Supporting Information

Combined Linear Interaction Energy and Alchemical Solvation Free Energy Approach for Protein–binding Affinity Computation

Eko Aditya Rifai,¹ Valerio Ferrario,² Jürgen Pleiss,² and Daan P. Geerke^{*,1}

¹AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands

²Institute of Biochemistry and Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany

E-mail: d.p.geerke@vu.nl

ID	Pose 1	Pose 2	Pose 3	ID	Pose 1	Pose 2	Pose 3
1	0.002	0.998	-	15	0.990	0.010	0.000
2	0.998	0.002	-	16	0.740	0.260	-
3	0.113	0.887	-	17	0.974	0.026	-
4	0.003	0.988	0.010	18	0.309	0.691	-
5	0.836	0.164	-	19	0.063	0.933	0.004
6	0.791	0.209	-	20	0.264	0.736	-
7	0.971	0.029	-	21	0.016	0.984	-
8	0.005	0.995	-	22	0.996	0.004	-
9	0.953	0.047	-	23	0.582	0.059	0.359
10	0.963	0.037	-	24	0.157	0.832	0.011
11	0.177	0.823	-	25	0.594	0.113	0.293
12	0.859	0.051	0.090	26	0.757	0.243	-
13	0.093	0.205	0.702	27	0.952	0.048	-
14	0.971	0.029	-	28	0.131	0.869	-

Table S1: Weights W_i of individual simulations (starting from binding pose 1, 2 or 3) as used in the ALIE1 model for the ligands considered (listed by ID).

No.	$\Delta G_{solv} \; (\mathrm{kJ \; mol^{-1}})$	Error $(\underline{+})$	No.	$\Delta G_{solv} \; (\mathrm{kJ} \; \mathrm{mol}^{-1})$	Error $(\underline{+})$
1	-34.76	0.08	15	-34.81	0.08
2	-40.09	0.08	16	-6.14	0.07
3	-15.65	0.08	17	-28.15	0.08
4	-37.39	0.07	18	-45.02	0.08
5	-47.71	0.08	19	-32.16	0.09
6	-45.80	0.08	20	-35.17	0.08
7	-15.57	0.08	21	-16.65	0.08
8	-30.00	0.08	22	-44.71	0.09
9	-25.21	0.08	23	-50.13	0.11
10	-34.77	0.07	24	-44.33	0.09
11	-50.95	0.08	25	-29.32	0.08
12	-24.64	0.09	26	-34.60	0.08
13	-39.23	0.10	27	-18.09	0.07
14	-16.02	0.08	28	-16.88	0.07

Table S2: Solvation free energies ΔG_{solv} and associated error estimates as calculated for the considered molecules (listed in Table 1).

No.	$\left\langle V_{lig-surr}^{ele} \right\rangle_{bound}$	$\left\langle V_{lig-surr}^{ele} \right\rangle_{off}$	No.	$\left\langle V_{lig-surr}^{ele} \right\rangle_{bound}$	$\left\langle V_{lig-surr}^{ele} \right\rangle_{off}$
1	-60.36	17.32	15	-59.41	-3.62
2	-57.41	-1.17	16	-6.93	3.56
3	-15.04	13.13	17	-36.02	1.48
4	-60.69	8.81	18	-42.90	-14.73
5	-51.78	1.54	19	-32.40	-12.03
6	-40.51	0.42	20	-23.13	13.81
7	-24.23	12.90	21	-6.09	15.71
8	-53.35	-8.86	22	-58.96	29.34
9	-42.68	0.52	23	-40.60	16.14
10	-38.71	1.77	24	-38.29	8.82
11	-52.66	10.33	25	-32.90	9.44
12	-30.91	-3.14	26	-38.53	-3.18
13	-30.40	9.81	27	-26.88	11.01
14	-5.71	9.10	28	-27.57	-8.54

Table S3: $\langle V_{lig-surr}^{ele} \rangle_{bound}$ and $\langle V_{lig-surr}^{ele} \rangle_{off}$ values (in kJ mol⁻¹) as calculated for the considered molecules (listed in Table 1) and as used in the ALIE2 model

Table S4: Model parameters for the ALIE1 models of CYP2A6 including some adaptations (i.e., calibrated either without compound **22**, without compound **16**, or with an offset γ –parameter, in kJ mol⁻¹), and for two adapted models with a correction for the ligand's SASA and number of rotatable bonds (with $T\Delta S$ in Equation 13 set to 20 kJ mol⁻¹ or 6 kJ mol⁻¹, respectively, as indicated by the subscript for SASA), together with their respective root–mean–square errors (RMSE, with respect to experiment and in kJ mol⁻¹), standard deviation errors in the prediction from leave–one–out cross–validation (SDEP, in kJ mol⁻¹) and correlation metrics for the set of compounds considered in this work.

	ALIE1	w/o 22	w/o 16	γ	$SASA_{20}/ro$	t $SASA_6/rot$
No. of comp.	28	27	27	28	28	28
α	0.34	0.30	0.34	0.15	0.26	0.29
β	0.66	0.79	0.65	0.63	0.66	0.66
γ	_	_	_	-23.42	_	_
RMSE	8.39	7.71	8.53	8.03	8.38	8.62
SDEP	9.29	8.31	9.53	9.45	9.26	9.54
r^2	0.59	0.64	0.50	0.61	0.56	0.54
q^2	0.48	0.58	0.35	0.46	0.44	0.41
Pearson's r	0.77	0.80	0.71	0.78	0.75	0.74
Spearman's ρ	0.76	0.76	0.73	0.78	0.74	0.74

No.	$\Delta G_{bind,exp}$	No.	$\Delta G_{bind,exp}$
1	-27.04	15	-22.63
2	-23.40	16	-28.86
3	-31.41	17	-28.88
4	-28.66	18	-30.42
5	-25.39	19	-35.82
6	-32.81	20	-26.12
7	-21.50	21	-21.50
8	-35.10	22	-32.68
9	-42.59	23	-37.63
10	-24.54	24	-25.32
11	-28.17	25	-27.68
12	-35.10	26	-27.43
13	-38.56	27	-31.34
14	-31.71	28	-32.74

Table S5: Experimental estimates for the CYP2E1 binding free energy ($\Delta G_{bind,exp}$ in kJ mol⁻¹) of the 28 compounds considered in the current work.

Figure S1: Upper panel: comparison of selected ligand-binding poses (for compounds 2 [cyan], 4 [orange], 14 [pink] and 24 [yellow]) that served as starting pose in MD simulations with $W_i > 0.8$ as used in the ALIE1 model. Lower panel: comparison of starting poses of individual simulations used in the ALIE1 model for compound 23, i.e., poses 1 [cyan] and 3 [magenta] (with W_i of 0.58 and 0.36, respectively, Table S1).

Figure S2: Comparison of distributions of the calculated (calc) and experimental (ref) ΔG_{bind} values for the CYP2A6 LIE model, and of the calculated (calc) and reference (ref) ΔG_{prot} values for the CYP2A6 ALIE models.

Figure S3: Scatter and kernel density plots of the ALIE1 models for CYP2A6 binding free energy calculation, calibrated either without compound **22** (A), without compound **16** (B), with all 28 compounds and an offset γ -parameter (C), and with a correction for the ligand's SASA and number of rotatable bonds (with $T\Delta S$ in Equation 13 set to 20 (D) or 6 (E) kJ mol⁻¹), illustrating obtained correlations between calculated free energies $\Delta G_{prot,calc}$ and the respective reference values. Dashed lines indicate ideal correlation, solid lines indicate actually obtained correlations, and shaded areas indicate 95% confidence intervals.

Figure S4: Comparison of distributions of the calculated (calc) and experimental (ref) ΔG_{bind} values for the CYP2E1 LIE model, and of the calculated (calc) and reference (ref) ΔG_{prot} values for the CYP2E1 ALIE1 model.