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Abstract: Background

Metagenomic sequencing is a well-established tool in the modern biosciences. While it
promises unparalleled insights into the genetic content of the biological samples
studied, conclusions drawn are at risk from biases inherent to the DNA sequencing
methods, including inaccurate abundance estimates as a function of genomic GC
contents.Results

We explored such GC-biases across many commonly used platforms in experiments
sequencing multiple genomes (with mean GC contents ranging from 28.9% to 62.4%)
and metagenomes. GC-bias profiles varied among different library preparation
protocols and sequencing platforms. We found that our workflows employing MiSeq
and NextSeq suffered major GC-biases, with problems becoming increasingly severe
outside the 45-65% GC range, leading to a falsely low coverage in GC-rich and
especially GC-poor sequences, where genomic windows with 30% GC content had
over 10-fold less coverage than windows close to 50% GC content. We also showed
that GC content correlates very tightly with coverage biases. The PacBio and HiSeq
platforms also evidenced similar profiles of GC-biases to each other which were
distinct from those seen in the MiSeq and NextSeq workflows. The Oxford Nanopore
workflow was not afflicted with GC-bias.Conclusions

These findings indicate potential sources of difficulty, arising from GC-biases, in
genome sequencing which could be pre-emptively addressed with methodological
optimisations provided that the GC-biases inherent to the relevant workflow are
understood. Furthermore, it is recommended that a more critical approach is taken in
quantitative abundance estimates in metagenomic studies. In the future, metagenomic
studies should take steps to account for the effects of GC-bias before drawing
conclusions, or they should employ a demonstrably unbiased workflow.
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Response to Reviewers: Reviewer #1
Browne et al present their results when studying GC-biases across several NGS
platforms and for several microbial genomes.
While this is an important topic with applications/consequences in data analysis (e.g.,
assembly), several unclear, convoluted and confusing statements were found or many
necessary information for validation/reproducibility were missing (cf. examples below):
Major issues:
- Methods:
- - "Coverage was assessed in 500 bp wide sliding windows, and the coverage was
normalized by dividing by the average coverage of the 49% GC-genomic windows as
all bacteria sequenced in this work have sufficient numbers of genomic windows with
49% GC content". Please provide references justifying this normalization method.
Response:
A reference to using a windowed approach similar to our approach is now inserted into
the relevant methods section (lines 604 to 605). Also, further analyses justifying the
choice of 500 nt as the window size was inserted into the same methods section (lines
613 to 619) and illustrated in a new supplementary figure (Additional file 14).

- - Why does the relative coverage decreases for high G+C content in half of the
bacteria showed in Fig 2? please provide some explanations/insights.
Response:
We regret this oversight and agree that it is important to discuss this matter. The focus
of this work was assessing the occurrence of GC bias in NGS datasets and our
experiments were not designed to investigate the mechanisms responsible for
introducing bias. Nonetheless, further analyses revealed that the likely cause for this is
that the Illumina MiSeq sequencer yielded lower quality scores for high GC content
reads. This resulted in quality filtering disproportionately filtering out high GC content
reads. Thus we concluded that the source of the bias is largely due to an inability of the
sequencer to call bases with high confidence (i.e. good Phred scores) in clusters with
high GC content. This analysis and the results and conclusion were all added to the
manuscript (lines 251 to 255, 273 to 276, 365 to 386, Additional files 6 + 7).

- - "The relatively small error-bars (standard deviation) seen in Fig. 2 indicate that
relative coverage and local GC-content are tightly correlated." => I do not see how this
statement is true. A small error-bars only indicates that the measurement method is
itself precise, please fully explain what/why this correlation.
Response:
We are sorry for the need to clarify. Because the error bars represent the variability in
the relative coverage of all the different 500 nt windows for each respective 1%-wide
GC-bin, rather than a repeated measure of the same genomic region in different
replicates, we disagree with the reviewer on this point. We have changed the text in
order to make it clearer that the error bars represent the standard deviation of
measurements of coverage among all 500 nt windows at each 1%-wide GC-bin (lines
242 to 244).

- - "Metagenome datasets were retrieved from several sources. Datasets ERR526087
(2 x 100bp) and SRR5035895 (2 x 300 bp) were retrieved with the fastq-dump utility of
the SRA tookit V.2.9.0. The longest reads in these datasets were split in half and
treated as read pairs, and shorter reads were discarded since the read pairs were
concatenated without annotation of the concatenation point. " -> These datasets are
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Illumina Paired-end reads, hence why the need to split them and treat them as paired if
they are paired already ? Also, all reads have same length in each dataset, hence how
authors selected those that are the longest and those that are the shortest, if they all
have same length...
Response:
In the SRA, reads may be stored with the pairs interleaved or concatenated. In the
above-mentioned SRA datasets, the read pairs were concatenated. When the reads
are concatenated, there is no spacer nor filler sequence separating the reads. When
reads are truncated in any way (e.g. when quality trimmed reads are uploaded to the
SRA instead of raw reads) it is impossible to tell where the concatenated read should
be split in order to recover the original R1 and R2 read pairs. Only in the case where
neither of the reads in a pair were trimmed before concatenation is it possible to
retrieve the original read pairs by splitting the paired read in half. For this reason, it is
correct to keep only the full length reads and to then split them in half to retrieve the
original pairs. This problem is described by Robert Edgar in his usearch v11
documentation for the fastq_sra_splitpairs command:
https://www.drive5.com/usearch/manual/cmd_fastq_sra_splitpairs.html
The manuscript was updated in order to make this problem clearer and to make it
absolutely clear that single reads were not simply being split in two and treated as read
pairs (lines 626 to 630).

- - Regarding the DNA extraction of the Fusabacterium sp. C1 isolates, how was it
performed exactly (manual ? automated? kits used?...) ?
Response:
It is clearly stated in the relevant materials and methods section (Genome sequencing,
assembly and annotation) that all DNA extractions were performed with the UltraClean
Microbial DNA kit (MoBio) except for the DNA extracts for ddPCR and Nanopore
sequencing, which were performed using the Genomic Mini AX Bacteria kit (A&A
Biotechnology). Following the reviewer’s comment, the word “experiment” was added
after “ddPCR” in the relevant section of the text (line 555) as it could be misconstrued
that the term “ddPCR library” was implied, which would be wrong and thus lead to
confusion about DNA extraction methodologies.

- Results:
- - The poor quality of the figures provided, especially fig. 1, 2, is problematic and it
does not permit the reader to quickly confirm/evaluate the explanations/claims that are
made from them.
Response:
It is not clear in what way the reviewer means that the figures are of poor quality.
Perhaps it is that they were in low-resolution in the PDF provided for review and the
reviewer had a problem with the link in the pdf to access the high-resolution versions.
We have now verified that these figures are of sufficient quality to be viewed clearly in
the resolution intended for publication and we will accommodate the requests of the
journal’s copy editors in these matters should the need arise.

- - Authors claimed that their data were deposited under the Bioproject
"PRJNA503577", yet the search engine in SRA/NBCI returns no result. Where is the
data of this project?
Response:
This is indeed the correct BioProject number. The data is already uploaded to SRA, but
will not be made publicly available until the date of publication. During the submission
of this manuscript I didn’t think to obtain a reviewer link to this data. I hereby apologize
to the reviewers and editor for this oversight. The data under this BioProject number
should be available for review at the following URL:
https://dataview.ncbi.nlm.nih.gov/object/PRJNA503577?reviewer=bajmo4nn0pv6gg3m
0n28v9kbjt

- Other:
Authors focused their analysis almost all about the GC-content, yet the title refers to
the AT-content. Authors should clarify/revise the title to reflect the content/results of
their study.
Response:
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The manuscript, including the title, was revised to address this issue and to make the
terminology consistent. Terms referring to high AT or low AT or AT bias were replaced
by suitable terms referring to GC.

Minor issues:
- Additional Table 1, I recommend authors to indicate the N50 for the pacbio and
nanopore datasets, in addition to the minimum/median/maximum already provided.
Response:
It’s a good suggestion. N50 values for pacbio and nanopore datasets have now been
added to Additional Table 1.

- I believe the reader would be grateful if the authors can revise the many long
paragraphs present in the manuscript into more concise ones.
Response:
Many changes are now made throughout this revised version to make it more
readable.

Other General comments:
- Several grammatical English typo/mistakes were found (e.g., "well-establish" -> "well-
established",
Response:
The correction was made exactly as suggested

"genomic and metagenomics data" -> "genomic and metagenomic data",
Response:
The correction was made exactly as suggested

"every more" -> "even more",
Response:
The intended meaning, obfuscated by the typo, was “ever more”. This has now been
corrected.

"to increase understanding" -> "to increase the/our understanding" (?), etc.)
Response:
“to increase understanding” was changed to “to improve the general understanding”

and, often sentences are convoluted (for example, "PCR product sequencing depth
investigation", this is not a correct English), please have the manuscript reviewed by a
third-person skilled in English.
Response:
This is now changed to “Long range PCR product sequencing”. The manuscript has
been reviewed by two native English speakers.

Reviewer #2
In this paper, Browne et al., attempt to systematically measure performances across
various sequencing platforms using samples containing different level of GC content.
While this a known issue (particularly for Illumina technologies) this is a useful analysis
to quantify the potential impact on the accuracy of genomic and metagenomic
reconstructions. Importantly, they have made all sequence data available at SRA and
their analysis tools available via github allowing other labs to perform similar analyses,
an important point given the suspected lab-specific biases. Overall, I believe the body
of work is an important analysis highlighting significant technological biases whose
impact is underappreciated.  The following issues need to be addressed.

Major:
1)Did you try any other sliding window sizes and if so what did you observe? Why did
you choose 500bp? The choice of window size may be impacted by the 'proximity to a
region if balanced GC content' mentioned in line 353 in the discussion.
Response:
We did consider this point, but failed to discuss it in the text. A new supplementary file
was added illustrating the same analyses using various different window sizes ranging
from 50bp to 5000 bp. These are presented in a new supplementary figure (Additional
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file 14) and show that the conclusions are not affected by the choice of window sizes,
although small window sizes showed more variability in the normalized coverages
(error bars), while larger windows led to a reduction in the range of GC contents being
represented in the data. Some details about these observations were also added to the
relevant methods section (lines 613 to 619).

2)Did the authors examine reads with very high or low GC content for differences in
base qualities relative to balanced GC content reads?  Given QC software was utilized
to trim/filter reads prior to alignment, it should be confirmed that high/low GC content
reads were not being removed or trimmed extensively during QC prior to alignment.
Response:
The qualities of sequencing reads were investigated with respect to GC-content.
Furthermore, the effects of quality filtering were investigated to see if quality filtering
was impacting coverage in a manner related to GC content. It was concluded that the
lowering of relative coverage above c.a. 65% GC content in certain MiSeq datasets is
due to reads with high-GC content having lower quality and being disproportionately
affected by quality filtering. However, we still maintain that the inability of a sequencer
to produce base calls with a high-degree of certainty in high-GC regions is a subset of
what we should refer to as GC bias. These effects were stated in the relevant analyses
sections and discussed in the discussion section and represented with two further
supplementary figures (lines 252 to 256, 273 to 276, 365 to 386, Additional files 6 + 7).
We thank the reviewer for making this interesting point because addressing it has
added considerable value to this manuscript.

3)While the genomic analysis of the variable GC content in bacterial genomes
illustrates a very clear and systematic contribution from GC content, the trend in the
metagenomic analysis is less clear with five distinct profiles reported across the five
data sets due to other cofounders.  The authors make claims regarding the possibility
of correcting for GC content in metagenomics (Line 403) however I am not sure this
claim is supported by the analysis.
Response:
We perhaps stated this too generally. What we mean is that the GC bias within a
metagenome dataset needs to be assessed following a metagenome assembly of that
dataset in order to obtain parameters that could be used to correct abundance
estimates. However, we did not explore the correction of GC bias in this work. We have
now restated the relevant point to make it clear that we do not mean that the error
profiles in our datasets here could somehow be used to correct GC biases in
metagenome datasets in general (lines 448 to 452).

4)To verify the coverage spikes observed in Fig 1, the authors perform ddPCR and
sequence two regions contain 30.2% and 45.5% GC content using an equimolar
mixture.  Overall, the 45.5% GC region mapped ~4X, ~11X, and 5X more reads than
the 30.2% region.  While the trend is clear, I would expect these numbers to be much
closer however one replicate is overrepresented 3 times more than the other two
replicates.  Did you investigate if there is something substantially different about this
replicate?
Response:
The authors have previously noted and discussed this difference. A lot of ideas have
been put forward but none can be supported by our data. Therefore, we are up-front
about the fact that there is a big variation in this experiment, but it can only be regarded
as experimental (technical) variability. As the trends in coverage are similar among all
replicates we assert that the data still supports the notion that the 45.5% GC regions
receive much more coverage than the 30.2% GC region in our MiSeq workflow. We
have now added a note to the relevant section of additional file 2 (the final paragraph
of additional file 2) in order to discuss this point.

5)In the discussion (line 426), the authors point out their analysis is in some aspects,
contradictory to several published works and indicate this is likely due to differences
between labs which employ different library production protocols and HTS workflows.
This is a critical finding of the analysis and needs to be stated more clearly throughout.
Response:
This is a good point as drawing attention to the major methodological differences
between the different sequencing work flows is a good service to the reader who can
now more easily ascertain which work flow led to which GC bias profile. This was
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addressed by adding a statement to the abstract (lines 58 to 59) that one of the key
results was that library preparation and sequencing protocols affect the profile of GC
bias. Furthermore, attention was drawn to the broad (and important) similarities and
differences between methods producing data sets analysed in this work in the Data
Description section (lines 158 to 164), and brief statements regarding the library
production protocols were made while presenting the results (lines 230 to 231, 259 to
260, 277, 290 to 291 and 292).

6)This work looks at several different technologies and illustrates platform specific
biases in their handling of different levels of GC content. With projects increasingly
incorporating multiple sequencing technologies, it would be useful to discuss ideas for
how best to combine the different platforms to minimize the impact of such biases.
Response:
This idea was mentioned in the discussion. However, an addition was made to make
the meaning more obvious (lines 410 to 416).

Minor:
1)Central to many reported differences are issues in library production protocols.
Given the apparent clustering of patterns in GC bias for different sequencing
technologies, the authors need to more clearly define the protocols particularly with
regard to similarities and differences.
Response:
The differences (and similarities) between the library production protocols are distilable
from the relevant materials and methods section. However, we agree that this requires
significant effort on a reader’s part to follow how the major differences between library
production protocols may be related to the GC-bias profiles presented in this work. In
the Analyses section, there are now mentions about the major steps involved in each
workflow which should make it easier for a reader to assess which protocol is
associated with a particular GC-bias profile (lines 230 to 231, 259 to 260, 277, 290 to
291 and 292).

2)Throughout the manuscript, the authors jump from GC to AT content depending on
context.  It would be easier to follow if they consistently reported it with GC content
listed first throughout.
Response:
The manuscript was revised to make terminology consistent. Terms referring to high
AT or low AT or AT bias were replaced by terms referring to the relevant GC content.

3)Abstract typo: Metagenomic sequencing is a well-establish(ed) tool in the modern
biosciences
Response:
The correction was made exactly as suggested

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Yes
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Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 48 

Background 49 

Metagenomic sequencing is a well-established tool in the modern biosciences. While it 50 

promises unparalleled insights into the genetic content of the biological samples 51 

studied, conclusions drawn are at risk from biases inherent to the DNA sequencing 52 
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methods, including inaccurate abundance estimates as a function of genomic GC 53 

contents. 54 

Results 55 

We explored such GC-biases across many commonly used platforms in experiments 56 

sequencing multiple genomes (with mean GC contents ranging from 28.9% to 62.4%) 57 

and metagenomes. GC-bias profiles varied among different library preparation protocols 58 

and sequencing platforms. We found that our workflows employing MiSeq and NextSeq 59 

suffered major GC-biases, with problems becoming increasingly severe outside the 45-60 

65% GC range, leading to a falsely low coverage in GC-rich and especially GC-poor 61 

sequences, where genomic windows with 30% GC content had over 10-fold less 62 

coverage than windows close to 50% GC content. We also showed that GC content 63 

correlates very tightly with coverage biases. The PacBio and HiSeq platforms also 64 

evidenced similar profiles of GC-biases to each other which were distinct from those 65 

seen in the MiSeq and NextSeq workflows. The Oxford Nanopore workflow was not 66 

afflicted with GC-bias. 67 

Conclusions 68 

These findings indicate potential sources of difficulty, arising from GC-biases, in 69 

genome sequencing which could be pre-emptively addressed with methodological 70 

optimisations provided that the GC-biases inherent to the relevant workflow are 71 

understood. Furthermore, it is recommended that a more critical approach is taken in 72 

quantitative abundance estimates in metagenomic studies. In the future, metagenomic 73 
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studies should take steps to account for the effects of GC-bias before drawing 74 

conclusions, or they should employ a demonstrably unbiased workflow. 75 

 76 

Keywords 77 

GC-bias, high-throughput sequencing, metagenomics, Illumina, Oxford Nanopore, 78 

PacBio 79 

 80 

Background 81 

Recent advances in sequencing technologies have led to the emergence of a variety of 82 

low cost per base, high-throughput sequencing (HTS) platforms [1]. Different HTS 83 

platforms vary on a number of counts, including read lengths, read quantities, biases, 84 

fidelity, cost per base and turnover time. These variations in attributes weigh in 85 

differently depending on the use case of HTS (e.g. small and large genome sequencing, 86 

genome resequencing, single-cell genome sequencing, transcriptome profiling, 87 

metagenomics studies and variant analyses [1]) and the most suitable platform, or 88 

combination of complementary platforms, is chosen. 89 

It is well established that there are several biases in HTS data including substitution 90 

errors, insertion-deletion errors and compositional based coverage biases. For example, 91 

Illumina’s MiSeq platform features substitution errors approximately 100-fold more 92 

abundantly than insertion/deletion errors, and the substitution errors occur more 93 

frequently in the first 10 nt and towards the ends of the reads [2]. Furthermore, DNA 94 
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extraction efficiency varies greatly between microorganisms, and thereby DNA 95 

extraction introduces biases into amplicon (e.g. small subunit (SSU) rRNA) surveys and 96 

metagenomics surveys [3]. However, this work focuses on coverage biases related to 97 

GC content. 98 

Coverage biases can be introduced into HTS datasets in a variety of ways. PCR is 99 

known to be a major contributor to biases in HTS datasets [3]. It is widely known that 100 

sequencing GC-rich DNA is challenging due to its inefficient amplification by PCR [4], 101 

while GC-poor DNA can also be problematic [5, 6]. Other sample handling procedures 102 

during library preparation also contribute to coverage biases, often in a GC content 103 

dependent manner [5-9]. These biases are such that GC-rich and GC-poor sequences 104 

usually suffer from under-coverage relative to GC-optimal sequences [5, 6, 10, 11]. For 105 

instance, heat treatment (50 °C) to melt agarose gel slices prior to size selection during 106 

sample preparation can result in an under-representation of GC-poor sequences, which 107 

can be mitigated by melting agarose at room temperature [12]. Many experimental 108 

recommendations have already been made to mitigate GC-biases. Chief amongst these 109 

are recommendations aimed at reducing GC-biases introduced by PCR, such as the 110 

use of PCR-free HTS library preparation procedures when possible, choosing a less 111 

biasing PCR polymerase mixture, the use of PCR additives such as betaine to improve 112 

coverage of GC-rich regions, or trimethylammonium chloride to improve coverage of 113 

GC-poor regions and the reduction of temperature ramp rates in thermocyclers [4-8, 12, 114 

13]. Owing to the various biasing effects of DNA processing steps, coverage evenness 115 

has been shown to vary between different HTS library preparation kits, oftentimes in a 116 

GC content related manner [5, 8]. When considering technical optimisations to mitigate 117 



6 
 

GC-bias during HTS, it is often the case that optimisations to mitigate under-coverage of 118 

high-GC regions can exacerbate the under-coverage of low-GC regions and vice versa 119 

[13].Thus it could be feasible to optimise HTS library preparation for sequencing a 120 

single microbial genome with a (approximately) known average GC content. However, 121 

this does not account for local variations in GC content within a single genome which 122 

can systematically result in very poor coverage of some loci, possibly leading to gaps in 123 

an assembly. 124 

The focus of this work is to develop a better understanding of GC-dependent coverage 125 

biases in DNA sequencing in some of the currently most widely used HTS platforms, 126 

particularly in relation to metagenome sequencing. This is important because 127 

metagenome sequencing is being applied in a growing number of studies. Unbiased 128 

coverage in metagenome sequencing data is important since read numbers (or 129 

coverage) are used as a proxy for relative species or gene abundances in 130 

metagenomics surveys [8]. In the context of pure isolate genome (re)sequencing, 131 

unbiased coverage can be advantageous for obtaining complete coverage with 132 

relatively modest sequencing effort and many assembly algorithms do not perform 133 

optimally in the case of non-uniform coverage [14]. While it may be possible to mitigate 134 

against GC-biases with technical optimisations for single isolate genome sequencing, it 135 

will almost universally be the case that there will be a large number of DNA molecules 136 

with a wide range of average GC contents in the context of metagenome surveys. For 137 

this reason, the use of knowledge regarding the GC-bias profile of the HTS workflow 138 

employed may help to account for the effects of GC-bias during data processing. While 139 

it is generally known that GC-biases occur in HTS, it is not generally known how these 140 
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biases occur in different HTS workflows. In this work, we examine the GC-biases in five 141 

metagenome datasets and in single genome sequencing datasets of fourteen different 142 

bacteria with varying average GC contents. The implications of these biases should 143 

impact how we interpret both genomic and metagenomic data and how we design 144 

sequencing workflows in the future. 145 

 146 

Data Description 147 

A total of twenty shotgun genome sequencing datasets were produced using DNA 148 

isolated from fourteen different bacteria with contrasting average GC contents in order 149 

to examine the GC-dependent coverage biases inherent to five different sequencing 150 

workflows (MiSeq, NextSeq, HiSeq, Oxford Nanopore, and PacBio). Full details of 151 

which organism was sequenced according to which workflow are available in 152 

Additional file 1. All of these datasets have been made available in SRA under the 153 

BioProject accession number PRJNA503577. Similarly, we used five different 154 

metagenome datasets to examine GC-dependent coverage biases inherent to their 155 

workflows (Table 1), where four of these were already publicly available and one was 156 

produced as a part of another project [15], and uploaded to the SRA, under 157 

PRJNA503577, with that project's leader's consent. The library preparation protocol is 158 

an important factor when considering GC-bias in sequencing data. Therefore attention 159 

is drawn to the fact that the MiSeq and NextSeq workflows (Additional file 1) and one of 160 

the metagenome datasets (SRR8570466) were produced using very similar protocols, 161 

in contrast to the long read libraries and the other Illumina datasets (HiSeq genome 162 
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sequencing and the remaining metagenome libraries). None of the Illumina datasets 163 

were derived from PCR-free libraries while the PacBio and Nanopore data were. 164 

We also produced digital droplet PCR (ddPCR) data using three different primer sets 165 

targeting subsections of two single copy genes and the 16S rRNA gene on the 166 

chromosome of Fusobacterium sp. C1. The amplicons had different GC contents and 167 

ddPCR was used to assess the copy number of the 16S rRNA gene per chromosome. 168 

Finally, we produced MiSeq reads from triplicate equimolar mixtures of two 5.3 kb PCR 169 

products amplified from Fusobacterium sp. C1 in order to confirm the occurrence of GC-170 

dependent coverage biases independently of the genomic background. These MiSeq 171 

reads were also uploaded to the SRA under PRJNA503577. 172 

 173 

Analyses 174 

Fusobacterium sequencing exemplifies under-coverage of GC-poor 175 

loci 176 

We chose Fusobacterium sp. C1 for a wide range of experiments related to GC-bias to 177 

build a complete picture of how GC-biases manifest in the sequencing of a GC-poor 178 

bacterial genome. These experiments encompassed genome sequencing using five 179 

different workflows (MiSeq, NextSeq, HiSeq, PacBio and Nanopore), MiSeq sequencing 180 

of long-range (5.3 kb) PCR amplicons and ddPCR to validate the SSU rRNA copy 181 

number. 182 
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Assembly of the Fusobacterium sp. C1 sequencing data resulted in one complete 183 

circular chromosome, 2,032,704 bp in length, and two probable plasmids, 1,964 and 184 

2,272 bp in length. The probable plasmids were omitted from coverage analyses due to 185 

uncertain stoichiometric ratios with the chromosome (see Methods). Hereafter the term 186 

C1 assembly refers only to the approx. 2.0 Mb contig. The C1 assembly had a relatively 187 

low GC content at 28.9%. Unsupervised annotation indicated that there were 1856 188 

CDSs, 66 tRNA genes and 28 rRNA genes in 9 rRNA loci.  189 

Coverage of the C1 assembly by all five sequencing workflows is illustrated in Fig. 1. In 190 

the MiSeq, NextSeq, HiSeq and PacBio workflows, it is apparent that there are 191 

numerous coverage spikes, especially in the vicinity of rRNA loci. These coverage 192 

spikes appear to be much sharper in the MiSeq and NextSeq datasets than in the 193 

HiSeq and the PacBio datasets, with the biggest coverage spikes in the MiSeq and 194 

NextSeq data co-occurring very closely with changes in GC content in rRNA loci. For 195 

the GC-biased workflows (MiSeq, NextSeq, HiSeq and PacBio), the coverage depths at 196 

the rRNA loci vary between 5.1- and 8.0-fold higher than background coverage depths 197 

(MiSeq – 8.0; NextSeq - 5.1; HiSeq - 6.2 PacBio – 8.0), while for the Nanopore dataset, 198 

this ratio was 1.0 (calculations are detailed in https://github.com/padbr/gcbias). In 199 

contrast to the other four workflows, the Nanopore dataset had comparatively even 200 

coverage apart from one broad coverage spike near the end of the linear representation 201 

of the chromosome (Fig. 1). The broad coverage spike in the Nanopore workflow had 202 

seemingly no relationship to local GC content. 203 

To verify the coverage spikes and to rule out the possibility of misassembly resulting in 204 

an underestimation of the number of rRNA loci, further experiments were performed. 205 
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Firstly, ddPCR was used to compare the ratio of a region of the small SSU rRNA to two 206 

other single copy genes. Ratios of 9.4 and 11.0 SSU rRNA were found to the two other 207 

loci, respectively, by ddPCR. These ratios (9.4 and 11.0) are close to the number of 208 

rRNA loci annotated in the C1 assembly. This supports the inference that there are 209 

about nine rRNA loci in the C1 chromosome as presented in the assembly, and dispels 210 

the notion that there are significantly more than nine (up to 72 based on 8.0-fold over-211 

coverage) rRNA loci based on the abovementioned high relative coverage of the rRNA 212 

loci in four out of the five sequencing datasets. 213 

Secondly, the MiSeq workflow was used to sequence an equimolar mixture of two 5.3 214 

kb PCR products of two loci from Fusobacterium sp. C1 with GC contents of 30.2% (a 215 

locus containing coding-sequences and intergenic sequences) and 45.5% (a locus 216 

containing rRNA-encoding genes and intergenic regions). This approach was to 217 

facilitate separating local GC content from global genome signatures, such as the fact 218 

that the majority of the genome is GC-poor, while primarily only the rRNA loci are GC-219 

optimal. The 45.5% GC fragment evidenced higher coverage with 4.14-, 10.63- and 220 

5.39-fold (3 replicates) more reads mapping to it than to the 30.2% GC fragment. This 221 

further supports the hypothesis that there are coverage biases related to GC content 222 

inherent in our Nextera XT/ MiSeq workflow. Further information on this experiment, and 223 

a plot illustrating sequencing coverage overlaid upon GC content are available in 224 

Additional files 2 - 4.  225 

 226 
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Manifestation of GC-biases in various HTS workflows 227 

We then examined GC-related coverage biases in the MiSeq-based genome 228 

sequencing of ten different bacteria with average GC contents ranging from 28.9% to 229 

62.4% (Additional file 1). These were all produced using the same workflow involving 230 

transposon-mediated cleaving and tagging (tagmentation) of DNA and 14 PCR cycles. 231 

Coverage was assessed in 500 bp wide sliding windows, and the coverage was 232 

normalised by dividing by the average coverage of the 49% GC genomic windows. The 233 

choice of 49% was simply because all bacteria sequenced in this work have sufficient 234 

(at least 3) numbers of 500 nt genomic windows with 49% GC content. The normalised 235 

coverage was log-transformed in the plots presenting the results. In every case, 236 

sequencing libraries were prepared following the same workflow with the Nextera XT 237 

DNA library prep kit. From plots of normalised relative coverage versus GC content 238 

(Fig. 2), it can be seen that a local GC content of between approx. 50%-60% is optimal, 239 

and the relative coverage decreases considerably as the local GC content becomes 240 

more dissimilar from the optimal range. The relatively small error-bars (standard 241 

deviations) seen in Fig. 2 indicate that there generally isn’t considerable variation in 242 

relative coverage among the various individual 500 nt genomic windows of the same 243 

GC content, suggesting that relative coverage and local GC content are tightly 244 

correlated. This corroborates the sharper peaks of the MiSeq dataset compared with the 245 

HiSeq and PacBio datasets (Fig. 1). An overlaid plot (Additional file 5 part A) from all 246 

experiments in Fig. 2 shows that the GC content related coverage bias is dependent 247 

primarily on the local GC content and is not affected in a big way by other factors such 248 

as global GC content or other sequence signatures. In fact, a quadratic curve could be 249 
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fitted reasonably well (R2 = 0.97) to the overlaid plot of normalised relative coverage 250 

versus local GC content (Additional file 5 part A). 251 

The median qualities (Phred scores) of MiSeq reads were high for reads with GC 252 

contents below approximately 65%, but decreased above this GC level (Additional file 253 

6). This decrease in quality above 65% GC content resulted in reads with high-GC 254 

content being more affected by quality filtering than reads with moderate or low-GC 255 

content (Additional file 7). 256 

We also have NextSeq datasets derived from Nextera XT libraries for the genome 257 

sequencing of five different bacteria, ranging in GC content from 28.9% to 63.0% 258 

(Additional file 1, Fig. 3). This data was produced similarly to the MiSeq data where 259 

library preparation involved tagmentation and 14 PCR cycles. In these, the normalised 260 

relative coverages decreased as the local GC contents decreased below ca. 55% in all 261 

but the Aminobacter dataset. Aminobacter had the highest global GC content (63%) in 262 

this study and its NextSeq dataset evidenced almost no coverage bias related to local 263 

GC content between 41% and 74%. The Rhizobium NextSeq dataset, with local GC 264 

content ranging from 39% to 70% showed decreased relative coverage as the local GC 265 

content decreased below 55%, and very little coverage bias above 55% local GC 266 

content. The five NextSeq datasets do not overlay upon each other (Additional file 5 267 

part B) as well as the ten MiSeq datasets (Additional file 5 part A), as judged visually, 268 

nor do they align as closely with the quadratic curve of best fit (R2 = 0.91) (Additional 269 

file 5 part B). The small error bars seen in the NextSeq plots (Fig. 3) corroborate the 270 

sharpness of the peaks in Fig. 1, indicating that local coverage of the NextSeq data, as 271 

was also the case for the MiSeq data, is tightly correlated with local GC content. 272 
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NextSeq reads were not affected by quality filtering with respect to GC content in the 273 

manner in which the MiSeq reads were (Additional file 7), despite the fact that these 274 

reads had lower quality scores where their GC contents were over c.a. 65% (Additional 275 

file 6). 276 

Two PacBio datasets (produced using a PCR-free protocol), from Fusobacterium and 277 

Sphingobium which differ greatly in global GC content, were also examined for 278 

coverage biases (Fig. 3). The Sphingobium PacBio dataset showed almost no GC-bias 279 

between 38% and 76% local GC content and very consistent coverage as judged by the 280 

very small error bars in Fig. 3. Below 40% local GC content, the Fusobacterium dataset 281 

evidenced lower relative coverage, while the large error bars in this range show that the 282 

relative coverage is highly variable, indicating that factors other than local GC content 283 

have an influence on the relative coverage in the PacBio sequencing workflow in a 284 

predominantly low GC content background. A single HiSeq dataset for Fusobacterium 285 

also evidenced several fold- (up to almost 10 fold-) under-coverage and large error bars 286 

for windows with less than 40% local GC content (Fig. 3), indicating that the HiSeq 287 

workflow’s relative coverage is also affected by factors other than local GC content. The 288 

HiSeq dataset evidenced normal relative coverage from 40% to 55% local GC content. 289 

This HiSeq data derived from a workflow involving sonication to shear DNA, followed by 290 

blunt-ending, adapter ligation and 11 cycles of PCR. 291 

Two Nanopore datasets were produced with PCR-free workflows for organisms with low 292 

and high global GC contents, Fusobacterium (28.9% GC) and Aminobacter (63.0% 293 

GC). Both of these datasets evidenced no major relative coverage biases related to 294 

local GC content (Fig. 3) and the error bars were generally quite small, suggesting that 295 



14 
 

the Nanopore workflow gives very even coverage across a wide range of GC contents 296 

and in different local genomic contexts. 297 

 298 

GC-biases in metagenome datasets 299 

The effects of GC content were also investigated in five independent metagenome 300 

datasets. These datasets were from different environments where the microbial 301 

communities would be expected to have different complexities. Furthermore, the 302 

datasets were prepared following different workflows and using different sequencing 303 

platforms (Table 1). Given that there were no 1% wide GC-bins common to all contigs in 304 

these assemblies, the GC-biases were presented in a different manner to the single 305 

genome datasets above (see Methods), by presenting log-transformed coverage ratios 306 

in pairs of 1% wide GC-bins within each contig in 3-dimensional plots (Additional files 307 

8 - 12). In these, it can be seen that the GC-biases differed considerably between 308 

datasets. In ERR526087 (human female fecal metagenome), it is seen that GC-bins of 309 

approx. 45% received optimal coverage, while the relative coverage decreased as the 310 

GC content increased above or decreased below this optimum. In SRR8570466 311 

(moving bed biofilm reactor metagenome) there was little or no GC-bias between 40% 312 

and 70% while the relative coverage decreased outside of this range. In SRR5035895 313 

(kelp-associated biofilm metagenome), the relative coverage increased with increasing 314 

GC content between 25% and 67%. In SRS049959 (human male fecal metagenome), 315 

optimal coverage was seen for GC contents between 17% and 36% and relative 316 

coverage decreased as the GC content increased above 36%. In the SRR7521238 317 

(vulture gut) metagenome dataset, optimal coverage occurred between about 50% and 318 
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60% GC content, with the relative coverage decreasing as the GC content increased 319 

above or decreased below this optimal range. 320 

 321 

Discussion 322 

The overarching aim of this study was to improve the general understanding about the 323 

impacts that GC-related coverage biases may have on abundance estimates of species 324 

or functions / pathways in HTS-based shotgun metagenomics experiments. However, 325 

we firstly presented results describing GC-biases in the sequencing of single bacterial 326 

genomes. The reason for this is that subsets of bacterial chromosomes with differing 327 

GC contents are equally abundant, if one can assume minimal effects from replication 328 

forks, which facilitates a thorough investigation of GC-biases within a single molecule. 329 

The Fusobacterium sp. C1 genome sequence presented here was from an isolated 330 

representative of the dominant operational taxonomic unit in new world vulture 331 

gastrointestinal tracts detected by amplicon analysis (SSU rRNA) [16]. In our attempt at 332 

sequencing this strain’s genome we found such severe coverage biases seemingly 333 

linked to GC content that we considered it pertinent to seek further validation of the 334 

copy number of rRNA loci via ddPCR. The problem of coverage of the rRNA loci in 335 

particular arose because the majority of CDSs and intergenic regions in Fusobacterium 336 

sp. C1 have low-GC contents, while its rRNA genes are typical with respect to other 337 

prokaryotes in having balanced (between 50% and 60%) GC contents (Additional file 338 

13, [17]). This discrepancy in GC contents is almost certainly responsible for the under-339 

coverage of the majority of the C1 assembly relative to the rRNA loci. From our results, 340 
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we would predict that SSU rRNA amplicon studies would be less sensitive to GC-bias 341 

than shotgun metagenomics owing to the narrow range in GC content typically 342 

associated with SSU rRNA (Additional file 13) which also corresponds to the optimal 343 

GC range in our NexteraXT/MiSeq workflow. This is not to downplay the extent of other 344 

biases in amplicon surveys, such as those related to DNA extraction from a wide variety 345 

of cell types, (degenerate) primer annealing and variations in SSU rRNA copy number 346 

between species [3, 18]. However, in a shotgun metagenome survey (which also suffers 347 

from the abovementioned DNA extraction biases) the under-coverage of the 348 

predominantly GC-poor regions of Fusobacterium sp. C1’s genome would, based on 349 

results presented here, result in a severe underestimation of its relative abundance. It 350 

was this notion that prompted us to delve deeper into assessing the relationships 351 

between GC content and coverage in various HTS platforms. 352 

Results presented here showed that local GC content correlated well with coverage 353 

biases in MiSeq and NextSeq datasets produced from libraries made using Nextera XT 354 

kits. Furthermore, after normalising coverage data and performing polynomial 355 

regression, approximate descriptions of GC-bias profiles in mathematical terms were 356 

derived for our MiSeq and NextSeq workflows. The quadratic equations presented in 357 

Additional file 5 are perhaps not the most accurate descriptions of GC-bias possible, 358 

based on deviations of the data points from the quadratic curves, especially at the 359 

extremities of the explored GC content. This suggests that the GC-biasing 360 

mechanism(s) don’t follow exactly the relationships implied by the quadratic 361 

expressions. Nonetheless, the proximity of the data points to the quadratic regression 362 

curves (Additional file 5) is quite good considering that coverage would, in theory, be 363 
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described in such plots (Additional file 5) as the line “y=0” if there was no coverage 364 

bias due to local GC content. It could be argued that there is a combination of at least 365 

two different GC-biasing mechanisms at work in the MiSeq workflow. One of these is 366 

linked to the fact that reads with high-GC content generally have lower quality (Phred 367 

scores) (Additional file 6) and quality filtering affected high-GC reads (c.a. > 65% GC) 368 

more than other reads with balanced and low GC contents (Additional file 7). It could 369 

be the case that the reduction in the proportions of reads passing quality filtering 370 

between around 65% to 80% GC content in the Agrobacterium, Ensifer, and 371 

Sphingobium MiSeq datasets could be predominantly responsible for the corresponding 372 

declines in the relative coverage seen above 65% GC content (Figure 2). The NextSeq 373 

reads did not show such a trend of quality filtering disproportionately affecting reads of 374 

between 65% and 80% GC content. This may explain why the NextSeq datasets have 375 

unchanging relative coverage between about 55% and 72% GC content, at least for the 376 

Rhizobium and Aminobacter datasets (Figure 3). The lower relative coverage at low-377 

GC contents evident in the MiSeq and NextSeq datasets is not linked to quality filtering 378 

of the reads, indicating that the mechanisms biasing against GC-rich and GC-poor 379 

windows are different. It can also be concluded that quality filtering was not largely 380 

responsible for the GC-bias in the HiSeq dataset (Figure 3, Additional file 7), though our 381 

HiSeq data is representative of only low and moderate GC contents. Though it is clear 382 

that the quality filtering resulted in at least some of the under-coverage seen at higher 383 

GC contents, we still maintain that it is correct to refer to this effect as "GC-bias", as 384 

quality filtering is a necessary part of data analysis and the low quality is related to the 385 

sequencer not being capable of calling bases with high confidence in high-GC reads. 386 
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GC-related coverage biases were seen in HiSeq and PacBio workflows (at least for 387 

Fusobacterium sp. C1) in a manner clearly different to an approximate polynomial curve 388 

(Fig. 3). Another facet of the differences between GC-bias profiles among HTS 389 

workflows is seen in the error bars of the plots of the HiSeq and PacBio datasets which, 390 

for low-GC regions (< 40% GC) are large in comparison with the error bars seen in the 391 

plots of the MiSeq, NextSeq, and Nanopore datasets. Based on the sharpness of the 392 

peaks (indicating coverage) in Fig. 1 corresponding to changes in GC content for MiSeq 393 

and NextSeq data in comparison with the wider corresponding peaks of PacBio and 394 

HiSeq coverage plots, it is possible that another factor co-governing coverage biases in 395 

the HiSeq and PacBio workflows is proximity to a region of balanced (c.a. 50% to 60%) 396 

GC content. It could possibly be the case that linkage of GC-poor loci to GC-optimal loci 397 

(c.a. 50%) results in more efficient recovery of low-GC DNA proximal to rRNA loci, if it is 398 

the case that heat production from bead-beating (partially) denatures DNA before it is 399 

bound to a silica column. This would be similar to the bias introduced against GC-poor 400 

loci during DNA extraction from agarose gel slices described elsewhere [12]. This was 401 

not investigated further here as we aimed to investigate GC-biases inherent to HTS 402 

workflows without going into details of which mechanisms within each workflow 403 

introduced biases. 404 

The even coverage of the Nanopore datasets over a wide range of GC contents, albeit 405 

for only two organisms with very different global GC contents, is promising, especially 406 

for metagenome sequencing where long reads will greatly simplify assembly. The 407 

application of Nanopore technology to metagenomics is currently still limited by cost, 408 

read quality and throughput, though this situation has been improving considerably ever 409 
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since the development of the technology [19]. In the meantime, when a combination of 410 

sequencing platforms are being used (e.g. if using long reads to improve assembly in 411 

combination with short reads to provide high coverage), there is the possibility that 412 

Nanopore reads, or reads derived from any other demonstrably unbiased HTS 413 

workflow, could be used as an internal standard to evaluate and perhaps correct for 414 

GC-biases or other coverage biases from cheaper or more high-throughput, but biased, 415 

workflows. 416 

The examination of the GC-biases in five different workflows is informative even for 417 

single genome sequencing. It is perhaps unsurprising that the PCR-based Nextera XT 418 

workflow producing libraries for MiSeq and NextSeq would be heavily GC-biased. It has 419 

been reported previously that extreme GC content can complicate a single genome 420 

sequencing project [6, 9, 13] and our results are illustrative of why this is the case, 421 

showing, for example, 10-fold or worse under-coverage of GC windows under 30% in 422 

MiSeq data. However, the lack of PCR in the library preparation for the PacBio workflow 423 

did not completely alleviate GC-bias, although it would appear to have been lessened, 424 

and there exists the possibility that the primary bias in this workflow could have been 425 

introduced at the stage of DNA isolation. It is, perhaps, curious that the PacBio and 426 

HiSeq workflows gave similar profiles of GC-bias despite the PacBio workflow having no 427 

PCR and the HiSeq workflow having 11 PCR cycles. It is commonly taken as best 428 

practice to use a PCR-free sequencing library preparation method for metagenomic 429 

studies when sample biomass isn’t limiting [12, 20], but, nonetheless, it can be seen 430 

that PCR is not the only major contributor to GC-bias in HTS. 431 
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We have shown the occurrence of GC-biases in five independent metagenome datasets 432 

in order to illustrate the points also addressed with the single genome experiments, 433 

namely that there are GC-dependent coverage biases which manifest in a manner 434 

dependent upon the particular workflow employed. The production of these datasets 435 

encompassed a range of different sequencing technologies and library preparation 436 

workflows with between four to fourteen PCR cycles in each case. Because of this, the 437 

profile and severity of GC-biases differed considerably between these datasets 438 

(Additional files 8 - 12). Owing to the fact that PCR is commonly cited as a major 439 

contributor to GC-bias [13], it is often recommended to reduce the number of PCR 440 

cycles (or to eliminate PCR altogether) as far as sample biomass and other 441 

experimental constrains allow [21]. We did not design our experiments nor analyses to 442 

assess the individual contributions to GC-bias from any of the individual steps of library 443 

preparation, but work here and elsewhere also indicates that there are sources of GC-444 

bias other than PCR [9, 21]. The analysis of the metagenome datasets reiterated the 445 

observation from the single genome sequencing datasets where GC-biases differ 446 

between different sequencing workflows and highlights how important it is to consider 447 

this before committing to an experimental workflow. Furthermore, if the GC-bias profile 448 

in a metagenome dataset is assessed following an assembly of the data, it may be 449 

possible to estimate parameters to be used to reduce abundance estimate errors due to 450 

GC-bias. However, we did not explore the application of corrections to account for GC-451 

bias during data processing in this work. 452 

Even for sequencing projects employing the same sequencing technology with the 453 

same library preparation workflows, it must be considered that there could be within- 454 
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and between-lab variation. For instance, it is possible that differences in equipment / 455 

instrumentation (e.g. in ramp rates of thermocyclers [13]) between labs otherwise 456 

employing the same protocols could alter the GC-biases. And naturally, the use of 457 

different HTS workflows (including the use of different library preparation kits, different 458 

fragmentation methods, different DNA polymerases etc.) would be expected to alter the 459 

relationships between GC content and coverage considerably [5-8, 12, 13]. As 460 

discussed in the introduction, PCR additives can be used to mitigate the under-461 

coverage of low- or high-GC regions, but these approaches tend to exacerbate biases 462 

in other regions. Thus, such an approach can possibly find utility in single genome 463 

sequencing, but is not viable for metagenome sequencing. For this reason, it may be 464 

even more important in metagenomic studies to understand the GC-biases inherent in a 465 

sequencing workflow and account for them during data analysis. 466 

The relationships between local GC content and relative coverage presented here for 467 

single bacterial genome sequencing agree, at least qualitatively, with data published 468 

elsewhere [11, 13], in that low and high-GC regions suffer from under-coverage in 469 

comparison with GC neutral regions. The strong bias against GC-poor loci, as in the 470 

genome of Fusobacterium here, was previously reported for the genome of the 471 

important pathogen Plasmodium falciparum (19.3% GC average) [5]. However, our 472 

results also contradict some other findings, such as where it was reported that 30% GC 473 

regions were more highly covered than 50% GC regions for MiSeq and PacBio data [9]. 474 

Those data sets were produced in workflows employing different library production 475 

protocols to our in-house data, illustrating the point made above, that there can be 476 

differences in coverage biases between different labs which employ different HTS 477 
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workflows, necessitating that any attempt at accounting for GC-biases must be 478 

calibrated to the protocols and equipment in each lab separately. 479 

Nonetheless, we propose that strategies similar to the coverage normalisation 480 

procedures described herein (https://github.com/padbr/gcbias) could be a basis for 481 

generating lab-specific and protocol-specific descriptions of GC-bias, at least in 482 

qualitative terms. However, it is uncertain how consistently HTS workflows will conform 483 

to previously derived descriptions of GC-bias profiles for each individual workflow, as 484 

illustrated by the differences in the GC-biases between our NextSeq datasets. For this 485 

reason, we would recommend extreme caution in naively using polynomial / quadratic 486 

regression as a model to describe normalised local-GC content versus coverage in 487 

NexteraXT libraries sequenced with MiSeq or NextSeq despite how consistently we 488 

have shown this to describe GC-biases in such datasets from our group. One major 489 

drawback of our coverage normalisation procedures for bacterial genome sequencing 490 

GC-bias analyses is that it relies on normalising to the average coverage in a single 1% 491 

wide GC-bin (49% GC) for each molecule (chromosome). This would make it not 492 

feasible to have a single normalisation procedure that would work on genomes with very 493 

low to very high average GC contents as not all of these would have a sufficient number 494 

of 49% GC windows, and was the reason why we employed a different protocol to 495 

visually present the GC-biases in metagenome datasets. It could be possible to account 496 

for GC-biases in a metagenome dataset by characterising the biases as we have 497 

described and adjusting the relative coverage levels in a GC-dependent manner. 498 

Alternatively, a workflow inherently devoid of GC-bias, such as the Nanopore 499 
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sequencing workflow used here, could be used for metagenome sequencing, albeit at a 500 

higher cost or with lower coverage. 501 

 502 

Potential implications 503 

HTS is being applied ever more frequently in genome and metagenome sequencing 504 

based investigations. GC-biases are prevalent in HTS datasets produced from a wide 505 

variety of library building and sequencing platforms, with the notable exception of the 506 

Nanopore workflow used here. Some of the most obvious and serious implications of 507 

uneven coverage in HTS include skewed abundance estimates in metagenomics 508 

projects and the presence of gaps in genome assemblies due to systematic under 509 

coverage of low- or high-GC loci. To our knowledge, no metagenomics data analysis 510 

pipeline currently accounts for GC-biases for the purposes of estimating species, gene 511 

or pathway (etc.) abundances. While many researchers may be aware of the existence 512 

of GC-biases, the manifestation of GC-biases differs between HTS workflows, which 513 

may make it difficult for researchers to understand how their HTS workflows are 514 

affected by GC-bias. For instance we show less than 10-fold under-coverage for 30% 515 

GC windows, worsening to around 30-fold under-coverage for 20% GC windows in our 516 

MiSeq workflow. To address this issue, we have, along with this article, made available 517 

a bioinformatics pipeline that can facilitate researchers in easily getting an 518 

understanding, at least in qualitative terms, of the GC-biases in their HTS workflows, 519 

using data they may already have to hand. 520 
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Such understanding of GC-biases can be used to find solutions to various problems. 521 

For example, if a lab / research group routinely performs a lot of genome sequencing 522 

followed by assembly, they may supplement their normal library preparation protocol, 523 

for instance with PCR additives, to alter GC-biases, using the pipeline here to 524 

understand the effects of their alterations. This approach could facilitate making smarter 525 

choices in the lab to maximise the fitness for purpose of datasets or making workflows 526 

more cost effective. Alternatively, if feasible, they may employ an inherently less biases 527 

(unbiased even) work flow, such as the Nanopore workflow here. Another obvious 528 

implication of understanding GC-biases could be a better interpretation of metagenomic 529 

data, or possibly even correcting abundance estimates for GC-biases. In cases of HTS 530 

workflows featuring extreme GC-biases, such as seen for Nextera XT followed by 531 

MiSeq or NextSeq sequencing, it would be extremely advantageous to account for GC-532 

biases during data analysis, while for other HTS workflows subject to very little GC-bias 533 

(e.g. the Nanopore workflow), it may prove futile to attempt to improve abundance 534 

estimate accuracies by accounting for GC-bias. A less obvious approach in the field of 535 

metagenomics would be to actually take advantage of GC-bias. For instance, it may be 536 

possible in some cases to use additives in the PCR step of metagenome library 537 

preparation to adjust the GC-bias in favour of the average GC content of a non-538 

culturable organism for which a de novo assembly is desired from metagenome reads. 539 

Ultimately, knowledge regarding the biases inherent in the production of a dataset can 540 

yield options to optimise the suitability of the data for the research questions and 541 

facilitate a more accurate interpretation of the data during analysis. 542 

 543 
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Methods 544 

Strain isolation 545 

The model organism primarily and initially used to investigate coverage biases, 546 

Fusobacterium sp. C1, was isolated from a frozen sample of the contents of a vulture’s 547 

large intestine. The sample was thawed, serially diluted and spread on anaerobic 548 

medium plates (Statens Serum Institut) in an anaerobic jar with an environment 549 

consisting of 90% N2 and 10% H2 at 37 OC. The isolate was purified with several rounds 550 

of streaking in the same conditions. 551 

 552 

Genome sequencing, assembly and annotation 553 

DNA isolation was performed using the UltraClean Microbial DNA isolation kit (MoBio) 554 

in all cases except for the ddPCR experiment and Nanopore library preparations for 555 

which high molecular weight DNA was isolated using the Genomic Mini AX Bacteria kit 556 

(A&A Biotechnology). For MiSeq (2x251 bp paired reads) and NextSeq (2x151 bp 557 

paired reads), libraries were prepared using the Nextera XT V2 Sample preparation kit 558 

(Illumina) according to the manufacturer’s instructions with the modification of 559 

increasing the number of PCR cycles from 12 to 14 during the library amplification step. 560 

In the HiSeq workflow, genomic DNA was sheared using a Bioruptor® XL (Diagenode, 561 

Inc), with 6 rounds of 15 seconds sonication separated by 90 second intervals. Sheared 562 

DNA was converted into Illumina compatible libraries using a NEBNext library kit 563 

(E6070L) using adapters described elsewhere [22]. Following this, the library was 564 

amplified with 11 cycles of PCR using AmpliTaq Gold polymerase (Applied Biosystems, 565 
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Foster City, CA) and cleaned using Agencourt AMPure XP (Beckman Coulter, Inc) bead 566 

purification, following the manufacturer’s protocol. 567 

For Nanopore and PacBio sequencing, high molecular weight (HMW) DNA was 568 

routinely extracted from liquid cultures of bacteria using the Genomic Mini AX Bacteria 569 

kit (A&A Biotechnology (060-60)). Nanopore libraries were prepared with the Rapid 570 

Sequencing kit (SQK-RAD004) and sequenced on a FLO-MIN106 flow cell. Reads were 571 

basecalled using Albacore V.2.3.0. PacBio sequencing was performed as described 572 

elsewhere [23], with sequencing libraries being prepared using a PCR free ligation of 573 

sequencing adapters to fragmented blunt-ended double-stranded DNA. 574 

Adapter contaminants and low quality 3’ ends were trimmed from the Illumina reads with 575 

Cutadapt v1.8.3 [24]. Nanopore reads were cleaned with Porechop V.0.2.3. PacBio 576 

reads were quality filtered, adapter filtered and converted from *.bax.h5 to fastq format 577 

using pls2fasta from the blasr package (v1.0.0.126414) [25]. Paired Illumina reads were 578 

merged with AdapterRemoval v2.1.0 [26] and assembled using SPAdes v3.10 [27]. For 579 

Fusobacterium sp. C1, assembly was performed with Unicycler v0.4.3 running SPAdes 580 

v3.11.0 and racon using only NextSeq and Nanopore reads. For Sphingobium 581 

herbicidovorans MH, a publically available assembly was used (CP020538-42). Where 582 

necessary, the RAST annotation server [28] was used to predict coding sequences 583 

(CDSs), rRNAs and tRNAs. Circular plots of genome assembly and annotation 584 

information were made using BRIG [29]. All genome sequencing reads generated in this 585 

work were deposited to SRA under the BioProject number PRJNA503577. 586 

 587 
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Coverage evenness assessment of isolate genome sequencing 588 

Cleaned, quality filtered sequencing reads were aligned to their draft genome 589 

assemblies using bwa-mem v0.7.15-r1140 [30] for MiSeq, NextSeq and HiSeq reads or 590 

minimap2 [31] for Nanopore and PacBio reads. For paired reads, the merged and 591 

unmerged reads were mapped separately to their reference assemblies and the 592 

resulting alignment files were merged using samtools merge [32]. Secondary and 593 

supplementary alignments were removed using samtools view with the flag '-F 0x900'. 594 

The coverage at each nucleotide position was calculated using samtools v1.4.1 (depth -595 

a option) [32]. Since abnormal coverage (relative to the chromosome(s)) can arise from 596 

multicopy plasmids, phages, unresolved repeats [10] etc., contigs shorter than 10 kb 597 

were discarded and then contigs (longer than 10 kb) with abnormal coverages were 598 

identified using a modified z-score based on median absolute deviation with a threshold 599 

of 10 [33] and removed from further analyses. The exceptions were that the length 600 

cutoff was increased to 100,000 for the Aminobacter assembly due to highly variable 601 

coverage in contigs between 10,000 bp and 100,000 bp, and the elements annotated as 602 

plasmids for Sphingobium herbicidovorans MH were manually removed. Local GC 603 

contents and sequencing coverages were calculated in 500 nt sliding windows, in a 604 

similar approach to elsewhere [13], unless otherwise specified. Coverages were 605 

normalised by binning the coverage windows by GC content, with bins being 1% wide, 606 

and the coverages of all windows were divided by the average coverage of the windows 607 

binned at 49% GC. The choice of 49% GC as a baseline was due to the fact that all of 608 

our in-house datasets had at least three 500 nt windows with this GC content. GC 609 

percentage windows with less than three points were discarded. Polynomial regression 610 
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was performed on the log-transformed average coverage of each 1% wide GC-bin using 611 

the polyfit function of python’s numpy package with two degrees of polynomial fitting 612 

and weights set to the number of windows for each 1% wide GC-bin. The conclusions 613 

derived from the results presented here are not affected by the choice of a sliding 614 

window width of 500 nt. This was asserted by repeating the analyses using window 615 

sizes ranging from 50 nt to 5000 nt (Additional file 14). The deviations indicated by the 616 

error bars were a little larger for smaller windows, while there were fewer windows with 617 

less extreme GC contents when looking at large window sizes. Nonetheless, the overall 618 

trends in the analyses remain very consistent regardless of window size. Further 619 

information, including source code for in-house scripts, is available at 620 

https://github.com/padbr/gcbias. 621 

 622 

Metagenome assembly and coverage evenness assessment 623 

Metagenome datasets were retrieved from several sources. Datasets ERR526087 (2 x 624 

100bp) and SRR5035895 (2 x 300 bp) were retrieved with the fastq-dump utility of the 625 

SRA toolkit V.2.9.0. The longest reads in these datasets were split in half in order to 626 

retrieve the original read pairs, while shorter reads, presumably trimmed for quality or 627 

removing technical sequences, were discarded since the read pairs were concatenated 628 

without annotation of the concatenation point making it impossible to recover the 629 

original paired reads. SRS049959 (2 x 100bp) was downloaded from the human 630 

metagenome project website with ftp. Raw metagenome read datasets for SRR7521238 631 

and SRR8570466 were available in-house due to our affiliations with the respective 632 

data producers [15, 16, 34]. The library preparation protocols varied between these 633 

https://github.com/padbr/gcbias
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datasets (Table 1). Adapter contaminants and low quality 3’ ends were trimmed from 634 

the reads with Cutadapt v1.8.3 [24] using TrimGalore as a wrapper script [35]. The 635 

datasets of ERR526087, SRR5035895 and SRR7521238 were assembled using IDBA-636 

UD [36]. The dataset of SRR8570466 was assembled with MegaHit [37] as described 637 

previously [15]. The assembly accompanying dataset SRS049959 in the 638 

abovementioned ftp site of the human metagenome project was used. 639 

Quality-filtered sequencing reads were mapped to metagenome assemblies using bwa-640 

mem v0.7.15-r1140 [30]. Following this, contigs shorter than 10 kb were discarded for 641 

reasons described above. Read depths in 500 nt sliding windows in each contig were 642 

calculated as described above. However, metagenome contigs larger than 10 kb were 643 

not subject to coverage-based filtering as each contig is treated as coming from an 644 

independent genetic element, and normalisation is performed within each contig (see 645 

below). This contrasts with the approach taken for the whole genome sequencing 646 

experiments where each contig passing all filtering steps is considered equally 647 

abundant. The difference in approach stems from the fact that too many contigs in 648 

metagenome assemblies will not have a chosen common GC-bin (e.g. 49%) and this 649 

would lead to severely reduced representation of contigs derived from genomes with 650 

high or low global GC contents. Within each metagenome contig, the 500 nt windows 651 

were binned by GC content into 1% wide bins and the average coverage of each 1% 652 

wide GC-bin was calculated within each contig. The coverage ratios of all pairwise 653 

combinations of GC-bins within each contig were then calculated (i.e. the coverage ratio 654 

is a ratio of the average coverage of a 1% wide numerator GC-bin to the average 655 

coverage of a 1% wide denominator GC-bin). Following this, the coverage ratio values 656 
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for each combination of two 1% wide GC-bins were averaged across all contigs that 657 

contain the relevant two GC-bins. These ratios were then log-transformed (base 10), 658 

such that values greater than zero indicated that metagenomic windows of the 659 

numerator’s GC content are more covered than windows of the denominator’s GC 660 

content and vice versa for values less than zero. These three dimensional data were 661 

plotted and rendered from a series of azimuth angles and elevations using the 662 

matplotlib and mpl_toolkits libraries of python. The images were saved in bitmap format, 663 

and the series of images were assembled, using ffmpeg V.3.4.2-2 664 

(https://www.ffmpeg.org), into a video file to facilitate viewing of the plots in three 665 

dimensions. The pipelines to calculate coverage ratios between different metagenomics 666 

windows with different GC contents, along with source code for in-house scripts, is 667 

detailed in https://github.com/padbr/gcbias. 668 

 669 

Quality of Illumina reads with respect to GC content 670 

Raw Illumina reads were adapter trimmed with cutadapt (i) with quality filtering disabled, 671 

and (ii) with default quality filtering settings. Custom biopython scripts were used to 672 

evaluate the effects of quality filtering on the GC content of reads. The scripts calculated 673 

the GC content of each read and the median quality (Phred score) of each read within a 674 

dataset. The median quality values of reads of each GC content percentile were plotted 675 

using the boxplot function of matplotlib in python (Additional file 6). Furthermore, 676 

frequency distributions of the GC contents of reads with and without quality filtering 677 

were plotted using the hist function of matplotlib in python. Following this, relative 678 

proportions of reads for each GC content bin in the histogram were calculated by 679 
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dividing the proportions of the quality filtered reads by the corresponding proportions 680 

from the non-quality filtered reads (Additional file 7). 681 

 682 

ddPCR 683 

A pangenome analysis was performed, following the methods described in [38], on 684 

Fusobacterium sp. C1 and 18 other draft and complete Fusobacterium genomes 685 

(Additional file 15). From this, two single copy core genes were selected and primers 686 

targeting these and SSU rRNA were designed (Table 2). Fusobacterium sp. C1 genomic 687 

DNA was double digested with HindIII and DraI (NEB). ddPCR was performed to 688 

assess the ratio of SSU rRNA genes to two different single copy genes. ddPCR was 689 

performed using the QX-200 ddPCR system (Bio-Rad), using EvaGreen ddPCR 690 

Supermix. Data analyses were performed using QuantaSoft™ Analysis Pro software 691 

(Bio-Rad). Further details are available in Additional file 2. 692 

 693 

 694 

Long range PCR product sequencing 695 

Primers were designed to uniquely amplify two different 5.3 kb regions of the 696 

Fusobacterium sp. C1 genome with different GC contents: 30.2% (Fig. 1, circle 3, 697 

green bar) and 45.5% (Fig. 1, circle 3, red bar) (Table 3). Post amplification, the PCR 698 

products were quantified based on Qubit measurements and pooled into an equimolar 699 

mixture. Three independent paired PCR product mixtures were prepared in this manner 700 

(further details available in Additional file 2). Indexed libraries were prepared from 701 
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these pools using the Nextera XT kit and sequencing was performed on a MiSeq, as 702 

described for genome sequencing. 703 

 704 

Availability of source code and requirements 705 

Project name: gcbias 706 

Project home page: https://github.com/padbr/gcbias 707 

Operating system: Linux - probably Linux in general, but only tested with Ubuntu and 708 

CentOS 709 

Programming language: python2.7, bash 710 

Other requirements: bwa, samtools (>=1.0), ffmpeg, minimap2 711 

License: MIT license 712 

Any restrictions to use by non-academics: No restrictions 713 

 714 

Availability of supporting data and materials 715 

All sequencing reads associated with this project were deposited to SRA under 716 

BioProject accession number PRJNA503577. 717 

 718 
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Format: Microsoft Word; Extension: ‘.docx’ 752 

Title of data: Supplementary table 1: Genome sequencing data sets 753 

A table describing which workflows were used to sequence which bacteria, and the 754 

accession numbers of each data set in the NCBI’s sequence read archive. 755 

 756 
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File name: Additional file 2.docx 758 
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Format: Microsoft Word; Extension: '.docx' 759 

Title: Supplementary text: Supplementary methods and results 760 

Description: Extra detail about the methods and results for the ddPCR analysis and 761 

extra information about the methods for filtering aberrantly covered contigs from 762 

analyses are included herein. 763 

 764 

Additional file 3 765 

File name: Additional file 3.docx 766 

Format: Microsoft Word; Extension: '.docx' 767 

Title: Supplementary figure 1 768 

Description: Plots showing per-nucleotide coverage and GC content in 49 nt sliding 769 

windows and the positions of rRNA genes and protein coding genes from two 5.3 kb 770 

PCR products sequenced using the MiSeq workflow. 771 

 772 

Additional file 4 773 

File name: Additional file 4.docx 774 

Format: Microsoft word; Extension: ‘.docx’ 775 

Title: Supplementary table 2: Numbers of reads mapped to two 5.3 kb equimolar PCR 776 

products from Fusobacterium 777 
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Description: The numbers of reads mapping to each of two 5.3 kb PCR products in each 778 

of three replicates are shown, along with a ratio indicating the relative coverage of each 779 

PCR product. 780 

 781 

Additional file 5 782 

File name: Additional file 5.docx 783 

Format: Microsoft Word; Extension: '.docx' 784 

Title: Supplementary figure 2 785 

Description: Plots showing GC-biases in MiSeq and NextSeq workflows from several 786 

experiments along with quadratic lines of best fit. 787 

 788 

Additional file 6 789 

File name: Additional file 6.png 790 

Format: png image; Extension: '.png' 791 

Title: Supplementary figure 3 792 

Description: For each dataset shown, the adapters were trimmed from the reads with 793 

quality filtering disabled. The read quality reads are represented in 1% wide GC-bins. 794 

The orange dashes indicates the medians, the interquartile ranges are represented by 795 

boxes (rectangles) and the whiskers span the 10th to the 90th percentiles.  796 

 797 
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Additional file 7 798 

File name: Additional file 7.png 799 

Format: png image; Extension: '.png' 800 

Title: Supplementary figure 4 801 

Description: For each dataset shown, the adapters were trimmed from the reads both 802 

with and without quality filtering enabled. Histograms of the proportions of reads at 803 

various GC contents in each dataset were created, with identical bins of GC content for 804 

both datasets. These proportions for the quality filtered data were then divided by the 805 

proportions of the non-quality filtered data. In this way, it can be seen if quality filtering 806 

disproportionately affects the abundance of reads passing quality filtering if the ratio is 807 

significantly different to 1.0. Dark blue bars indicate that the GC-bin had at least 0.1% of 808 

the total abundance of reads in the dataset with quality filtering disabled, and below this 809 

value, the intensity of blue was scaled linearly down to no colour. This colour scaling 810 

focuses attention on the GC contents that are reasonably abundant in the 500 nt 811 

windows in the genomic GC-bias analyses. 812 
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Additional file 8 814 

File name: Additional file 8.mp4 815 

Format: VLC media player; Extension: '.mp4' 816 

Title: Supplementary video 1 817 
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Description: GC-bias in female human faecal metagenome (SRA acc. no. ERR526087). 818 

Movie file showing log-transformed (base 10) average coverage of 500 nt-windows of a 819 

foreground GC content divided by the average coverage of 500 nt-windows of a 820 

background GC content. 821 

 822 

Additional file 9 823 

File name: Additional file 9.mp4 824 

Format: VLC media player; Extension: '.mp4' 825 

Title: Supplementary video 2 826 

Description: GC-bias in kelp associated biofilm metagenome (SRA acc. no. 827 

SRR5035895). Movie file showing log-transformed (base 10) average coverage of 500 828 

nt-windows of a foreground GC content divided by the average coverage of 500 nt-829 

windows of a background GC content. 830 

 831 

Additional file 10 832 

File name: Additional file 10.mp4 833 

Format: VLC media player; Extension: '.mp4' 834 

Title: Supplementary video 3 835 

Description: GC-bias in human male faecal metagenome (SRA acc. no. SRS049959). 836 

Movie file showing log-transformed (base 10) average coverage of 500 nt-windows of a 837 
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foreground GC content divided by the average coverage of 500 nt-windows of a 838 

background GC content. 839 

 840 

Additional file 11 841 

File name: Additional file 11.mp4 842 

Format: VLC media player; Extension: '.mp4' 843 

Title: Supplementary video 4 844 

Description: GC-bias in moving bed biofilm reactors with effluent wastewater 845 

metagenome (SRA acc. no. SRR8570466). Movie file showing log-transformed (base 846 

10) average coverage of 500 nt-windows of a foreground GC content divided by the 847 

average coverage of 500 nt-windows of a background GC content. 848 

 849 

Additional file 12 850 

File name: Additional file 12 851 

Format: VLC media player; Extension: '.mp4' 852 

Title: Supplementary video 5 853 

Description: GC-bias in turkey vulture intestinal contents metagenome (SRA acc. no. 854 

SRR7521238). Movie file showing log-transformed (base 10) average coverage of 500 855 

nt-windows of a foreground GC content divided by the average coverage of 500 nt-856 

windows of a background GC content. 857 
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 858 

Additional file 13 859 

File name: Additional file 13.docx 860 

Format: Microsoft Word; Extension: '.docx' 861 

Title: Supplementary figure 5 862 

Description: Histogram showing GC content of SSU rRNA genes in the greengenes 863 

database 864 

 865 

Additional file 14 866 

File name: Additional file 14.png 867 

Format: Bitmap image, '.png' 868 

Title: Supplementary figure 6 869 

Description: All results presented in figures 2-3 were repeated for a range of different 870 

genomic window sizes ranging from 50 nt to 5000 nt. The methodology was the same 871 

as presented in figures 2-3, except that the coverage values were not normalized to the 872 

coverage of windows with 49% GC, as this was not feasible. Instead, the coverage was 873 

normalized according to the average coverage in each dataset. 874 

 875 

Additional file 15 876 
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File name: Additional file 15.docx 877 

Format: Microsoft Excel; Extension: '.xlsx' 878 

Title: Supplementary table 3: Genome sequences used to identify single copy genes in 879 

Fusobacterium 880 

Description: Accession numbers used in a comparative genomics approach which 881 

identified genes as single-copy core genes in the Fusobacterium genus. Two of these 882 

single-copy core genes were selected as targets for the ddPCR experiment. 883 
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 1011 

 1012 

 1013 

Figures and tables 1014 

Tables 1015 

Table 1: Sources of datasets for GC-bias analysis in metagenome sequencing 1016 

Accession no. / 

Name (Relevant 

supplementary 

data) 

Sequencing 

technology 

Library 

preparation 

kit 

Environment Reference Total 

Contigs 

> 10 kb 

Assembly 

length > 

10 kb 

N50 > 

10 kb 

Num. 

PCR 

cycles 

ERR526087 

(Additional file 8) 

HiSeq 2000 Paired-End 

Genomic 

DNA Sample 

Prep Kit 

(Illumina) 

Human faeces 

(female) 

[39] 2880 71.9 Mb 29679 10 – 

12 

SRR5035895 

(Additional file 9) 

MiSeq NEBnext 

Ultra 

Kelp 

associated 

biofilm 

[40] 217 3.77 Mb 18496 4 – 12 

SRS049959 

(Additional file 

10) 

GA II Paired-End 

Genomic 

DNA Sample 

Human faeces 

(male) 

NIH Human 

Microbiome 

Project 

1409 21.6 Mb 14775 10 – 

12 



45 
 

Prep Kit 

(Illumina) 

SRR8570466 

(Additional file 

11) 

NextSeq Nextera Moving bed 

biofilm 

reactors with 

effluent 

wastewater 

[15] 5496 109 Mb 20186 8 

SRR7521238 

(Additional file 

12) 

HiSeq 2500 NEBNext Intestinal 

contents of a 

turkey vulture 

[34] 1256 26.9 Mb 22974 14 

Assembly statistics are presented for contigs larger than 10 kb only. The number of PCR cycles used 1017 

during library preparation was inferred from the library preparation kit's instructions when it couldn't be 1018 

found in the referenced publications. 1019 

 1020 

Table 2: Primer pairs used for ddPCR 1021 

Product Forward primer Reverse primer Product size 

ATP synthase 

β-subunit 

TGCTAAGGGACATGGAGGAC AAGTCATCGGCTGGTACGTA 414 bp 

SSU 

ribosomal 

protein S3 

CGGAAGAAAAGGTGCTGAAAT CTACGCTTCTCCTCCTTCCC 424 bp 

SSU 

ribosomal 

RNA 

GCAGCAGTGGGGAATATTGG CTGTTTGCTACCCACGCTTT 413 bp 

 1022 



46 
 

 1023 

Table 3: Primers used to amplify 5.3 kb regions with different GC contents from Fusobacterium C1’s 1024 

genome 1025 

Primer name Primer Sequence Orientation Region 

NormA_F TACTAGCTCCACTTTTAATACCTG fwd 1350019..1350042 

NormA_R GCTCTTCTTATTTCACCTTCATCT rev complement(1355348..1355371) 

RNA_F CTGTCTTTGCAAACCTTTCTATT fwd 1317778..1317800 

RNA_R ATTTGGCTTCTTGTGTTTTAGTT rev complement(1323108..1323130) 

 1026 

 1027 

Figures 1028 

Figure 1: Coverage biases in the sequencing of Fusobacterium sp. C1. The circle plot 1029 

shows from the inside: GC content (Ring 1), positions of CDSs, rRNAs, and tRNAs 1030 

(Ring 2), positions of the PCR targets for ddPCR and the 5.3 kb PCR products (Ring 3), 1031 

and coverages of Nanopore reads, MiSeq reads, NextSeq reads, HiSeq reads and 1032 

PacBio reads (Rings 4 – 8 respectively). The circles are numbered from the inside. The 1033 

GC content plot is centred on the median GC content, with GC contents greater than 1034 

the median extending outwards. The coverage data is plotted in 50 nt windows, with 1035 

separate linear scales for each dataset. 1036 

 1037 

Figure 2: Coverage biases in MiSeq datasets from many bacteria with different GC 1038 

contents. Dot plots show local GC content and normalised relative coverages in 500 nt 1039 

windows (see methods for explanation) of MiSeq data from a variety of bacteria with 1040 
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different average GC contents. Error bars indicate ± one standard deviation of 1041 

normalised coverage. The intensity of the blue in the dots is a log-transformed heatmap 1042 

of the number of 500 nt windows averaged into that datapoint. The datapoint with the 1043 

most windows in each plot has maximum blue. The vertical green line marks the 1044 

average GC content of each assembly. The average normalised coverage value is 1045 

indicated with a horizontal dashed red line. 1046 

 1047 

Figure 3: GC-biases in NextSeq, PacBio, Nanopore and HiSeq data. The dot plots are 1048 

as described in Figure 2. 1049 

 1050 

 1051 



Figure 1 Click here to access/download;Figure;Fig1.tif

https://www.editorialmanager.com/giga/download.aspx?id=87243&guid=5203d6e2-664d-45a7-bcbc-699a31bb2446&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=87243&guid=5203d6e2-664d-45a7-bcbc-699a31bb2446&scheme=1


Figure 2 Click here to access/download;Figure;Fig2_MiSeq.tif

https://www.editorialmanager.com/giga/download.aspx?id=87244&guid=8c2498e5-51aa-4b73-a376-ee463c86e001&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=87244&guid=8c2498e5-51aa-4b73-a376-ee463c86e001&scheme=1


Figure 3 Click here to access/download;Figure;Fig3_Others.tif

https://www.editorialmanager.com/giga/download.aspx?id=87245&guid=dcf4f5e0-8fe3-49ce-826c-bdf9e7b2ad32&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=87245&guid=dcf4f5e0-8fe3-49ce-826c-bdf9e7b2ad32&scheme=1


  

Additional file 1

Click here to access/download
Supplementary Material

Additional file 1.docx

https://www.editorialmanager.com/giga/download.aspx?id=87228&guid=89999a97-24f9-4056-b713-e792b564f97d&scheme=1


  

Additional file 2

Click here to access/download
Supplementary Material

Additional file 2.docx

https://www.editorialmanager.com/giga/download.aspx?id=87229&guid=3b59c60d-9eaf-4285-81dc-426e1ee0f969&scheme=1


  

Additional file 3

Click here to access/download
Supplementary Material

Additional file 3.docx

https://www.editorialmanager.com/giga/download.aspx?id=87230&guid=064f72cb-4a39-4abe-87ee-b0bf0011b56a&scheme=1


  

Additional file 4

Click here to access/download
Supplementary Material

Additional file 4.docx

https://www.editorialmanager.com/giga/download.aspx?id=87231&guid=ea9ad047-87a3-4db4-ae8b-54cd54140ade&scheme=1


  

Additional file 5

Click here to access/download
Supplementary Material

Additional file 5.docx

https://www.editorialmanager.com/giga/download.aspx?id=87232&guid=33366a0d-9d1a-455f-b10a-16e4fecfcfc9&scheme=1


  

Additional file 6

Click here to access/download
Supplementary Material

Additional file 6.png

https://www.editorialmanager.com/giga/download.aspx?id=87233&guid=97bb6177-a6a1-422c-b65e-04afb0aa356a&scheme=1


  

Additional file 7

Click here to access/download
Supplementary Material

Additional file 7.png

https://www.editorialmanager.com/giga/download.aspx?id=87234&guid=342de8f2-00e8-44e0-9c03-02712356afa6&scheme=1


  

Additional file 8

Click here to access/download
Supplementary Material

Additional file 8.mp4

https://www.editorialmanager.com/giga/download.aspx?id=87235&guid=4523f2b3-b930-4226-9ad5-0fbbf4da2c81&scheme=1


  

Additional file 9

Click here to access/download
Supplementary Material

Additional file 9.mp4

https://www.editorialmanager.com/giga/download.aspx?id=87236&guid=c4a08bef-a6a2-402f-bde1-528f41e3b8db&scheme=1


  

Additional file 10

Click here to access/download
Supplementary Material
Additional file 10.mp4

https://www.editorialmanager.com/giga/download.aspx?id=87237&guid=5cb213e2-205f-4ab6-9d13-6c01902c7640&scheme=1


  

Additional file 11

Click here to access/download
Supplementary Material
Additional file 11.mp4

https://www.editorialmanager.com/giga/download.aspx?id=87238&guid=c9ed7078-0432-4595-83c5-68335db368f4&scheme=1


  

Additional file 12

Click here to access/download
Supplementary Material
Additional file 12.mp4

https://www.editorialmanager.com/giga/download.aspx?id=87239&guid=ca7ada31-1421-41a5-8006-9104b3551b35&scheme=1


  

Additional file 13

Click here to access/download
Supplementary Material
Additional file 13.docx

https://www.editorialmanager.com/giga/download.aspx?id=87240&guid=fa6b1289-591f-44d2-b5e6-368caf21ef23&scheme=1


  

Additional file 14

Click here to access/download
Supplementary Material

Additional file 14.png

https://www.editorialmanager.com/giga/download.aspx?id=87241&guid=6ee94d63-7093-4171-b639-fbe166fe8fab&scheme=1


  

Additional file 15

Click here to access/download
Supplementary Material
Additional file 15.docx

https://www.editorialmanager.com/giga/download.aspx?id=87242&guid=deff3931-0aab-4f2f-82f4-8216a0ef6810&scheme=1

