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(a) Phase-position transformation for power laws
The natural phase measures the phase in a moving frame such that the phase increases linearly

for an uncoupled oscillator. The transformation to the natural phase is found by taking advantage
of this definition:

dφ

dxr
=
dφ

dt

dt

dxr
(S1)

=− 2π

2τ0

∣∣∣∣ γ

F (xr)

∣∣∣∣ , (S2)

where π/τ0 is the constant phase velocity for an isolated rower, τ0 the time between successive
trap updates i.e. the semi-period. The natural phase was chosen to be strictly decreasing for
repulsive potentials. The transformation between φ and xr is found by integrating the expression
in eq. S2. Given the prevalence of power law driving potentials in this work, it is useful to directly
state the transformation between phase and position for this case,

φ(x) = (Ns + 1)π + C0 −
γπ

kβτ0

1

2− β x
2−β
r , (S3)

C0 =
γπ

kβτ0

x 2−β
s

2− β =
πx2−βs

(A+ xs)2−β − x2−βs

. (S4)

The parameters defining the driving potential β, xs, τ0, and A, are explained in section 2a of the
main text. The counter Ns enumerates the number of trap updates that have taken place, which
distinguishes between cases with xt > 0 and xt < 0. The constant C0 ensures the switch point xs
is at nπ, with φ∈ [0, π) for xt > 0 (rower moving right) and φ∈ [π, 2π) for xt < 0 (rower moving
left). The initial Ns is chosen to be consistent with φ∈ [π, 2π) for xt < 0. This convention was
introduced in our work in [1].

The two oscillators are not identical in this case, differently to [1]. Here one rower has been
detuned by scaling the trap strength. Detuning through trap strength does not introduce any
difference in the phase-position transformation. The transformation depends exclusively on the
trap shape, switch point and amplitude. Consequently, the phase position transformation for
power laws in eq. (S3) still holds. The force in terms of the phase does depend on which rower
is being considered. The dependence stems from the trap strength, and so is a coefficient for the
general trap structure Fg(φi),

Fn(x(φn)) = knFg(φn) (S5)

= kn

{
βC−p

1 (π − C0 − φn)−p, 0<φ<π
−βC−p

1 (2π − C0 − φn)−p, π < φ< 2π
, (S6)

C1 =
π

(A+ xs)2−β − x2−βs

, C0 =C1x
2−β
s , p=

1− β
2− β . (S7)

The subscript n differentiates between the trap strength for the detuned rower, kd, and the
unaltered rower, ku.

(b) Defining the average interaction between rower and signal
Restricting our focus to the direction of oscillation for the signal case, the position of the bead

updates as
dx

dt
=

1

γ
F (x) + Vext(t). (S8)

The rower is driven by a power law, i.e. the phase-position transformation defined in the
previous section applies. There is no external flow applied when determining the phase-position
transformation.
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dφR
dt

=
dφR
dxr

dxr
dx

dx

dt
(S9)

=ΩR +ΩR

∣∣∣∣ γ

F (x)

∣∣∣∣Vext(t). (S10)

The external velocity is a square wave, and so the time of the signal can be converted to a phase
φS that is proportional to t. In this format the external signal is expressed as,

Vext(φS) =

{
vex, 0≤ φS <π
−vex, π≤ φS < 2π

,
dφS
dt

= 2πfe =ΩS . (S11)

The frequency of the external signal fe is detuned in this system, with the rower kept at a constant
frequency. Using this expression it possible to express the evolution of the rower phase purely
in terms of the two phases φR and φS . The interaction can then be averaged using the phase
reduction method, with the same technique applied in [1],

dφR
dt

=ΩR +ΩR

∣∣∣∣ γ

F (x(φR))

∣∣∣∣Vext(φS) (S12)

≈ΩR +
ΩRγvex
π|F (xs)|

GS [ψS ], (S13)

GS [ψS ] =
π|F (xs)|

2π

∫2π
0

sign(Vext(θ))
∣∣∣∣ 1

F (x(ψS + θ))

∣∣∣∣ dxrdx
∣∣∣∣
(ψS+θ)

dθ. (S14)

To distinguish the phase difference with respect to the external signal the subscript S is included
in ψS , similarly for the averaged interaction GS [ψS ]. Combining this expression with the phase
velocity of the external flow gives an expression for the time derivative of the phase difference,

dψS
dt

=ΩR −ΩS +
ΩRγvex
π|F (xs)|

GS [ψS ]. (S15)

GS [ψS ] can be written explicitly in the power law case. The expression for the force in terms of
phase is stated in eq. (S18), with the trap strength ku, and the phase-position transformation is
defined in eq. (S3). Evaluating the integral results in,

GS [ψS ] =


C−p

0
p+1

[
Cp+1
0 + (π + C0)

p+1 − 2(C0 − ψS)p+1
]
, −π <ψS ≤ 0

C−p
0
p+1

[
2(π + C0 − ψS)p+1 − Cp+1

0 − (π + C0)
p+1

]
, 0<ψS ≤ π

. (S16)

C0 and p are the same as defined in eq. (S7).

(c) Dimensionless interaction between two detuned rowers
Applying the same technique to the detuned rower pairs, the time derivative of the rower

phase can be calculated:

dφn
dt

=Ωn +

(
dφ

dxr

dxr
dx

)∣∣∣∣
φn

µnn′Fn′(x(φn′)) (S17)

≈Ωn +
µ̃nn′

γ

1

2π

∫2π
0

(
dφ

dxr

dxr
dx

)∣∣∣∣
ψnn′+θ

Fn′(x(θ)) dθ (S18)

=Ωn + µ̃nn′
Ωn′

π
GID[ψnn′ ], (S19)

GID[ψ] =
1

2

∫2π
0

(
dxr
dx

)∣∣∣∣
(ψ+θ)

∣∣∣∣ 1

Fg(ψθ)

∣∣∣∣Fg(θ) dθ. (S20)

In the expression above, the phase velocity of each bead is Ωn, and the dimensionless
hydrodynamic coupling term µ̃= γµ. The evolution of the phase difference can be determined



4

royalsocietypublishing.org
0000000

.......................................

using the phase derivatives, leading to the expression

dψ

dt
=Ωd −Ωu + µ̃du

(
Ωu
π
GID[ψ]− Ωd

π
GID[−ψ]

)
, (S21)

where we have set ψ= φd − φu.

(d) Compression of crescent trajectories to rower potentials
The crescent-shaped trajectories are found by fitting a second order Fourier series to the x

and y tracking data. The fit is calculated using the inbuilt MATLAB fit function with the
option fourier2. Each direction’s fit specifies a frequency, these are then combined for the
final trajectory by taking the average. The next step is to compress this path to one-dimension.
This requires some definition for the end points where the direction is reversed. We chose the
end points by considering the speed along the fitted path. First the local speed minima were
selected as points of interest. If the number of interesting points is even, then the points with the
largest and smallest x values were chosen as endpoints; the x direction is parallel to the epithelial
cell wall. Alternatively if the number of interesting points was odd, the midpoint along the
shortest segment was used as an end point. The two different cases are illustrated in figures S1(a)
and S1(b).

The endpoints are used to calculate the central axis. This is the curve onto which the data
points are then projected. The axis is calculated by separating the original path into upper and
lower sections using the endpoints. Each segment is described by the same number of points that
are equally spaced in time. The central line is found by pairing points on each trajectory using the
time from the endpoint and finding the midpoint. Having found a central line, the data points are
then mapped onto this curve by minimising the distance of each point to the curve. An example
is shown in figure S1(c).

A rower trapping force potential is determined by fitting a curve to position and force data.
The centre of drag position was compressed to one-dimension in the earlier steps. The process is
simpler for the net force, which was calculated using the total force the cilium exerts on the fluid.
To convert to one-dimension, the magnitude of the force is unchanged and the sign calculated
using the angle with the central axis. Specifically the sign of the dot product between the force
and the local direction of the central axis. If the change in the projected position and the projection
of the force point in opposite directions on the central axis, the point is excluded. An example of
the classification is shown in figure S1(d), where the red points indicate a positive force and the
blue negative. The black crosses indicate points that are excluded. A rower trapping function can
be found by fitting the position and force data. Note the traps were assumed to be attractive,
consequently the distance is measured relative to a switching end. The trajectories and fitted
potentials for each flagellum we tracked are shown in figures S2, S3, S4, S5, and S6.

(e) Compressing flagella trajectories (pseudocode)
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Algorithm: Coarse graining flagella onto rotors’ trajectory, and trajectory compression

Track the cilium:
Load the high speed microscopy video of cilia beating
foreach frame to track do

Track the cilium by clicking on several points along the snapshot of the cilium
Interpolate the clicked points to have a smooth representation of the cilium

Coarse-grain the cilium beat pattern as a rotor:
foreach tracked configuration of the cilium (at time t) do

Approximate cilium with N cylinders 1µm long
Approximate next tracked cilium (at time t+∆t) with N cylinders 1µm long
foreach cylinder approximating the cilium at time t do

Measure the displacement of its midpoint
Measure its velocity along the directions parallel and perpendicular to its axis
Use RFT to find the force the cylinder exerts on the fluid in moving to its

position at t+∆t

Integrate the force contributions, taking into account overlapping cylinders. This
yields the total force exerted by the cilium

Average of the position of the N cylinders approximating the cilium configuration,
weighting by the magnitude of the force they exert on the fluid. This yields the
position of the effective “centre of drag” of the cilium

A colloidal rotor following the trajectory of the centre of drag of the cilium
coarse-grains effectively the beat pattern of the tracked cilium.

Preprocess the position and force data:
Load the trajectory data
Translate the trajectory to be centered on (0,0)
Convert to microns from pixels
if crescent trajectory then

Set the convention that the x direction is parallel to the cell wall
Select only complete cycles

Fit a trajectory to the centre of drag positions:
if elliptical trajectory then

Fit an ellipse to the position data
else if crescent trajectory then

Fit a second order Fourier series to both x and y
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Compress the position data to one-dimensions:
if elliptical trajectory then

Rotate the ellipse to align the major axis with the x axis
Set the compressed position to the new x position

else if crescent trajectory then
Define the central axis
Find the points of minimum speed along the orbit
Set end points to the minima that maximise the separation relative to the cell wall
if odd number of minima then

Find the midpoint along the short arc
Set as new end point

Set the inner and outer segments of the crescent using the endpoints
Set the central axis by finding the midpoints between each segment:

Sample the inner and outer segments equally over time
Pair points by time to travel to endpoint (use the negative time for the inner)
Find the midpoint of the pairs

Project data onto the central axis by minimising the distance to the trajectory

Compress the force data to one dimension:
Set the magnitude of the compressed force to the magnitude of the measured force
Set the sign/direction of the force using the fitted trajectories
if elliptical trajectory then

Use the major axis to group the data into positive and negative forces. With points
on same side having the same direction

else if crescent trajectory then
Find the change in the compressed position
Find the cosine of direction of the force relative to the central axis
Exclude points that don’t match in these measures
Set force direction using sign of the change in compressed position

Transform the compressed position data to be measured relative to the end point it is
approaching (i.e. the compressed position should always be decreasing with time, and
the traps are attractive)

Find the force-position relationship by fitting a function (cubic polynomial) to the
compressed force and compressed position data
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Figure S1. Illustrations of certain steps for compressing the crescent shaped trajectories into rower potentials. (a)

Classifying endpoints when there are an even number of points. Local minima in the speed are marked by red crosses,

with the colour of the trajectory indicating the speed. The two values with the most extreme x values are selected as

endpoints. In this case there are only the two. (b) When the number of minima is odd, the centre of the shortest segment

is used as one of the endpoints. (c) The centre of drag data is compressed to one-dimension by finding the shortest path

to the central axis. Here the data are the blue dots, and the black lines indicate the projection. (d) The forces are classified

as positive or negative depending on their alignment. Red points have a positive sign and blue points are negative. If the

change in position is contradictory to the force alignment the point is marked with a black cross and excluded.
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Figure S2. Converting trajectories of Chlamydomonas flagella into rower force profiles. The source videos are from [2].

(a,b) The trajectories of the left and right flagella. The points are grouped using the major axis of the fitted ellipse. Values

on the inside half are blue and set as negative, while points on the outside are red and assigned a positive value. (c,d) The

force profiles fit to the centre of drag trajectories. To position the points, the distance parallel to the major axis is used. The

position here is equivalent to the distance relative to the trap for rowers, and is strictly decreasing following the trajectory.

Consequently the position of the blue points is measured relative to the bottom of the ellipse, and the red points from the

top.
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Figure S3. Force profiles determined using the motion of quadri-flagellated algae, source [3]. (a) The trajectory and profile

when the algae is in “gallop gait”. (b) The force profile is calculated using the same approach as Chlamydomonas. (c) The

trajectory for a flagellum when alga is exhibiting the trot gait. (c) The force profile calculated for the trot gait.
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Figure S4. Force profiles determined using the flagellum motion of Volvox cells. The videos from [4] where one flagellum

was snipped were used for this calculation. The remaining flagellum was tracked, which reduced the error.
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Figure S5. Trajectories and force profiles derived using the other mouse cilia. (a) Trajectory of the centre of drag calculated

from [5]. (b,c) Trajectories from videos of ependymal cilia from mouse brain in vivo [6].
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Figure S6. Rower force profiles derived from trajectories of the centre of drag describing cilia in human airways [7].
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