Supporting Information

Conformational Heterogeneity and Self-Assembly of α,β,γ-Hybrid Peptides Containing Fenamic Acid: Multi-Stimuli Responsive Phase Selective Gelation

Srayoshi Roy Chowdhury, a Sujay Kumar Nandi, Debasish Podder and Debasish Haldara*

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India, Fax: (+)913325873020; Tel: +913325873119; E-mail: deba h76@yahoo.com; deba h76@iiserkol.ac.in

Table of contents

1. Figure S1	S2
2. Figure S2	S3
3. Figure S3	S3
4. Figure S4	S4
5. Figure S5	S4
6. Figure S6	S5
7. Figure S7	S5
8.Table 1	S5
9. Table 2	S 6
10. Table 3	S 7
11. ¹ H, ¹³ C, Mass and FT-IR Spectrum of the Compounds	S8-S16

(A) For Peptide 1 and Peptide 2

Figure S1 (A): Synthetic route of Peptide **1** and Peptide **2.** (a)Dry DCM,H-Aib-OMe, DCC, 48h, rt; (b) 2(N) NaOH, MeOH, 12h, rt; (c) Dry DCM, DCC, HOBt, H-Phe-OMe, 48h, rt (for peptide 1), H-Tyr-OMe (for peptide 2). **(B):** Synthetic route of Peptide **3** (B). (a)Dry DCM,H-Aib-OMe, DCC, 48h, rt; (b) 2(N) NaOH, MeOH, 12h, rt; (c) Dry DCM, DCC, 48h, rt, Maba-OMe (for peptide 3).

Figure S2 : (A) Concentration dependent UV-Vis spectra and (B) Concentration dependent Fluorescence spectra [excitation at 346 nm] in MeOH of Peptide 1.

Figure S3 : (A) Concentration dependent UV-Vis spectra and (B) Concentration dependent Fluorescence spectra [excitation at 338 nm] in MeOH of Peptide **2**.

Figure S4 : (A) Concentration dependent UV-Vis spectra and (B) Concentration dependent Fluorescence spectra [excitation at 342 nm] in MeOH of Peptide **3**.

Figure S5: POM image of peptide **1** (a) without polarizer and (b) with polarizer; POM image of peptide **2** (c) without polarizer and (d) with polarizer, POM image of peptide **3** (e) without polarizer and (f).with polarizer.

Figure S6: FT-IR Spectra of Peptide 3 and its xerogel.

Figure S7: The plausible effect of H_2SO_4 on peptide **3** gel to sol transition and phase transfer.

 Table S1. Crystal data and structure refinement for Peptide 1.

Identification code	NPAP
Empirical formula	$C_{27} H_{29} N_3 O_4$
Formula weight	459.53
Temperature/K	298
Crystal system	monoclinic
Space group	P 1 21 1
a/Å	6.9113
b/Å	18.1972
c/Å	10.1370
α/°	90

β/°	105.648
γ/°	90
Volume/Å ³	1227.64
Ζ	2
$\rho_{calc}g/cm^3$	1.243
μ/mm^{-1}	0.084
F(000)	488.0
Crystal size/mm ³	0.2458 imes 0.2358 imes 0.1587
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.172 to 50.044
Index ranges	$-8 \le h \le 8, -21 \le k \le 21, -12 \le l \le 12$
Reflections collected	10027
Independent reflections	4315 [$R_{int} = 0.0331$, $R_{sigma} = 0.0427$]
Data/restraints/parameters	4315/1/310
Goodness-of-fit on F ²	1.088
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0470, wR_2 = 0.1506$
Final R indexes [all data]	$R_1 = 0.0534, wR_2 = 0.1574$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.17
Flack parameter	0.25(3)

 Table S2. Crystal data and structure refinement for Peptide 2.

Identification code	NPAT
Empirical formula	$C_{27} H_{29} N_3 O_5$
Formula weight	475.53
Temperature/K	100.01
Crystal system	monoclinic
Space group	P 1 21 1
a/Å	6.9049
b/Å	17.9673
c/Å	10.1305
$\alpha/^{\circ}$	90
β/°	106.637
γ/°	90
Volume/Å ³	1204.20
Ζ	2
$\rho_{calc}g/cm^3$	1.311
µ/mm ⁻¹	0.091
F(000)	506.0
Crystal size/mm ³	$0.248 \times 0.187 \times 0.107$
Radiation	MoKα (λ = 0.71073)
20 range for data collection/°	4.196 to 50.04

Index ranges	$-8 \le h \le 7, -21 \le k \le 10, -4 \le l \le 12$
Reflections collected	3435
Independent reflections	2739 [$R_{int} = 0.0337$, $R_{sigma} = 0.0502$]
Data/restraints/parameters	2739/1/320
Goodness-of-fit on F ²	0.971
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0423, wR_2 = 0.1229$
Final R indexes [all data]	$R_1 = 0.0455, wR_2 = 0.1275$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.37
Flack parameter	-1.0(10)

Table S3. Crystal data and structure refinement for Peptide 3.

Identification code	NPAM
Empirical formula	$C_{25} H_{25} N_3 O_4$
Formula weight	431.48
Temperature/K	273
Crystal system	monoclinic
Space group	P 1 21/c 1
a/Å	13.2844
b/Å	9.4272
c/Å	36.075
$\alpha/^{\circ}$	90
β/°	93.302
γ/°	90
Volume/Å ³	4510.4
Ζ	8
$\rho_{calc}g/cm^3$	1.271
μ/mm^{-1}	0.709
F(000)	1824
Crystal size/mm ³	-
Radiation	$CuKa (\lambda = 1.54178)$
Theta Min-Max /°	2.5, 68.0
Dataset	-15: 15 ; -10: 11 ; -43: 43
Tot., Uniq. Data, R(int)	49064, 8166, 0.153
Observed data $[I > 2.0 \text{ sigma}(I)]$	5419
Nref, Npar	8166, 584
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1315, wR_2 = 0.3302$
Final R indexes [all data]	$R_1 = 0.1735, wR_2 = 0.3429$
Min. and Max. Resd. Dens. [e/Ang^3]	-0.64, 0.83

Figure S8. ¹H NMR (400 MHz, CDCl₃) spectrum of Fenamic acid- Aib OMe (NPA-Aib-OMe) 4.

Figure S9. ¹³C NMR (100 MHz, CDCl₃) spectrum of Fenamic acid- Aib OMe (NPA-Aib-OMe) 4.

Figure S10. Mass spectrum of Fenamic acid- Aib OMe (NPA-Aib-OMe) 4.

Figure S11. FT-IR spectrum of Fenamic acid- Aib OMe (NPA-Aib-OMe) 4.

Figure S12. ¹H NMR (500 MHz, DMSO-d₆) spectrum of Fenamic acid- Aib OH (NPA-Aib-OH) 5.

Figure S13. ¹³C NMR (125 MHz, DMSO-d₆) spectrum of Fenamic acid- Aib OH (NPA-Aib-OH) 5.

Figure S14. Mass spectrum of Fenamic acid- Aib OH (NPA-Aib-OH) 5.

Figure S15. FT-IR spectrum of Fenamic acid- Aib OH (NPA-Aib-OH) 5.

Figure S16. ¹H NMR (400 MHz, CDCl₃) spectrum of Fenamic acid- Aib-Phe OMe 1.

Figure S17. ¹³C NMR (100 MHz, CDCl₃) spectrum of Fenamic acid- Aib-Phe OMe 1.

Figure S18. Mass spectrum of Fenamic acid- Aib-Phe OMe 1.

Figure S19. ¹H NMR (400 MHz, DMSP-d₆) spectrum of Fenamic acid- Aib-Tyr OMe 2.

Figure S20. ¹³C NMR (100 MHz, DMSO-d₆) spectrum of Fenamic acid- Aib-Tyr OMe 2.

Figure S21. Mass spectrum of Fenamic acid- Aib-Tyr OMe 2.

Figure S22. ¹H NMR (400 MHz, CDCl₃) spectrum of Fenamic acid- Aib-Maba OMe 3.

Figure S23. ¹³C NMR (100 MHz, CDCl₃) spectrum of Fenamic acid- Aib-Maba OMe 3.

Figure S24. Mass spectrum of Fenamic acid- Aib-Maba OMe 3.