Supplementary information

Using smartphone APP to determine CN⁻ concentration quantitatively in tap water: synthesis of the naked-eye colorimetric chemosensor for CN⁻ and Ni²⁺ based on benzothiazole

Cui-Bing Bai,^{†,‡} Xin-Yu Liu, [†] Jie Zhang,[†] Rui Qiao,^{*,†,‡} Kun Dang,[†] Chang Wang,^{†,‡} Biao Wei,^{†,‡} Lin Zhang,^{†,‡} Shui-Sheng Chen^{†,‡}

[†] School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province, 236037, China.

[‡] Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province, 236037, China

* Corresponding Author E-mail: qiaorui@mail.ipc.ac.cn

Contents

Figure S1 ¹ H NMR spectrum of DK in DMSO- d_6	S2
Figure S2 ¹³ CNMR spectrum of DK in DMSO- d_6	S2
Figure S3 ESI-MS data of DK	S3
Figure S4-S5 Interference experiment	S3
Figure S6 A Job's plot for the DK and CN ⁻ based oncontinuous variation method	S5
Figure S7 A Job's plot for the DK and Ni ²⁺ based oncontinuous variation method	
Figure S8 Job's Plot showing the 1:1 stoichiometry between DK and CN ⁻	S6
Figure S9 Job's Plot showing the 2:1 stoichiometry between DK and Ni ²⁺	
FigureS10 ESI-MS data of $[\mathbf{DK}$ -CN + H ⁺] ⁺	
FigureS11 ESI-MS data of $[DK + 2Ni^{2+} + 2NO_3^- + H^+]^+$	S8

Figure S12 ¹ H NMR titration spectra	S9
FigureS13 FT-IR spectra of DK and DK + CN^{-} in KBr disks	S10
FigureS14 FT-IR spectra of DK and DK + Ni ^{$2+$} in KBr disks	S10
Figure S15-S16 The calculation of the detection limits (LOD)	S11
Table S1 Comparison with the reported chemosensors with DK	S13
Figure S17 Testing tap water with test paper	S14
References	S14

Figure S1¹H NMR spectrum of DK in DMSO-*d*₆.

Figure S3 ESI-MS spectrum of DK.

Figure S4 Black bar: Absorption spectra of **DK** with different anions in HEPES buffer /CH₃CN (0.01 M, pH=7.3, V/V = 10:90) solution. Red bar: Absorption spectra of **DK** with the mixture of CN and other anions in HEPES buffer /CH₃CN (0.01 M, pH=7.3, V/V = 10:90) solution. 1-16: F[•], Cl[•], Br[•], I[•], SO₃²⁻, S²⁻, NO₃⁻, NO₂⁻, PO₄³⁻, CO₃²⁻, HCO₃⁻, AcO⁻, EDTA, H₂PO₄⁻, CN⁻.

Figure S5 Black bar: Absorption spectra of **DK** with the mixture of Ni²⁺ and other metal ions in HEPES buffer /CH₃CN (0.01 M, pH=7.3, V/V = 10:90) solution. Red bar: Absorption spectra of **DK** with different metal ions in HEPES buffer /CH₃CN (0.01 M, pH=7.3, V/V = 10:90) solution. 1-20: Fe²⁺, Fe³⁺, Hg²⁺, Na⁺, Cu²⁺, Co²⁺, Mg²⁺, Ce³⁺, Cd²⁺, Ni²⁺, Zn²⁺, Ag⁺, K⁺, Ba²⁺, Pb²⁺, Y³⁺, Al³⁺, Sr²⁺, Mn²⁺, Ca²⁺.

Figure S6 A Job's plot for the DK and CN⁻ based oncontinuous variation method.

Figure S7 A Job's plot for the **DK** and Ni²⁺ based oncontinuous variation method.

Figure S8 Job's Plot showing the 1:1 stoichiometry between **DK** and CN⁻. (a) Absorption spectra of **DK** $(1.0 \times 10^{-5} \text{ M})$ in the presence of different concentration of CN⁻ (0.2-1.7 equiv.) in HEPES buffer /CH₃CN (0.01 M, pH=7.3, V/V = 10:90) solution. (b) A plot of absorption intensity depending on the concentration of CN⁻ in the range from 0.2-1.7 equiv.

(a)

Figure S9 Job's Plot showing the 2:1 stoichiometry between **DK** and Ni²⁺. (a) Absorption spectra of **DK** $(1.0 \times 10^{-5} \text{ M})$ in the presence of different concentration of Ni²⁺ (0.05-1.0 equiv.) in HEPES buffer /CH₃CN (0.01 M, pH=7.3, V/V = 10:90) solution. (b) A plot of absorption intensity depending on the concentration of Ni²⁺ in the range from 0.05-1.0 equiv.

(a)

(b)

Figure S10 ESI-MS data of $[\mathbf{DK}-\mathbf{CN} + \mathbf{H}^+]^+$.

11.5 11.0 12.0 11.5 11.0 10.5 10.0 9.5 9.0 1.5 1.0 7.5 7.0 6.5 6.0 5.3 5.0 4.5 4.0 f1 (gea)

(b)

Figure 12 ¹H NMR titration spectra (DMSO-d₆, 400 MHz): (a) **DK** upon addition of CN^{-} (a-f: 0-1.5equiv.); (b) **DK** upon addition of Ni²⁺ (a-f: 0-0.75 equiv.).

Figure S13 FT-IR spectra of **DK** and **DK** + CN^{-} in KBr disks.

Figure S14 FT-IR spectra of **DK** and **DK** + Ni^{2+} in KBr disks.

The calculation of the detection limits (LOD):

Figure S15 Detection limit of DK towards the detection of CN⁻.

The linear equation was "y = 0.34617x + 0.20786".

According to the common equation "DL = $3\delta/k$ " that the value of signal-to-noise ratio (S/N) was regulated at "3".

" δ " was the standard deviation of blank measurements (25 times detection). $\sigma = 0.02$

"k" represented the slope between absorbance versus the concentration of CN⁻. $k = 0.34617 \times 10^7$

 $\textbf{LOD} = \textbf{K} \times \delta / \textbf{S} = 17 \times 10^{-9} \text{ M}.$

Figure S16 Detection limit of DK towards the detection of Ni²⁺.

The linear equation was "y = 0.76855x + 0.18407".

According to the common equation "DL = $3\delta/k$ " that the value of signal-to-noise ratio (S/N) was regulated at "3".

" δ " was the standard deviation of blank measurements (25 times detection). $\sigma = 0.019$

"*k*" represented the slope between absorbance versus the concentration of Ni²⁺. $k = 0.76855 \times 10^7$

 $\mathbf{LOD} = \mathbf{K} \times \delta / \mathbf{S} = 7.4 \times 10^{-9} \, \mathbf{M}.$

	Detected	Detection	Detection	Refs.	
Chemosensor	ion	limit	medium		
$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	CN ⁻	$1.34 \times 10^{-7} \text{ M}$	THF/H ₂ O (2:8, v/v)	3	
N N N N	CN⁻	4.8 × 10^{-7} M	DMSO/H ₂ O (9:1, v/v)	4	
	CN^-	$1.8 \times 10^{-7} \mathrm{M}$	DMSO/H ₂ O solution (6:4, v/v, containing 0.01 M HEPES, pH 7.26)	5	
S S S S S S	CN⁻	$4.6 \times 10^{-7} \mathrm{M}$	DMSO/H ₂ O (9:1, v/v)	6	
	CN	$17 \times 10^{-9} \mathrm{M}$	HEPES buffer /CH ₃ CN (0.01 M, pH=7.3, V/V = 1:9)	Present work	
$ \begin{array}{c} $	Ni ²⁺	$1.1 \times 10^{-6} \mathrm{M}$	MeOH/H ₂ O 1 : 1, HEPES buffer, pH = 7.0	7	
HO OH	Ni ²⁺	$2.61 \times 10^{-8} \mathrm{M}$	Ethanol	8	
N-NH OH CN ONH2	Ni ²⁺	$1.91 \times 10^{-6} \mathrm{M}$	THF/H ₂ O (1.5:8.5, v/v)	9	

Table	S1	Comparison	with t	the report	ed c	chemosens	sors	with	DK.	The	maximum	allowable	e level	of	drinking
water	stip	ulated by the	World	l Health O	rgar	nization (V	WHC)) we	ere 1.9	9 µM	for CN ⁻ a	nd 0.34 µN	A for N	vi ²⁺	1,2

	Ni ²⁺	$4.91\times10^{-6}M$	MeOH/H ₂ O (1:1 (v/v), HEPES (50 mM), pH at 7.4	10
N = C = C = C	Ni ²⁺	$7.4 \times 10^{-9} \mathrm{M}$	HEPES buffer /CH ₃ CN (0.01 M, pH=7.3, V/V = 1:9)	Present work

Figure S17. Test papers immersed in tap water contaminated with different contaminants, from left to right: the distilled water, the solutions of CN^{-} in tap water and the tap water.

References

- Amhed, F.; Chorus, I.; Cotruvo, J.; Cunliffe, D.; Endo, T.; Fawell, J. K.; Howard, G.; Jackson, P.; Kumar, S.; Kunikane, S.; Magara, Y.; Ohanian, E.; Ong, C. N.; Schmoll, O. Guidelines for Drinking-Water Quality, 3rd ed., World Health Organization, Geneva, Switzerland, 2004.
- [2] Zhu, Y.; Wang, Z.; Yang, J.; Xu, X.; Wang, S.; Cai, Z.; Xu, H. J. N, N-Bis (2-pyridylmethyl) amine-based truxene derivative as a highly sensitive fluorescence sensor for Cu²⁺ and Ni²⁺ ion. *Chinese J. Org. Chem.*, 2019, **39**, 427-433.

- [3] Zhai, B.; Hu, Z.; Peng, C.; Liu, B.; Li, W.; Gao, C. Rational design of a colorimetric and fluorescence turn-on chemosensor with benzothiazolium moiety for cyanide detection in aqueous solution. *Spectrochim. Acta. A.* 2019, 224, 1117409-117415.
- [4] Tavallali, H.; Deilamy-Rad, G.; Parhami, A.; Kiyani, S. Dithizone as novel and efficient chromogenic probe for cyanide detection in aqueous media through nucleophilic addition into diazenylthione moiety. *Spectrochim. Acta. A.* 2014, 121, 139-146.
- [5] Li, J.; Qi, X.; Wei, W.; Liu, Y.; Xu, X.; Lin, Q.; Dong, W. A "donor-two-acceptor" sensor for cyanide detection in aqueous solution. *Sensors Actuators B Chem.* 2015, 220, 986-991.
- [6] Niu, Q.; Lan, L.; Li, T.; Guo, Z.; Jiang, T.; Zhao, Z.; Feng, Z.; Xi, J. A highly selective turn-on fluorescent and naked-eye colorimetric sensor for cyanide detection in food samples and its application in imaging of living cells. *Sens. Actuators B: Chem.* 2018, 276, 13-22.
- [7] Rani, R.; Paul, K.; Luxami, V. An NBD-based two-in-one Cu²⁺/Ni²⁺ chemosensor with differential charge transfer processes. *New J. Chem.* 2016, 40, 2418-2422.
- [8] Yang, G.; Meng, X.; Fang, S.; Wang, L.; Wang, Z.; Wang, F.; Duan, H.; Hao, A. Two novel pyrazole-based chemosensors: "naked-eye" colorimetric recognition of Ni²⁺ and Al³⁺ in alcohol and aqueous DMF media. *New J. Chem.* **2018**, 42, 14630-14641.
- [9] Pannipara, M.; Al-Sehemi, A. G.; Irfan, A.; Assiri, M.; Kalam, A.; Al-Ammari, Y. S. AIE active multianalyte fluorescent probe for the detection of Cu²⁺, Ni²⁺ and Hg²⁺ ions. *Spectrochim. Acta. A.* 2018, 201, 54-60.
- [10] Velmurugan, K.; Prabhu, J.; Raman, A.; Duraipandy, N.; Kiran, M. S.; Easwaramoorthi, S.; Tang, L.; Nandhakumar, R. Dual Functional Fluorescent Chemosensor for Discriminative Detection of Ni²⁺ and Al³⁺ Ions and Its Imaging in Living Cells. *ACS Sustain. Chem. Eng.* **2018**, 6, 16532-16543.