

cle and cell proliferation: there is no identifiable centrosome, no

obvious complement of cell-cycle cyclins, a small subset of APC

components, a set of divergent and Plasmodium-specific CDKs,

and an absence of polo-like kinases and CDC24 and CDC14

phosphatases compared with most organisms that have been

studied (Arnot et al., 2011; Francia et al., 2016; Guttery et al.,

2012a, 2014; Roques et al., 2015; Tewari et al., 2010).
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Here, using bioinformatics screening, we showed that both

condensin I and condensin II complex subunit components are

encoded in the P. berghei genome, as has been described for

P. falciparum in PlasmoDB (Bahl et al., 2002). The two core sub-

units of condensin, SMC2 and SMC4, have low sequence simi-

larity to the proteins in model organisms but a similar protein

structure as predicted by molecular modeling (Kelley et al.,

2015).

Protein localization studies at different stages of the parasite

life cycle using live cell imaging of SMC2GFP and SMC4GFP

and immunofluorescence show distinct patterns during the

mitotic divisions of early and late schizogony and male gameto-

genesis. Whereas discrete protein foci were detected during

endomitosis in early schizogony, a stage characterized by asyn-

chronous nuclear division, dispersed nuclear localization was

observed during late schizogony and male gametogenesis. By

immunofluorescence, the discrete foci of SMC2/SMC4GFP in

early schizogony were located close to the stained DNA and

close to, but not coincident with, centrin, marking the SPB.

ChIP-seq analyses suggest that in early schizonts, SMC2 and

SMC4 form a complex that binds at or near the centromere of

all 14 chromosomes, a result that is substantiated by the dual-la-

beling and colocalization studies with the kinetochore/centro-

mere marker NDC80. ChIP-seq analysis of NDC80GFP binding

during gametogenesis confirms the centromeric location of

SMC2/SMC4. These results suggest that the SMC2-SMC4 com-

plex alone is restricted to binding centromeric regions in the

highly proliferative early schizont stage, in which it may have a

constrained role in sister chromatid cohesion and segregation

(Iwasaki and Noma, 2016). Genome-wide studies of condensin

distribution in mammalian or yeast cells have shown that the

complex is non-randomly distributed across the chromosomes

and often found at the boundaries of topologically associating

domains (TADs) within chromosome territories, which supports

the proposed role in transcriptional regulation and global chro-

mosomal organization (Kim et al., 2016; Yuen et al., 2017).

Because the Plasmodium genome lacks classical TADs (Ay

et al., 2014; Bunnik et al., 2018, 2019), a restricted distribution

of the condensin complex on the centromere of all 14 chromo-

somes suggests a distinct function.

Although we detected only the SMC2-SMC4 heterodimer in

early schizogony, located within the nucleus at the centromere

and at a discrete focus adjacent to, but distinct from, the SPB,

the protein interaction analysis using SMC2/SMC4GFP showed

that other subunits of the full condensin I and II complexes were
Figure 6. Phenotypic Analysis of Conditional Gene Expression Knock

liferative Stages during the Life Cycle

(A) Average number of nuclei per schizont (mitotic division within red cell). n = 5

(B) Number of exflagellation centers (mitotic division during male gametogenesis)

experiment). Error bar, ± SEM.

(C) Percentage ookinete conversion from zygotes. Minimum of 3 independent ex

(D) Live cell imaging of WTGFP, SMC2PTD, and SMC4PTD oocysts (endomitosis

103 and 633 magnification to illustrate differences in size and frequency. Scale

(E) Number of oocysts at 9, 14, and 21 dpi. n = 3 independent experiments with

(F) Oocyst diameter at 9, 14, and 21 dpi. n = 3 independent experiments. Error b

(G) Number of sporozoites at 14 and 21 dpi in mosquito gut. n = 3 independent

(H) Number of sporozoites at 21 dpi in mosquito salivary gland. Minimum of 3 in

Unpaired t test was performed for statistical analysis: *p < 0.05 **p < 0.01, and *
present during late schizogony and male gametogenesis. It is

thought that in late schizogony, the last set of divisions is syn-

chronous and followed by cytokinesis to produce mature mero-

zoites and that, at this stage, the dispersed distribution of SMC2/

SMC4GFP was observed. A similar dispersed protein pattern in

the nucleus was observed during male gametogenesis, which is

also associated with the presence of condensin complex I and II

proteins preceding exflagellation. No chromosomal condensa-

tion has been reported in mature schizonts, although it has

been observed inmale gametogenesis, as shown by electronmi-

croscopy studies (Sinden, 1991b; Sinden et al., 1976; Sinden

and Hartley, 1985). The presence of both condensin I and con-

densin II complexes in late schizogony suggests that the full

complexes are only involved in the final synchronous cycle of nu-

clear division preceding cytokinesis. Previous studies have re-

ported that non-SMC condensin II subunits are dispensable

during schizogony but non-SMC components of condensin I

complex are not (Bahl et al., 2002; Schwach et al., 2015). One

of the components, CAP-G, also annotated as MOP, has been

demonstrated to be essential for cytokinesis in P. falciparum

asexual blood stages (Absalon et al., 2016). Our bioinformatics

analysis shows that Plasmodium (two hosts, asynchronous cell

division) and Cryptosporidium parvum (single host, with long-

duration dormant phase outside of the host) are the only two api-

complexan parasites that have components of both condensin I

and condensin II complexes encoded in the genome, similar to

what is observed in higher eukaryotes. They also have unusual

modes of cell division compared with apicomplexans such as

Toxoplasma and Babesia, which display symmetrical modes of

division (Francia and Striepen, 2014). Apicomplexan parasites

that encode only a single condensin complex show no chromo-

some condensation. Similarly, other parasites with closed

mitosis and no chromosome condensation, for example, Trypa-

nosoma brucei, encode only the condensin I complex (Hammar-

ton, 2007), whereas in parasites with chromosome condensa-

tion, such as Giardia intestinalis, both condensin I and

condensin II are present. However, Giardia lacks one of the con-

ventional non-SMC Heat subunits (CAP-G and CAP-G2),

whereas CAP-D2 and CAP-D3 are present (T�umová et al.,

2015). Another protist, Tetrahymena thermophila, shows chro-

mosomal condensation, exhibits noncanonical division between

somatic and germline cells, and has an expanded set of conden-

sin I paralogs, with different kleisin components between germ-

line (Cph1 and Cph2) and somatic cells (Cph3, Cph4, and Cph5)

(Howard-Till and Loidl, 2018; Howard-Till et al., 2019).
down in SMC2PTD and SMC4PTD Transgenic Lines at Various Pro-

(minimum 100 cells). Error bar, ± SEM.

per field at 15min post-activation. n = 3 independent experiments (10 fields per

periments (minimum 100 cells). Error bar, ± SEM.

in parasite within mosquito gut) at 9, 14, and 21 days post-infection (dpi), using

bar, 5 mm (633) and 20 mm (103).

a minimum of 5 mosquito guts. Error bar, ± SEM.

ar, ± SEM.

experiments with a minimum of 5 mosquito guts. Error bar, ± SEM.

dependent experiments. Error bar, ± SEM.

**p < 0.001. See also Figure S5, Table S4, and Videos S1 and S2.
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Condensin I and II complexes display distinct localization pat-

terns in various organisms. In the red alga Cyanidioschyzon

merolae (Fujiwara et al., 2013), condensin II has a centromeric

location during metaphase, whereas condensin I distributes

more broadly along the chromosome arms. In higher eukary-

otes, including Drosophila melanogaster (Oliveira et al., 2007),

Caenorhabditis elegans (Collette et al., 2011), and HeLa cells

(Hirota et al., 2004; Ono et al., 2004), condensin I is present in

the cytoplasm and has a chromosomal location after the nuclear

envelope is dissolved in open mitosis. The nuclear localization

of condensin II is observed in interphase, it is stabilized on chro-

matin during prophase, and the complex remains associated

with chromosomes throughout mitosis, at least in HeLa cells.

Budding yeast and fission yeast, which undergo closed mitosis

like Plasmodium, have only a single condensin complex, but

there is a differential pattern of subcellular location in each spe-

cies. In budding yeast, the condensin I complex is located in the

nucleus throughout the cell cycle, a pattern observed for con-

densin II in higher eukaryotes, despite the greater protein

sequence similarities of the yeast complex to higher eukaryote

condensin I (Thadani et al., 2012). In addition, within the nu-

cleus, the condensin location at the kinetochore is cell cycle

dependent (Bachellier-Bassi et al., 2008). In fission yeast, the

single condensin complex is predominantly cytoplasmic during

interphase and nuclear during mitosis, with the location depen-

dent on CDK phosphorylation at Thr19 of SMC4/Cut3 (Sutani

et al., 1999).

The present study shows that the SMC2-SMC4 complex plays

an essential role during schizogony, because we, and those who

performed previous genome-wide functional screens (Bushell

et al., 2017), were unable to disrupt the genes. Our conditional

knockdown using the PTD approach suggests that reduction

of both SMC2 and SMC4 expression affects both male gameto-

genesis and zygote differentiation and causes total impairment

of endomitotic cell division in the oocyst, thereby blocking para-

site transmission.

The partial defect observed in male gamete formation (exfla-

gellation) in the PTD parasite lines may be because of the neces-

sity of condensin complex formation for proper chromosomal

condensation during exflagellation. Transcriptomic analysis of

the SMC4PTD line confirmed the reduced expression of the

smc4 gene and identified dysregulated transcripts that are likely

critical either for gene expression or for chromosomal segrega-

tion and condensation, microtubule assembly, and male game-

tocyte activation. This further demonstrates that SMC2 and

SMC4 complexes are essential for proper chromosome conden-

sation and separation during exflagellation. Among the signifi-

cantly dysregulated genes, deletion of AP2-O2 has been shown

to strongly impair ookinete and oocyst development, leading to

an absence of sporozoite formation and blockage of transmis-

sion (Modrzynska et al., 2017). The SET protein, which is a

post-translational modification protein, is essential for parasite

survival (Schwach et al., 2015). RCC is predicted to be a regu-

lator of chromosome condensation, is essential for parasite sur-

vival, and acts as anchor for both parasite kinase (CDPK7) and

phosphatase (PP1) (Lenne et al., 2018). The phenotype observed

in SMC4PTD parasites may therefore reflect contributions from

all of these differentially regulated genes.
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The reduction in mature ookinete formation in the SMC4PTD

line suggests an important role for condensin during meiosis

as well. During this stage, chromosomal condensation has

been observed (Sinden and Hartley, 1985), and this may be

similar to the situation in Arabidopsis, where condensin is impor-

tant in chromosomal condensation during meiosis (Smith et al.,

2014). A severe defect in number and size of oocyst formation

in the mosquito gut was also observed, and at this stage, multi-

ple rounds of endomitotic division give rise to thousands of

sporozoites. The process requires ten or more rounds of DNA

replication, segregation, andmitotic division to create a syncytial

cell (sporoblast) with thousands of nuclei over several days

(Francia and Striepen, 2014; Gerald et al., 2011). The proper

segregation of nuclei into individual sporoblasts is organized

by putative MTOCs (Roques et al., 2019; Sinden and Strong,

1978). Because condensin has been shown to play an important

role in organizing MTOCs (Kim et al., 2014), it may be that in the

absence of condensin, the endomitotic division is impaired and

no sporozoites are formed. Many mutants reported to cause a

defect in oocyst maturation, such as PbMISFIT, PbCYC3,

PPM5, kinesin-8X, and G actin-sequestering protein (Bushell

et al., 2009; Guttery et al., 2014; Hliscs et al., 2010; Roques

et al., 2015; Zeeshan et al., 2019), did not cause a significant

change in the smc4 expression profile, and there was no signif-

icant change in the expression of these genes in the present

study, suggesting that the SMC4PTD mutant parasite defect in

the oocyst is independent of PbMISFIT, PbCYC3, and PbPPM5

function.

In summary, the present study shows that the condensin core

subunits SMC2 and SMC4 play crucial roles in the atypical

mitosis of the Plasmodium life cycle and may perform distinct

functions during different proliferative stages: specifically, during

early schizogony, the final chromosome segregation in the last

nuclear division during late schizogony, and chromosome

condensation before nuclear division and exflagellation during

male gametogenesis. Their removal or depletion causes

impaired parasite development and blocks transmission. Addi-

tional analyses of the non-SMC components of condensin I

and II will provide further insight into the function of condensin

during Plasmodium cell proliferation.
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ganization of very small chromosomes: study on a single-celled evolutionary

distant eukaryote Giardia intestinalis. Chromosoma 124, 81–94.

Uhlmann, F. (2016). SMC complexes: from DNA to chromosomes. Nat. Rev.

Mol. Cell Biol. 17, 399–412.

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berend-

sen, H.J. (2005). GROMACS: fast, flexible, and free. J. Comput. Chem. 26,

1701–1718.
Wall, R.J., Ferguson, D.J.P., Freville, A., Franke-Fayard, B., Brady, D., Zee-

shan, M., Bottrill, A.R., Wheatley, S., Fry, A.M., Janse, C.J., et al. (2018). Plas-

modium APC3 mediates chromosome condensation and cytokinesis during

atypical mitosis in male gametogenesis. Sci. Rep. 8, 5610.

Ward, P., Equinet, L., Packer, J., and Doerig, C. (2004). Protein kinases of the

human malaria parasite Plasmodium falciparum: the kinome of a divergent

eukaryote. BMC Genomics 5, 79.

Wilkes, J.M., and Doerig, C. (2008). The protein-phosphatome of the human

malaria parasite Plasmodium falciparum. BMC Genomics 9, 412.

Yuen, K.C., Slaughter, B.D., and Gerton, J.L. (2017). Condensin II is anchored

by TFIIIC and H3K4me3 in the mammalian genome and supports the expres-

sion of active dense gene clusters. Sci. Adv. 3, e1700191.

Zeeshan, M., Shilliday, F., Liu, T., Abel, S., Mourier, T., Ferguson, D.J.P., Rea,

E., Stanway, R.R., Roques, M., Williams, D., et al. (2019). Plasmodium kine-

sin-8X associates with mitotic spindles and is essential for oocyst develop-

ment during parasite proliferation and transmission. PLoS Pathog. 15,

e1008048.
Cell Reports 30, 1883–1897, February 11, 2020 1897

http://refhub.elsevier.com/S2211-1247(20)30048-6/sref65
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref65
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref66
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref66
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref66
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref67
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref67
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref67
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref67
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref68
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref68
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref69
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref69
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref69
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref69
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref70
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref70
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref71
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref71
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref71
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref72
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref72
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref72
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref72
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref73
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref73
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref73
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref74
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref74
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref75
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref75
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref75
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref76
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref76
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref76
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref76
http://refhub.elsevier.com/S2211-1247(20)30048-6/sref76


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-centrin monoclonal mouse antibody Milipore 04-1624

anti-GFP polyclonal rabbit antibody Invitrogen A11122
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GFP-Trap�_A Kit Chromotek gtak-20

RNA extraction Kit QIAGEN 74104

NEBNext Ultra Directional RNA Library Prep Kit for Illumina NEB E7420L

QIAGEN MinElute Cleanup Kit QIAGEN 28206

KAPA LTP library preparation kit Roche KK8230

KAPA HiFi HotStart ReadyMix (2X) KAPA KK2601
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Tuck-Ordinary (TO) outbred mice Harlan TO
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Oligonucleotides

NEBNext Multiplex Oligos for Illumina NEB E6609S

Primers used This paper Table S4

Recombinant DNA

p277 plasmid vector Guttery et al., 2014

pBS-DHFR plasmid Tewari et al., 2010

pSS368 vector Sebastian et al., 2012

Software and Algorithms

MEGA version 6 https://www.megasoftware.net/home

ClustalW http://www.clustal.org/clustal2/

GROMACS version 4.6.3 http://www.gromacs.org/

Pymol https://pymol.org/2

Grace https://pkgs.org/download/grace

FastQC version 0.11.7 http://www.bioinformatics.babraham.ac.uk/projects/

Trimmomatic version 0.36 http://www.usadellab.org/cms/?page=trimmomatic

Sickle version 1.33 https://github.com/najoshi/sickle

Plasmodium berghei ANKA genome version 36 https://plasmodb.org/plasmo/

Samtools version 1.7 http://samtools.sourceforge.net/

BedTools version 2.27.1 https://bedtools.readthedocs.io/en/latest/index.html

IGV (Integrative Genomic Viewer) version 2.4.10 http://software.broadinstitute.org/software/igv/home

HISAT2 version 2-2.1.0 https://ccb.jhu.edu/software/hisat2/index.shtml

DESeq2 (R package) version https://bioconductor.org/packages/release/bioc/html/

DESeq2.html

REVIGO http://revigo.irb.hr/

Bowtie2 version 2.3.4.1 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

PicardTools version 2.18.0 https://broadinstitute.github.io/picard/
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Other

Poly(A) mRNA Magnetic Isolation Module NEB E7490L

Protein A agarose/salmon sperm DNA beads EMD Millipore 16-157

Agencourt AMPure XP beads Beckman-Coulter A63881

DNA LoBind tubes, 1.5 mL Eppendorf H179916P

Magna GrIP Rack (8 well) Millipore 20-400

1 mL Syringe Beckton, Dickinson, and Co. 309659

BD PrecisionGlide Needle, 26G x 1/2 Beckton, Dickinson, and Co. 305111

Covaris S220 Ultrasonicator Covaris S220

Nitrocellulose membrane Amersham Biosciences 10600002
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rita Te-

wari (rita.tewari@nottingham.ac.uk). All materials generated in this study will be available from the Lead Contact with a completed

Material Transfer Agreement (MTA).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

P. berghei ANKA line 2.34 (for GFP-tagging) or ANKA line 507cl1 (for gene deletion and promoter swap) parasites were used for trans-

genic line creation as described previously (Wall et al., 2018). All animal work done at the University of Nottingham has passed an

ethical review process and has been approved by the United KingdomHomeOffice. The work was carried out under UKHomeOffice

Project Licenses (40/3344,30/3248 and PDD2D5182). Six to eight-week-old female Tuck-Ordinary (TO) (Harlan) or CD1 outbredmice

(Charles River) were used for all experiments performed in UK.

Infections of mice in Bern (Switzerland) were performed in accordance with the guidelines of the Swiss Tierschutzgesetz (TSchG;

Animal Rights Laws) and approved by the ethical committee of the University of Bern (Permit Number: BE132/16). Female BALB/c

mice (6-8 weeks; Janvier laboratories, France) were used to maintain transfected parasites and for feeding of mosquitoes with

parasites.

Mice were injected via an intraperitoneal or intravenous route. When parasitemia reached 2%–5%, mice were euthanized in a CO2

chamber and parasites isolated following exsanguination. For feeding of mosquitoes, upon reaching a parasitemia of 7%–15%,mice

were anaesthetizedwith a terminal dose of ketamine:xylazine andwhen no longer reacting to touch stimuluswere placed on a cage of

approximately 150 mosquitoes.

METHOD DETAILS

Generation of transgenic parasites
GFP-tagged vectors were designed using the p277 plasmid vector and transfected as described previously (Guttery et al., 2014).

Targeted gene deletion vectors were designed using the pBS-DHFR plasmid (Tewari et al., 2010). Conditional gene knockdown

constructs (SMC2PTD and SMC4PTD) were designed using Pama1 (pSS368) (Sebastian et al., 2012). P. berghei ANKA line 2.34

(for GFP-tagging) or ANKA line 507cl1 (for gene deletion and promoter swap) parasites were transfected by electroporation as

described previously (Wall et al., 2018). Genotypic analysis was performed using diagnostic PCR reaction and western blot. All of

the oligonucleotides used to confirm genetically modified tag and mutant parasite lines can be found in Table S4. For western blot-

ting, purified schizonts were lysed using lysis buffer (10 mM TrisHCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA and 1% NP-40). The lysed

samples were boiled for 10 min at 95�C after adding Laemmli buffer. The samples were centrifuged at maximum speed (13000 g) for

5 min. The samples were electrophoresed on a 4%–12%SDS-polyacrylamide gel. Subsequently, resolved proteins were transferred

to nitrocellulose membrane (Amersham Biosciences). Immunoblotting experiment was performed using the Western Breeze Chem-

iluminescence Anti-Rabbit kit (Invitrogen) and anti-GFP polyclonal antibody (Invitrogen) at a dilution of 1:1250, according to the man-

ufacturer’s instructions.

Phenotypic Analysis and Live Cell Imaging
Phenotypic analyses of the transgenic parasite lines were performed at different points of parasite life cycle as described previously

(Guttery et al., 2014). Briefly, infected blood was used to analyze asexual blood stages and gametocytes. Schizont culture was used

to analyze different stages of asexual development. In vitro cultures were prepared to analyze activated gametocyte, exflagellation,

zygote formation and ookinete development. For in vitro exflagellation studies, gametocyte-infected blood was obtained from the

tails of infected mice using a heparinised pipette tip. Gametocyte activation was performed by mixing 100 ml of ookinete culture me-

dium (RPMI 1640 containing 25 mMHEPES, 20% fetal bovine serum, 10 mM sodium bicarbonate, 50 mMxanthurenic acid at pH 7.6)

with the gametocyte infected blood. Microgametogenesis was monitored at two time points to study mitotic division (6 and 15 min

post activation [mpa]). For mosquito transmission and bite back experiments triplicate sets of 40-50 Anopheles stephensi mosqui-

toes were used. The mosquito guts were analyzed on different days post infection (dpi); 9 dpi, 14 dpi and 21 dpi to check oocyst

development and sporozoite formation. For live cell imaging, parasites were stained with Hoechst 33342 DNA stain before mounting

for fluorescentmicroscopy. For immunofluorescence assay (IFA), thematerial was fixed using 2%and 4%paraformaldehyde (PFA) in

microtubule stabilizing buffer (MTSB:10 mM MES, 150 mM NaCl, 5 mM EGTA, 5 mM MgCl2, 5 mM glucose) for schizonts and ga-

metocytes, respectively. Immunochemistry was performed using primary antibodies; anti-GFP rabbit antibody (Invitrogen) at

1:250 dilution, anti-alpha-tubulin mouse antibody (Sigma-Aldrich) at 1:1000 dilution, and anti-centrin mouse clone 20h5 antibody

(Millipore) at 1:200 dilution. Secondary antibodies were AlexaFluor 568 labeled anti-rabbit (red) and AlexaFluor 488 labeled anti-

mouse (green) (Invitrogen) (1:1000 dilution). The slides were mounted in Vectashield with DAPI (Vector Labs) for fluorescent micro-

scopy. Parasites were visualized on a Zeiss AxioImager M2 microscope fitted with an AxioCam ICc1 digital camera (Carl Zeiss, Inc).

For liver stages, 1 3 105 HeLa cells were seeded in glass-bottomed imaging dishes. HeLa cells were grown in MEM (minimum

essential medium) with Earle’s salts, supplemented with 10% heat inactivated FCS (fetal calf serum), 1% penicillin/streptomycin
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and 1% l-glutamine (PAA Laboratories) in a humid incubator at 37�Cwith 5%CO2. 24 hours after seeding, sporozoites were isolated

from parasite-infected mosquito salivary glands and used to infect seeded HeLa cells. Infected cells were maintained in 5% CO2 at

37�C. To perform live cell imaging, Hoechst 33342 (Molecular Probes) was added (1 mg/ml) and imaging was done at 48 h and 55 h

post-infection using a Leica TCS SP8 confocal microscope with the HC PL APO 633/1.40 oil objective and the Leica Application

Suite X software.

ChIP-seq and global transcriptomic analysis
For the ChIP-seq analysis, libraries were prepared from crosslinked cells (using 1% formaldehyde). The crosslinked parasite pellets

were resuspended in 1mL of nuclear extraction buffer (10 mMHEPES, 10mMKCl, 0.1 mMEDTA, 0.1 mMEGTA, 1 mMDTT, 0.5 mM

AEBSF, 1X protease inhibitor tablet), post 30 min incubation on ice, 0.25% Igepal-CA-630 was added and homogenized by passing

through a 26G x½needle. The nuclear pellet extracted through 5000 rpmcentrifugation, was resuspended in 130 ml of shearing buffer

(0.1% SDS, 1 mM EDTA, 10 mM Tris-HCl pH 7.5, 1X protease inhibitor tablet), and transferred to a 130 ml Covaris sonication micro-

tube. The sample was then sonicated using a Covaris S220 Ultrasonicator for 10 min for schizont samples and 6 min for gametocyte

samples (Duty cycle: 5%, Intensity peak power: 140, Cycles per burst: 200, Bath temperature: 6�C). The sample were transferred to

ChIP dilution buffer (30 mM Tris-HCl pH 8, 3 mM EDTA, 0.1% SDS, 30 mM NaCl, 1.8% Triton X-100, 1X protease inhibitor tablet, 1X

phosphatase inhibitor tablet) and centrifuged for 10 min at 13,000 rpm at 4�C, retaining the supernatant. For each sample, 13 mL of

protein A agarose/salmon sperm DNA beads were washed three times with 500 ml ChIP dilution buffer (without inhibitors) by centri-

fuging for 1 min at 1000 rpm at room temperature, then buffer was removed. For pre-clearing, the diluted chromatin samples were

added to the beads and incubated for 1 hour at 4�C with rotation, then pelleted by centrifugation for 1 min at 1000 rpm. Supernatant

was removed into a LoBind tube carefully so as not to remove any beads and 2 mg of anti-GFP antibody (ab290, anti-rabbit) were

added to the sample and incubated overnight at 4�Cwith rotation. Per sample, 25 ml of protein A agarose/salmon sperm DNA beads

werewashedwith ChIP dilution buffer (no inhibitors), blockedwith 1mg/mLBSA for 1 hour at 4�C, thenwashed threemore timeswith

buffer. 25 ml of washed and blocked beads were added to the sample and incubated for 1 hour at 4�C with continuous mixing to

collect the antibody/protein complex. Beads were pelleted by centrifugation for 1min at 1000 rpm at 4�C. The bead/antibody/protein
complex was then washed with rotation using 1 mL of each buffers twice; low salt immune complex wash buffer (1% SDS, 1% Triton

X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8, 150 mM NaCl), high salt immune complex wash buffer (1% SDS, 1% Triton X-100, 2 mM

EDTA, 20 mM Tris-HCl pH 8, 500 mMNaCl), high salt immune complex wash buffer (1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM

Tris-HCl pH 8, 500 mM NaCl), TE wash buffer (10 mM Tris-HCl pH 8, 1 mM EDTA) and eluted from antibody by adding 250 mL of

freshly prepared elution buffer (1% SDS, 0.1 M sodium bicarbonate). We added 5 M NaCl to the elution and cross-linking was

reversed by heating at 45�C overnight followed by addition of 15 mL of 20 mg/mL RNAase A with 30 min incubation at 37�C. After
this, 10 mL 0.5 M EDTA, 20 mL 1 M Tris-HCl pH 7.5, and 2 mL 20 mg/mL proteinase K were added to the elution and incubated for

2 hours at 45�C. DNA was recovered by phenol/chloroform extraction and ethanol precipitation, using a phenol/chloroform/isoamyl

alcohol (25:24:1) mixture twice and chloroform once, then adding 1/10 volume of 3 M sodium acetate pH 5.2, 2 volumes of 100%

ethanol, and 1/1000 volume of 20 mg/mL glycogen. Precipitation was allowed to occur overnight at �20�C. Samples were centri-

fuged at 13,000 rpm for 30 min at 4�C, then washed with fresh 80% ethanol, and centrifuged again for 15 min with the same settings.

Pellet was air-dried and resuspended in 50 mL nuclease-free water. DNA was purified using Agencourt AMPure XP beads.

For the global transcriptome analysis, total RNA was isolated from parasite pellet using RNA extraction Kit and lyophilized. The

NEB poly(A) mRNA magnetic isolation module (E7490L) was used to isolate mRNA, while the NEBNext Ultra Directional RNA Library

Prep Kit (E7420L) was used to prepare a cDNA library from the isolated mRNA using manufacturer’s instructions.

Libraries were prepared using the KAPA Library Preparation Kit (KAPA Biosystems), andwere amplified for a total of 12 PCR cycles

(15 s at 98�C, 30 s at 55�C, 30 s at 62�C) using the KAPAHiFi HotStart ReadyMix (KAPABiosystems). Libraries were sequenced using

a NextSeq500 DNA sequencer (Illumina), producing paired-end 75-bp reads.

Immunoprecipitation and Mass Spectrometry
Schizonts, following 8 hours and 24 hours respectively in in vitro culture, and male gametocytes 6 min post activation were used to

prepare cell lysates. Purified parasite pellets were crosslinked using formaldehyde (10 min incubation with 1% formaldehyde, fol-

lowed by 5 min incubation in 0.125M glycine solution and 3 washes with phosphate buffered saline (PBS) pH7.5). Immunoprecipi-

tation was performed using crosslinked protein and a GFP-Trap�_A Kit (Chromotek) following the manufacturer’s instructions.

Proteins bound to the GFP-Trap�_A beads were digested using trypsin and the peptides were analyzed by LC-MS/MS. Briefly,

to prepare samples for LC-MS/MS, wash buffer was removed and ammonium bicarbonate (ABC) was added to beads at room tem-

perature. We added 10 mM TCEP (Tris-(2-carboxyethyl) phosphine hydrochloride) and 40 mM 2-chloroacetamide (CAA) and incu-

bation was performed for 5min at 70�C. Samples were digested using 1 mg Trypsin per 100 mg protein at room temperature overnight

followed by 1% TFA addition to bring the pH into the range of 3-4 before mass spectrometry.

Quantitative RT-PCR
RNA was isolated from different parasite life stages, which include asexual stages, purified schizonts, activated and non-activated

gametocytes, ookinetes and sporozoites, using an RNA purification kit (Stratagene). cDNA was prepared using an RNA-to-cDNA kit

(Applied Biosystems). Primers for qRT-PCR were designed using Primer3 (Primer-BLAST, NCBI). Gene expression was quantified
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from 80 ng of total cDNA. qRT-PCR reactions used SYBR green fast master mix (Applied Biosystems) and were analyzed using an

Applied Biosystems 7500 fast machine. Experiments used hsp70 and arginine-tRNA synthetase as reference genes. The primers

used for qRT-PCR can be found in Table S4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatics analysis
Condensin complex protein sequences were retrieved from PlasmoDB (Bahl et al., 2002), EuPathDB (Aurrecoechea et al., 2010) and

from NCBI databases for model organisms (Data S1). An NCBI conserved domain database (CDD) search was used to identify

conserved domains. PHYRE2 (Kelley et al., 2015) was used to generate 3D structure models. GROMACS 4.6.3 (Van Der Spoel

et al., 2005) with CHARMM27 (Sapay and Tieleman, 2011) force field was used to perform molecular dynamics simulation in an

aqueous environment using default parameters. The energy minimization was performed using steepest descent minimization till

maximum force reached below 1000 KJ/mol/nm. Temperature (constant temperature) and pressure (constant pressure) equilibrium

were done for 1 ns, respectively, before performing the 10 ns production simulation. Pymol (https://pymol.org/2/) was used to visu-

alize 3D protein structure and grace software (https://pkgs.org/download/grace) was used to visualize protein stability. ClustalWwas

used to generate multiple sequence alignments of the retrieved sequences (Larkin et al., 2007). ClustalW alignment parameters

included gap opening penalty (GOP) of 10 and gap extension penalty (GOE) of 0.1 for pairwise sequence alignments, and GOP of

10 and GOE of 0.2 for multiple sequence alignments, gap separation distance cut-off value of 4 and the Gonnet algorithm in protein

weight matrix. Other parameters like residue-specific penalty and hydrophobic penalties were ‘‘on’’ whereas end gap separation and

use of negative matrix were set to ‘‘off.’’ The phylogenetic tree was inferred using the neighbor-joining method, computing the evolu-

tionary distance using the Jones Taylor Thornton (JTT) model for amino acid substitution with the Molecular Evolutionary Genetics

Analysis software (MEGA 6.0) (Tamura et al., 2013). Gaps and missing data were treated using a partial deletion method with 95%

site-coverage cut-off. We performed 1000 bootstrap replicates to infer the final phylogenetic tree. For ortholog identification, NCBI

BLAST andOrthoMCL database search (https://orthomcl.org/orthomcl) were performed. We applied presence of conserved domain

or e-value lower than 10�5 for protein annotation.

ChIP-seq and global transcriptomic data analysis
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), was used to analyze raw read quality. Any adaptor se-

quences were removed using Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic). Bases with Phred quality scores

below 25 were trimmed using Sickle (https://github.com/najoshi/sickle). The resulting reads were mapped against the P. berghei

ANKA genome (v36) using Bowtie2 (version 2.3.4.1) for ChIP-seq and HISAT2 (version 2-2.1.0) for transcriptomic analysis using

default parameters. Reads with a mapping quality score of 10 or higher for ChIP-seq and 50 or higher for transcriptomic analysis

were retained using Samtools (http://samtools.sourceforge.net/), and for ChIP-seq, PCR duplicates were removed by PicardTools

MarkDuplicates (Broad Institute). For the transcript analysis, raw read counts were determined for each gene in the P. berghei

genome using BedTools (https://bedtools.readthedocs.io/en/latest/#) to intersect the aligned reads with the genome annotation.

BedTools was used for the ChIP-seq to obtain the read coverage per nucleotide. For the transcriptomic analysis, read counts

were normalized by dividing by the total number of millions of mapped reads for the library. Genome browser tracks were generated

and viewed using the Integrative Genomic Viewer (IGV) (Broad Institute). Proposed centromeric locations were obtained from Iwa-

naga et al. (2012). GC content was calculated using a sliding window of 30 bp across the peak region as described previously (Lynch

et al., 2010). SMC2 gametocyte sample is shown at half height due to higher level of background compared to other samples. Dif-

ferential expression analysis was done in two ways: (1) the use of R package DESeq2 to call up- and downregulated genes, and (2)

manual analysis, in which raw read counts were normalized by library size, and genes above a threshold level of difference in normal-

ized read counts between conditions were called as up- or downregulated. Gene ontology enrichment was done using PlasmoDB

(http://plasmodb.org/plasmo/) with repetitive terms removed by REVIGO (http://revigo.irb.hr/).

Mass spectrometry analysis
Mascot (http://www.matrixscience.com/) and MaxQuant (https://www.maxquant.org/) search engines were used for mass spec-

trometry data analysis. PlasmoDB database was used for protein annotation. Peptide and proteins having minimum threshold of

95% were used for further proteomic analysis.

Statistical analysis of qRT-PCR data
For selected genes identified as downregulated in transcriptomic analysis statistical analysis was performed using Graph Pad Prism

7 software with unpaired t test (*p < 0.05 **p < 0.001, ***p < 0.0001 and ****p < 0.00001) with standard error of the mean (±SEM)

deviation.

For condensin complex subunits quantification during Plasmodium life cycle, statistical analysis was performed using Graph Pad

Prism 7 software with Standard deviation (±SD).
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Statistical analysis of phenotypic data
Statistical analysis was performed using Graph Pad Prism 7 software using an unpaired t test to examine significant differences be-

tween wild-type andmutant strains for phenotypic analyses; average nuclei per schizont, exflagellation centers per field, percentage

ookinete conversion, oocyst number per mosquito gut, oocyst diameter, sporozoite number per mosquito gut and salivary glands

sporozoites (*p < 0.05, **p < 0.01 and ***p < 0.001). All experiments were performed in three independent biological replicates. Stan-

dard error of the mean (±SEM) was applied during phenotypic data analysis.

DATA AND CODE AVAILABILITY

Sequence reads have been deposited in the NCBI Sequence Read Archive with accession number PRJNA542367. Mass spectrom-

etry proteomic data has been deposited to the PRIDE repository with the dataset identifier PXD016833 and the original data is pre-

sented in the excel files in Supplemental Information.
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