Supporting information

Multiphase Complex Coacervate Droplets

Tiemei Lu and Evan Spruijt*

Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands

Extended methods

Polymers

- Poly(diallyl dimethylammonium chloride) (PDDA, 200-350 kDa, 20 wt% solution in H₂O) was purchased from Sigma and diluted with Milli-Q water to at a stock concentration of 50 mg/mL (0.31 M in monomer units).
- Poly(allylamine hydrochloride) (**PAH**, 58 kDa) was purchased from Sigma and dissolved in Milli-Q water at a stock concentration of 10 mg/mL (0.11 M in monomer units). Tetramethylrhodamine labeled PAH (PAH-TAMRA) was prepared by carbodiimide mediated coupling reaction with EDC and NHS following a previous report.¹ The molar ratio of TAMRA:EDC:NHS = 1:1.5:1.5 and the volume of DMSO was 10% of the total reaction volume.
- Dextran sulfate sodium salt (**S-Dex**, from Leuconostoc spp., 9-20 kDa) was purchased from Sigma and dissolved in Milli-Q water at a concentration of 100 mg/mL.
- Poly(acrylic acid) (PAA, 15 kDa, 35 wt% solution in H₂O) was diluted by Milli-O water to a concentration of 61 mg/mL.
- Adenosine 5′-triphosphate disodium salt hydrate (**ATP**) was freshly dissolved in Milli-Q water at a concentration of 100 mM and kept on ice throughout the experiments.
- Poly-L-lysine hydrobromide (**PLys**, 52 kDa) was purchased from Alamanda polymers and was dissolved in Milli-Q water at a concentration of 50 mg/mL (0.24 M in monomer units). Tetramethylrhodamine labeled PLys (PLys-TAMRA) was prepared in the same way as PAH-TAMRA.
- Trimethylated poly-L-lysine (**PLys(Me)3**) was prepared from PLys, according to a previously published article and was dissolved in Milli-Q water at a concentration of 100 mM.²
- Single-stranded DNA (**ssDNA**, 43 nt) was purchased from Biomers (sequence: GCCTCGAATCACTCCACTGAACCATCCTCTTGATCTTGTGAAC) and was dissolved in Milli-Q water at a concentration of 2.0 mg/mL. Alexa-647 labeled ssDNA was prepared according to a previously reported procedure.³
- Poly (2-(methacryloyloxy)ethyltrimethylammonium chloride) (**PMETAC**, 25 kDa, PDI 1.26) was prepared by living atom transfer radical polymerization as reported previously,⁴ and dissolved in Milli-Q water at a concentration of 50 mg/mL (0.24 M in monomer units).
- Poly(3-sulfopropyl methacrylate) (PSPMA, 30 kDa, PDI 1.3) and PSPMA copolymer with 10 mol% fluorescein methacrylate (**PSPMA-Fl**, 48 kDa, PDI 1.13) were prepared by living atom transfer radical polymerization as reported previously.⁴ The polymers were dissolved in Milli-Q water at a concentration of 50 mg/mL (0.24 M in monomer units) and 10 mg/mL, respectively.
- Poly-D-glutamate (**PGlu**, 5.6 kDa, PDI 1.06) was prepared by free radical polymerization of Obenzyl-D-Glutamate-*N*-carboxyanhydride, followed by deprotection, as described elsewhere, 5 and was dissolved in Milli-Q water at a concentration of 13 mg/mL (0.1 M in monomer units).
- Glycidyl trimethylammonium chloride functionalized dextran (**Q-Dex**, 150 kDa) was prepared following a previous report,⁶ and was dissolved in Milli-Q water at a concentration of 50 mg/mL.
- Diethylaminoethyl-functionalized dextran (**DEAE-Dex**, 150 kDa) was prepared following a previous report,⁷⁻⁸ and was dissolved in Milli-Q water at a concentration of 50 mg/mL.
- $GFP-K_{72}$ (80 μ M) was obtained by expression in *E.coli* and purification by affinity and size exclusion chromatograph as described previously. 9

Supplementary tables

Table S1. Molecular structures of polycations and polyanions.

Table S2. Single complex coacervates.

Table S3. Salt concentrations at which coacervates were prepared.

Table S4. Multiphase complex coacervate droplets prepared from combinations in Table S2.

Table S5. Critical salt concentrations of single complex coacervates.

Supplementary figures

Figure S1. (a) Method 1 for preparing multiphase droplets by pre-mixing like-charged components, followed by combining them. (b,c) Bright-field and fluorescence images of PSPMA/PAH/PDDA multiphase droplets prepared with this method.

Figure S2. (a) Method 2 for preparing multiphase droplets by preparing single coacervates separately, followed by combining them. (b,c) Fluorescence images of the single coacervates of PSPMA/PAH and PSPMA/PDDA, respectively. (d,e) Bright-field and fluorescence images of the multiphase droplets prepared with this method.

Figure S3. Single complex coacervates of (a) ssDNA/GFP-K₇₂ and (b) ssDNA/PLys(Me)₃, and multiphase droplets shown in Figure 1b, obtained after combining (a) and (b), showing the separate channels for GFP-K⁷² (c) and ssDNA (d).

Figure S4. Multiphase coacervate droplets formed with two polyanions and a common polycation. (a) PSPMA/PLys(Me)₃ core coacervates in PAA/PLys(Me)₃ outer coacervate phases. (b,c) PSPMA/PDDA core coacervates in PGlu/PDDA outer phase coacervates visualized by bright-field (b) and fluorescence (c, PSPMA-Fl) microscopy. (d) PSPMA/PDDA core coacervates in PAA/PDDA outer phase coacervates visualized by fluorescence microscopy (PSPMA-Fl).

Figure S5. Multiphase coacervate droplets formed with a common polyanion and two primary amine polycations: PSPMA/PAH core coacervates in PSPMA/PLys outer phase coacervates, visualized by bright-field (a) and fluorescence (b, PAH-TAMRA) microscopy.

Figure S6. Single phase, mixed coacervate droplets formed after mixing two single phase coacervates with similar critical salt concentration. (a,b) PSPMA/PDDA and PSPMA/PMETAC, visualized by brightfield (a) and fluorescence (b, PSPMA-Fl) microscopy. (c,d) S-Dex/PDDA and S-Dex/PMETAC, visualized by bright-field (c) and fluorescence (d, ThT) microscopy.

Figure S7. Engulfing of a ssDNA/PLys(Me)₃ coacervate by a ssDNA/GFP-K₇₂ coacervate (cf. Fig. 1b).

Figure S8. Step-wise condensation of PSPMA/PAH/PDDA multiphase droplets, shown by confocal fluorescence microscopy (top row) and bright-field (bottom row).

Figure S9. Partitioning coefficients of guest molecules shown in Figure 5 in the outer coacervate phase (K_1) and between the core coacervate and outer coacervate phase (K_2) .

Figure S10. Schematic illustration of some of the possible arrangements of three immiscible coacervate phases. Coacervate 3 is assumed to have the lowest density and interfacial tension.

Figure S11. (a,b) An ATP/PAH inner core, surrounded by a PSPMA/PDDA shell in a PAA/PDDA outer coacervate phase (prepared by method 1). (c,d) PSPMA/PAH inner core, surrounded by a PSPMA/PDDA shell in a PSPMA/DEAE-Dex coacervate phase (prepared by method 1). All these samples are visualized at the same position in bright-field (a,c) and by confocal fluorescence microscopy (b,d) (PSPMA-Fl fluorescence). Because the core coacervates were not prepared at a high salt concentration before mixing with the other coacervates and lowering the salt concentration in this method, the cores appear more gellike and irregular in shape than with method 2.

Mean-field theory of complex coacervates

The mean-field free energy density of a mixture of two components is given by:

$$
\frac{F}{kT} = \frac{\phi}{N_1} \ln \phi + \frac{1-\phi}{N_2} \ln(1-\phi) + \chi \phi (1-\phi)
$$
 (S1)

where the Flory interaction parameter χ is a measure for the interaction strength between the two components, relative to their self-interaction. Beyond a critical value of χ , phase separation occurs, and the binodal concentrations can be found from a common tangent construction, close to the spinodal points $\left(\frac{\partial^2 F}{\partial \phi^2} = 0\right)$.

In a symmetric mixture of polymers $(N_1=N_2=N)$ in a single solvent, the tangent is horizontal, and the binodal concentrations are given by the implicit relation, under the assumption that both phases are equally hydrated: 10

$$
\chi_b N = -\frac{\ln(\phi) - \ln(1 - \phi_w - \phi)}{(1 - \phi_w - 2\phi)}
$$
(S2)

Figure S12 shows the binodal concentrations calculated by Eq. S2 for two coexisting polymer solutions with a common solvent (e.g., aqueous two-phase system, or two coacervates). The segregation between the two phases increases with increasing χ (stronger interactions) up to a volume fraction of $(1 - \phi_w)$ of each polymer in their respective phases.

Figure S12. The binodal concentrations of two coexisting coacervates change with interaction parameter *χ*, for an equal degree of hydration of $φ_w = 0.5$.

The interfacial tension also increases with increasing χ away from the critical point as:⁴

$$
\gamma \propto (\chi - \chi_c)^{3/2} \tag{S3}
$$

For complex coacervation, the Flory-Huggins framework has been extended by Voorn and Overbeek with a Debye-Hückel approximation for the electrostatic interaction between oppositely charged species.11-12 For complex coacervates composed of polymers of equal length (*N*) at a 1:1 charge ratio, the phase behaviour can be mapped onto the Flory-Huggins theory for a polymer in solution, by defining an effective interaction parameter: 12

$$
\chi_{\rm eff} = \chi_{\rm r} + \frac{\sqrt{\pi}}{3\sqrt{2N_{\rm Av}}} \frac{\sigma^2}{\sqrt{c_s}} \left(\frac{\sqrt{l_B}}{l}\right)^3 \tag{S4}
$$

where *l* is the lattice size, l_B the Bjerrum length, σ the charge density, c_s the ionic strength (in mM), and *χ*^r the residual, non-electrostatic part of the interaction parameter. The critical salt concentration c_s^* can be found by combining equation (S4) above and the expression for the critical χ_c of a polymer in solution: $\chi_c = \frac{1}{2}$ $\frac{1}{2} + \frac{1}{\sqrt{l}}$ $\frac{1}{\sqrt{N}}$, resulting in:¹²

$$
c_{\rm S}^* = \frac{\pi}{18N_{\rm Av}} \left(\frac{l_B}{l^2}\right)^3 \frac{\sigma^4}{\left(\frac{1}{2} + \frac{1}{\sqrt{N}} - \chi_{\rm r}\right)^2} \tag{S5}
$$

$$
\chi_{\rm eff} = \frac{1}{2} + \frac{1}{\sqrt{N}} + \frac{\sqrt{\pi} \sigma^2}{3\sqrt{2N_{\rm AV}}} \left(\frac{\sqrt{l_B}}{l}\right)^3 \left(\frac{1}{\sqrt{c_s}} - \frac{1}{\sqrt{c_s^*}}\right) \tag{S6}
$$

According to these equations, the higher the critical salt concentration of a complex coacervate, the larger its effective interaction parameter, and the larger its density and interfacial tension at a given salt concentration (as shown in Figure S13).

Figure S13. The relationship of effective interaction parameter *χ* with salt concentration.

Finally, the effective interaction between two coexisting coacervates, *χ*12, can be approximated using an expression for the polymer-polymer interaction in phase separated solutions (see main text), which ultimately results in:

$$
\chi_{12} \approx \frac{\pi \sigma^4}{36N_{\rm AV}} \left(\frac{l_B}{l^2}\right)^3 \left(\frac{1}{\sqrt{c_1^*}} - \frac{1}{\sqrt{c_2^*}}\right)^2 \approx 0.1 \left(\frac{1}{\sqrt{c_1^*}} - \frac{1}{\sqrt{c_2^*}}\right)^2 \tag{S7}
$$

where the second approximation is valid for strongly charged polyelectrolytes ($\sigma \approx 1$), and the parameters used in Ref. 12. C_1^* and C_2^* are the two critical salt concentrations in mol/L.

Supplementary movies

Movie S1. Fusion of core PAA/PLys(Me)₃ coacervates inside a PAA/GFP-K₇₂ outer phase (Figure 2a), 6x real time.

Movie S2. Fusion of PGlu/PDDA coacervates followed by fusion of their internal PGlu/PAH cores (Figure 2b), 2.5x real time.

Movie S3. Fusion of PSPMA/PDDA coacervates inside a PSPMA/Q-Dex coacervate, 2.5x real time.

Movie S4. Engulfing of an ATP/PAH coacervate by a PSPMA/PDDA coacervate (Figure 2c), 2x real time.

Movie S5. Fusion of intermediate PSPMA/PDDA coacervates inside a PAA/PDDA coacervate, followed by fusion of the inner ATP/PAH core coacervates (Figure 6a-b), 2.5x real time.

Supplementary references

- 1. Wang, F.; Zhang, D.; Duan, C.; Jia, L.; Feng, F.; Liu, Y.; Wang, Y.; Hao, L.; Zhang, Q., Preparation and characterizations of a novel deoxycholic acid–O-carboxymethylated chitosan–folic acid conjugates and selfaggregates. *Carbohydrate polymers* **2011,** *84* (3), 1192-1200.
- 2. Granados, E. N.; Bello, J., Alkylated poly(amino acids). I. Conformational properties of poly(N^{ϵ} -trimethyl-L-lysine) and poly(N^δ -trimethyl-L-ornithine). *Biopolymers* **1979,** *18*, 1479-1486.
- 3. Spruijt, E.; Tusk, S. E.; Bayley, H., DNA scaffolds support stable and uniform peptide nanopores. *Nature nanotechnology* **2018,** *13* (8), 739-745.
- 4. Spruijt, E.; Sprakel, J.; Cohen Stuart, M. A.; van der Gucht, J., Interfacial tension between a complex coacervate phase and its coexisting aqueous phase. *Soft Matter* **2010,** *6* (1), 172-178.
- 5. Cheng, J.; Deming, T. J., Synthesis of polypeptides by ring-opening polymerization of alpha-amino acid Ncarboxyanhydrides. *Top Curr Chem* **2012,** *310*, 1-26.
- 6. Kalaska, B.; Kaminski, K.; Sokolowska, E.; Czaplicki, D.; Kujdowicz, M.; Stalinska, K.; Bereta, J.; Szczubialka, K.; Pawlak, D.; Nowakowska, M.; Mogielnicki, A., Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin. *PLoS One* **2015,** *10* (3), e0119486.
- 7. Siewert, C.; Haas, H.; Nawroth, T.; Ziller, A.; Nogueira, S. S.; Schroer, M. A.; Blanchet, C. E.; Svergun, D. I.; Radulescu, A.; Bates, F.; Huesemann, Y.; Radsak, M. P.; Sahin, U.; Langguth, P., Investigation of charge ratio variation in mRNA - DEAE-dextran polyplex delivery systems. *Biomaterials* **2019,** *192*, 612-620.
- 8. Usher, T. C.; Patel, N., Manufacture of diethylaminoethyl dextrans. **1985**.
- 9. Te Brinke, E.; Groen, J.; Herrmann, A.; Heus, H. A.; Rivas, G.; Spruijt, E.; Huck, W. T. S., Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. *Nature Nanotechnology* **2018,** *13* (9), 849- 855.
- 10. Rubinstein, M.; Colby, R. H. *Polymer physics*; Oxford University Press: New York, **2003**, pp 140-154.
- 11. Overbeek, J. T. G.; Voorn, M. J., Phase separation in polyelectrolyte solutions. Theory of complex coacervation. *Journal of Cellular and Comparative Physiology* **1957,** *49*, 7-26.
- 12. Spruijt, E.; Westphal, A. H.; Borst, J. W.; Cohen Stuart, M. A.; van der Gucht, J., Binodal Compositions of Polyelectrolyte Complexes. *Macromolecules* **2010,** *43* (15), 6476-6484.