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Supplemental Information 

 
Supplementary Figure 1. A) 
Representation of one VSD from 
the Kv1.2/Kv2.1 chimera 
(structure 2R9R, left) in the 
activated state, and a model of 
the Shaker 3D structure 
obtained by homology modeling 
using the  2R9R structure as 
template (right). In both 
structures gating charges on the 
S4 segment are in magenta, 
while negative and positive 
residues located in the 
remaining parts of the VSDs are 
in red and yellow, respectively. 
The residues F233 (in the 
chimera) and F290 (in Shaker) 
are in green. The hourglass-
shaped drawing superimposed 
to the Shaker structure 
represents the geometry used in 
our model to delimit the gating 
pore and vestibules. The 
superimposition shows that the 
choice of 15° as half angle 
aperture approximates quite 
well the shape of the vestibules. 
B) Schematics showing the 
geometry of the VSD assumed in 
our model. The S4 segment 
containing the 6 gating charges 
was assumed to move 
perpendicular to the membrane 
through the gating pore (0.2 nm 
long) and the  extracellular and 
intracellular vestibules (each 3.4 
nm long, and opening with a 
half angle of 15°). The dashed 
lines represent some of the 

surfaces delimiting the volume elements considered in our numerical simulations (see text for details). C) and D) Profiles 
of the gating pore radius, the fixed charge density located in the S1-S3 region of the VSD (ZF), and the charge density on 
the S4 segment (ZS4) , for the Kv1.2/Kv2.1 chimera (left) and the Shaker model structure (right). For symmetrical reasons, 
x=0 was assumed to coincide with the center of the gating pore, where the F233/F290 residue is assumed to be located. 
Inset: 3D structure of the  S4 segment region of the Shaker channel model, with the R1-R6 charged residues explicitly 
shown in liquor ice representation. Notice the reasonable correspondence between the peaks of the ZS4 profile and the 

charged atoms of the R1-R6 residues.  E) Profiles of the gating pore radius, the relative dielectric constant () and the 
electrolyte ion diffusion coefficients (Dion) as a function of the spatial coordinate considered in our model (x). F) Sequence 
alignment for the Kv1.2/Kv2.1 chimera and the Shaker K channels. * indicates conserved residues, while . indicates 
residues with similar polarity. 
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Validation of the steady-state approximation for ion dynamics in the solution of the Fokker-Planck equation 

In order to numerically find the probability density function of the S4 segment’s position it is necessary to make 

an approximation in our model, consisting in the assumption that the electrolyte ions equilibrates 

instantaneously (cf. above). This steady-state approximation is very reasonable, since electrolyte ions move at 

a rate much faster than the movement of the S4 segment. We however verified its validity by comparing the 

output of the full model used in the simulation of the single S4 segment dynamics with that of a reduced model 

containing the described approximation. In the Supplementary Figure 2A we compared the amplitude 

histograms of the S4 segment positions built from simulations obtained with the full  model – that is, the 

amplitude histograms already shown in Figure 2B of the paper – with the amplitude histograms obtained from 

simulations done using the reduced model, represented by the superimposed red lines.  

Supplementary Figure 2. A) 

Amplitude histograms of  the S4 

segment position xS4, obtained from 

100 ms simulations at the indicated 

voltages. The black columns are 

simulation obtained with the full 

model, also shown in Figure 2 of the 

Ms. The red lines represent 

amplitude histograms obtained by 

running stochastic simulations of the 

reduced model, assuming 

instantaneous steady-state for the 

electrolyte ion concentrations. The 

blue lines represent the probability 

density function of the S4 segment 

position, found by solving the FP 

equation up to equilibrium, at the 

four different applied voltages. B) 

Plot of the mean xS4 as a function of 

the applied voltage, assessed using 

the full stochastic (circles, also 

reported in Figure 2C of the Ms), the 

reduced stochastic (red squares) and 

the FP (blue line) models. C) Plot of the mean charge vs the applied voltage, obtained by integrating the microscopic 

gating current over 50 ms long simulations at different applied voltages. The simulations used are the same reported in 

Figure 5 on the Ms. black and red symbols refer to simulations performed using the full or the reduced model, 

respectively. The solid blue line represents the fit of the full model data with a Boltzmann relationship, with best fit 

parameters indicated in the Figure. 

 

The blue lines in the same Figure represent instead the predicted probability density function of the S4 segment 

position, obtained by solving the FP equation, thus also including the above mentioned approximation. It is 
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evident that the differences between the curves derived from the full and the reduced models are within the 

variability originating from the stochastic nature of the simulations, thus validating the approximation.  In 

Supplementary Figure 2B we plot the mean S4 position vs voltage assessed for the full model (data already 

shown in Figure 2C of the Ms) and compared it with that obtained by using  either single particle simulations 

obtained from a reduced model or by directly solving the FP equation. Also in this case a full agreement was 

obtained. Finally, we also compared the full and reduced models in predicting the behavior of the gating 

currents originating from the movement of a single S4 segment. As shown in Supplementary Figure 2C, the 

voltage dependence of the mean charge displacement assessed from the time integral of the gating currents 

results very similar between the two models, again validating the steady-state approximation for electrolyte 

ions electro-diffusion.  

 

Macroscopic gating currents after subtraction of the linear component 

Supplementary Figure 3A shows a simulation of the macroscopic gating current obtained in response to a 

membrane depolarization from -140 to -40 mV (and with the tested assumption that the electrolyte ions 

equilibrate instantaneously). Several features of the simulated response have been also observed in 

experiments. First, within the few microseconds after the beginning of the depolarizing step a very fast gating 

current component appears, raising instantaneously and then falling very rapidly (cf. inset to Figure 3A). This 

fast component has been experimentally observed using high speed recordings (43). Second, the fast gating 

current component is followed by a slower component starting with a plateau/rising phase and continuing with 

a slow decay Figure 7A, main). The plateau phase disappears at small depolarizations, while it becomes a 

prominent rising phase for larger depolarizations (cf. Figure 7A and C, main). All these features of the 

macroscopic gating currents have been observed experimentally (3). 

In real experiments gating currents are isolated from other types of (linear) capacitive components by 

standard subtracting protocols (i.e., the currents obtained in response to a depolarizing pulse in a voltage 

range where the response is no longer voltage-dependent are subtracted from the gating current recorded in 

the voltage range activating the gating structures). Following this experimental procedure, we simulated the 

response to a 100 mV depolarization applied from a holding voltage of -300 mV, well outside the activation 

range of the voltage sensor. As shown in Figure 3B this voltage step evoked only very fast currents resembling 

the fast component of the gating current shown in panel A. However, the subtraction procedure, shown in 

Figure 3C, did not completely eliminate the fast component from the macroscopic gating current, indicating 

that it is not a fully linear component, but a specific feature of the gating current that originates in part from 

the movement of the gating charges along the activation pathway.  
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Supplementary Figure 3. A) The upper 

panel shows a simulated macroscopic 

gating current evoked by a voltage pulse 

from -140 to -40 mV (protocol indicated 

above). The inset is a time expansion of 

the fast gating current component 

present at the beginning of the 

depolarization. The lower panel 

represents the time integral of the 

gating current, expressed in units of 

unitary charges (e0). B) Simulated gating 

currents evoked using a  voltage pulse  

from -300 to -200 mV, to verify whether 

a fast component of the gating current 

can be evoked outside the voltage range for S4 segment movement among different states. C) Traces obtained  from the 

subtraction of the time course in B from those shown in A, to simulate a leak subtraction as performed in experiments.  

 

Addition of a spring-type force acting on the S4 segment 

As shown in the main text of the Ms, our model predicts a Q-V relationship moved 20/30 mV towards the 

hyperpolarizing direction as compared to that observed in experiments. A possible reason for this discrepancy 

is suggested by experiments showing that mutations that functionally uncouple the voltage sensor from pore 

opening tend to move leftwards the Q-V relationship, indicating that in a real channel the pore domain exerts 

on the voltage sensor a force discouraging its activation. Since our model does not contain any pore domain, 

the more hyperpolarized Q-V relationship is simply expected. In order to verify this hypothesis, we added to 

our model a spring-type force acting on the voltage sensor (Supplementary Figure 4A), and looked at the 

resulting gating currents and I-V relationship. More specifically the force acting on the voltage sensor, that in 

our model was exclusively electrical in origin (eqn. 7 in Material and Methods), was modified so as to include a 

term representing a Hook spring: 

 

   (     )      ∫    ( ) (
  (   )

  
)        (       ) 

 

where  is the spring constant and  is the equilibrium position of the spring, assumed to be coincident 

with the resting state of the voltage sensor ( ).  

As shown in Supplementary Figure 4B and C, inclusion of a spring-type force moved the Q-V 

relationship towards more depolarized voltage, without affecting the main kinetic properties of the gating 
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current. Thus inclusion of a pore domain “weighting” on the S4 segment may recover the voltage-dependence 

of the Q-V relationship found experimentally. 

 

 

Supplementary Figure 4. A) Schematic drawing illustrating a spring that exerts a force that tends to keep the S4 segment 
in its resting position. B) Family of simulated gating currents obtained in response to depolarizing steps from -100 to 0 mV, 
from a holding potential of -140 mV, obtained using a model including a spring with parameters ksp=0.006 N/m and xeq=-
1.33 nm contributing to the force acting on the voltage sensor. C) Plot showing the effect of including a spring having 
different ksp (indicated; in N/m) on the predicted Q-V relationship.  

 

Validation of the model: conservation of the total current 

We validated our model by verifying that the total current produced was conserved along the spatial domain. It 

has been recently shown that the application of the Maxwell equations to models involving the movement of 

charges gives rise to  a very simple rule that applies independently to the details of the model and the time 

scale considered: the current produced by moving masses, when summed up to a displacement current, 

proportional to the temporal changes in the electric field, results in a total current that should remain constant 

in space (46,47).  

Although our model for the macroscopic gating current considers a population of S4 segments, we first 

consider only one S4 segment inside its voltage sensor domain and surrounded by K and Cl ions in the baths and 

vestibules. For this system a current conservation can be written for each type of moving charge of the system 

 
   (   )

  
  

 (  (   )  ( ))

  
       (S1) 

where   (   ) is the charge density (charge per unit volume) of species j (in our model either monovalent 

anion and cation, or the charged S4 segment), t is the time, and    is the current produced by species j (charge 

per unit time), and  ( ) is the surface normal to the particle flux. Summing up the current conservation 

equations for all species we obtain: 
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With  (   )   ∑     (   )     (   ) being the total moving charge density, and  (   )=      (   )  

   (   ) being the particle current. 

In our model      (   ) is assessed on the assumption that ions cannot pass through the gating pore, 

and by applying charge conservation. More specifically: 
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Where     and     are the left and right extremes of the gating pore,   is the Faraday constant, and    is the 

valence of ion j. From similar considerations,    (   ) can be assessed as  
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Where    (   ) is the valence density profile of the S4 segment. 

Finally, in our model all the charges contribute to shape the electric field E in accordance with the Gauss law, 

that in the differential and mono-dimensional form reads 
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Where   (   )  ∑     (   )     (   )      , with    being the time- and position-independent fixed 

charge, and  (      ) is the electric field, for which we have explicitly indicated the dependence on the spatial 

dimension, time, and position of the voltage sensor xS4. Taking the time derivative of eqn. (S5) we obtain 
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And combining eqns (S2) and (S6) we obtain 
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which shows the  conservation of the total current defined as: 
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where we have introduced the displacement current 
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Supplementary Figure 5. A) Simulated macroscopic gating current evoked by a voltage pulse from -140 to -40 mV 
(protocol indicated below). B) Plots of the vestibules and gating pore radius (Radius), the ionic current (Iions), the S4 
segment (IS4) and displacement (Idispl) currents, and total current (Itotal) as a function of the spatial dimension (x), at three 
different times from the beginning of the depolarization and three different depolarizing voltages (indicated).  
 

 

In our model we actually consider a population of S4 segments, distributed in the allowed positions xS4 in 

accordance with the density function fS4(x4, t), assessed by solving the Fokker Planck equation. In order to find a 

conservation equation to apply to the mean macroscopic gating current, we integrate eqn. (S6) for all possible 

positions of the S4 segment, weighting with the density function fS4(x4, t). 
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Where       represent the extreme positions allowed to the S4 segment. Rearranging 
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Supplementary Figure 5 shows the total current profile, together with the three contributing currents (ionic, S4 

segment, and displacement currents), assessed using eqns (S12), (S13) and (S14) at three different times (10s, 

2 ms,and 30 ms ) from the beginning of a depolarizing pulse from -140 to three different test voltages 

(indicated). As expected the conservation of the total current is respected in all regions considered (baths, 

channel vestibules and gating pore), and under different conditions.  

 

 

Sensitivity analysis 

We performed a sensitivity analysis to show how robust are the model results presented above upon varying  

the main parameters used in the model. Supplementary Figure 6A shows that the friction coefficient of the S4 

segment controls the rate of the ON and OFF gating currents. From a qualitative point of view, however, the 

gating currents obtained using different  values are not very different, with the various kinetically distinct 

phases remaining evident for all ’s. In addition changing  does not significantly affect the Q-V relationship 

(panel C). Altogether these results indicate that the quantitative value of this parameter does not affect the 

potential of our model to reproduce the main qualitative properties of the gating currents, such as the 

presence of the two different components.  

Supplementary Figure 6B-E shows the effect of varying the structural dimensions of the gating pore (length l 

and diameter d), the standard deviation of the normal distribution used to spread each protein charge 

considered () and the dielectric constant within the gating pore (). In general, all these parameters affected 

the rate of the gating currents much more that the steady state Q-V relationship, suggesting that the 

properties of the gating pore are important in setting the rate of the voltage sensor movement, while the fixed 

charge distribution, but not its exact shape, is more important for setting the equilibrium position of the 

voltage sensor.  

 

 



9 
 

 

 
 

Supplementary Figure 6. Simulated macroscopic gating currents, time constant vs voltage relationships, and Q-V 
relationships obtained with our model while varying the indicated parameter.  


