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SUMMARY

The physiological effects of the many germline muta-
tions of TP53, encoding the tumor suppressor pro-
tein p53, are poorly understood. Here we report
generating a p53 R178C knockin mouse modeling
the human TP53 R181C mutation, which is notable
for its prevalence and prior molecular characteriza-
tion. Consistent with its weak cancer penetrance
in humans, homozygous p53178C/C mice show a
modest increase in tumorigenesis but, surprisingly,
are lean with decreased body fat content. They
display evidence of increased lipolysis and upregula-
tion of fatty acid metabolism in their inguinal white
adipose tissue (iWAT). Gene expression and chro-
matin immunoprecipitation sequencing (ChIP-seq)
analyses show that the mutant p53 bound and trans-
activated Beta-3-Adrenergic Receptor (ADRB3), a
gene that is known to promote lipolysis and is asso-
ciated with obesity. This study reveals that a germ-
line mutation of p53 can affect fat metabolism, which
has been implicated in cancer development.

INTRODUCTION

Emerging studies have established p53 as a mediator of various

metabolic activities, some of which are sufficient to restrain

tumorigenesis even in the absence of its prototypical tumor sup-

pressor functions, such as DNA repair, cell cycle arrest, and

apoptosis (Bieging et al., 2014; Kung and Murphy, 2016; Li

et al., 2012). p53 can also regulate energy homeostasis through

both mitochondrial and non-mitochondrial pathways, including

disposition of fatty acids, a major energy substrate and biosyn-

thetic precursor required for cell proliferation (Berkers et al.,

2013). Although wild-type p53 inhibits both fatty acid synthesis
This is an open access article under the CC BY-N
and lipid accumulation, mutant p53 has been shown to enhance

fatty acid synthesis by inhibiting AMP-activated protein kinase

(AMPK) (Parrales and Iwakuma, 2016; Zhou et al., 2014). Further-

more, mutant p53 cooperates with sterol regulatory element-

binding proteins (SREBPs) to upregulate the mevalonate

pathway to promote cancer formation (Freed-Pastor et al.,

2012). Thus, alterations in lipid signaling molecules, membrane

biosynthesis precursors, and substrates for fatty acid oxidation

caused by mutations in p53 have the potential to support tumor-

igenesis (Currie et al., 2013). Whether these disparate effects of

wild-type and mutant p53 on fatty acid metabolism are general-

izable to other germline TP53 mutations is currently unclear.

Although many different germline mutations of TP53 have

been reported, only a subset of mostly missense mutations

located in the DNA binding domain have been associated with

Li-Fraumeni syndrome (LFS), an autosomal dominant early-

onset cancer disorder (Schneider and Garber, 2010). In a pilot

study comprised of subjects with 10 different mutations,

including the ‘‘hotspot’’ R273H and weak cancer penetrance

R181C amino acid substitutions, LFS patients displayed evi-

dence of increased oxidative metabolism that, upon inhibition,

delayed tumorigenesis in a LFS mouse model (Wang et al.,

2017, 2013). Given the critical role of p53 in tumor suppression,

lessons from examining its metabolic activities at the organismal

level in both wild-type and mutant states may provide insights to

further understand their physiological and tumorigenic activities.

TP53R181Cwas one of the earliest mutations described in as-

sociation with breast cancer at a young age, and it currently

stands out as one of the top reported germline mutations

(Bouaoun et al., 2016; Sidransky et al., 1992). The incidence of

this mutation was so high in a specific population studied for in-

herited breast cancers that it was likened to the TP53 R337H

founder mutation prevalent in southern Brazil (Achatz and Zam-

betti, 2016; Lolas Hamameh et al., 2017). Amino acid R181 re-

sides in the DNA binding domain of p53 and plays an important

structural role by forming intermolecular salt bridges between

p53 monomers for cooperative DNA binding (Schlereth et al.,
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2010). Because p53 R181C promoted mitochondrial biogenesis

in humanmyoblasts (Wang et al., 2013), we investigated whether

this specific mutant could have other metabolic effects in vivo.

Here we report that, in addition to developing a cancer pheno-

type, mice with knockin of the TP53 R181C mouse homolog

revealed a role for p53 in lipolysis and adipose tissuemetabolism

under physiologic conditions.

RESULTS

AMouseHomolog of a LFSMutation Reveals aMetabolic
Phenotype
To examine the effect of human p53 R181C on metabolism, we

generated a knockin mouse with an arginine (CGC)-to-cysteine

(TGC) mutation at the corresponding amino acid residue 178 of

mouse p53 using conventional embryonic stem cell (ESC)-medi-

ated homologous recombination and the Cre-loxP strategy (Fig-

ures 1A and S1). Correctly targeted ESC clones containing a p53

C>T (c.541) missense mutation in exon 5 were identified by

genomic DNA PCR, and the resulting mouse genotypes were

confirmed by p53 cDNA sequencing, mouse embryonic fibro-

blast Southern blotting, and tail DNA PCR (Figures 1A and 1B).

The homozygous mutant (p53178C/C) mice displayed a modest

but significant decrease in median survival time by meeting the

animal study endpoint and had a higher incidence of cancer,

although the spectrum of cancer types was similar to that of

wild-type mice (Figures 1C–1E). Some conventional approaches

to induce p53 in p53178C/C mice and examine expression of its

target genes and associated cellular activities showed partial

retention of wild-type activity, with apoptosis being significantly

reduced. This is consistent with previous reports of greater loss

of apoptosis activity comparedwith cell cycle regulation in coop-

erative binding mutants (Figure S2; Schlereth et al., 2010; Timo-

feev et al., 2013). These observations in p53 R178C mice were

also consistent with the relatively low cancer penetrance of the

homologous TP53 R181C mutation in humans.

In the course of these survival studies, p53 R178C knockin

mice showed a pattern of increased body weight. Therefore,

we performed metabolic phenotyping focused on male homozy-

gous mutant mice to maximize the mutant p53 effect and to con-

trol for gender dimorphism, although female mice also showed

increased body weight (Figure 1F and S3A). The energy expen-

diture and food intake of homozygous p53178C/C mice were

similar to that of wild-type mice after normalizing for body

mass under both room temperature and thermoneutral condi-

tions (Figure S3B). Notably, body composition analysis showed

a significant decrease in the fraction of fat tissue in young as

well as older p53178C/C mice (Figures 1G and S3C). The amount

of lean tissue in p53178C/Cmice accounted for their increased to-

tal body weight, but, in addition, there was a trend of increased

leanmass percentage in themutant comparedwith thewild-type

p53 state, which may underlie the observed modest increase in

glucose tolerance versus some other possible mechanism (Fig-

ures 1G, S3D, and S3E; Kung and Murphy, 2016). The decrease

in fat composition of p53178C/Cmice, without changes in exercise

performance, as reported previously for another LFS mouse

model (Figure S3F; Wang et al., 2013), appeared to be a gain

of function by the p53 mutation rather than due to loss of wild-
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type activity because the fat composition of p53�/� mice was

similar to that of wild-type controls (Figure 1G).

p53178C/C Mice Have Decreased Adipose Tissue and
Increased Plasma Fatty Acids
Given the significantly lower body fat composition of p53178C/C

mice, we investigated further by quantifying the amount of epidid-

ymal white adipose tissue (eWAT), inguinal white adipose tissue

(iWAT), and brown adipose tissue (BAT) representing visceral,

subcutaneous, and thermogenic types of fat, respectively

(Figure 2A). The masses of all three adipose tissue types were

lower in p53178C/C mice, with a more pronounced effect on

iWAT, which showed smaller adipocytes compared with p53

wild-type or nullmice (Figure 2B). Given the various contrasting re-

ports of BAT regulation by p53 (Krstic et al., 2018), we examined

BATmitochondria and the thermogenesis phenotype of p53178C/C

mice but did not observe significant differences, consistent with

only a modest decrease in its mass (Figures 2A and S4A–S4C).

We next examined whether the more substantial changes in

white adipose tissues were associated with alterations in blood

lipid levels. Although the plasma levels of total cholesterol and

triglycerides were relatively unchanged in p53178C/C mice

compared with the wild-type, as also reported for p53�/� mice

(Guevara et al., 1999), non-esterified fatty acid (NEFA) levels

were significantly higher in the mutant p53 knockin mice under

ad libitum feeding conditions (Figures 2C and 2D). This differ-

encewas attenuated by fasting, suggesting activation of lipolysis

signaling by mutated p53, manifested only under basal and

homeostatic conditions.

Plasma Metabolomic Analysis Reveals Increased
Mobilization of Fatty Acids
To obtain a global profile of the changes in lipid metabolism, we

performed metabolomic analysis of plasma obtained from

10-week-old p53178R/R, p53178C/C, and p53�/� male mice under

ad libitum feeding conditions. A principal-component analysis

(PCA) plot showed clustering of the metabolite levels by p53 ge-

notype (Figure 3A). About half of the 706 identified compounds

were lipid related, and �20% were significantly changed by

p53 genotype status (Figure S5A). Of the top 50 compounds

whose levels were changed with the greatest statistical signifi-

cance in the plasma of p53178C/C mice compared with that of

p53 wild-type or null mice, 39 were lipid related with a pattern

of reduced monoacylglycerol and diacylglycerol levels and

increased fatty acid derivatives such as acyl carnitines and

acyl glycines (Figures 3B and S5B). The increase in acyl carni-

tines was complemented by a decrease in free carnitine levels

(Figure 3C). Interestingly, 12,13-dihydroxy-9Z-octadecenoic

acid (12,13-diHOME), a lipokine reported to be induced by

cold exposure and inversely correlated with body mass index

in human subjects (Lynes et al., 2017), was increased in plasma

of p53178C/C mice (Figure 3D). Its precursor linoleic acid and a

related compound, 9,10-diHOME, were also increased,

providing additional support for the specificity of the 12,13-di-

HOME lipokine finding (Figure 3D). The elevation of plasma

12,13-diHOME was consistent with the low-fat phenotype of

p53178C/C mice and its known promotion of fatty acid utilization

in peripheral tissues (Lynes et al., 2017; Stanford et al., 2018).
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Figure 1. p53 R178C Knockin Mice Reveal Increased Cancer Incidence and a Metabolic Phenotype

(A) Cre-loxP-mediated strategy for knockin of the amino acid R178C mutation into exon 5 (E5) of the mouse p53 gene. Mouse embryonic fibroblast (MEF) cDNA

sequencing confirmed single-nucleotide substitution from C to T (right panel).

(B) Genomic DNA samples isolated from tail tissue and MEFs were analyzed by PCR and Southern blot, respectively. The 238-bp and 17-kb fragments

correspond to the wild-type p53 allele. The 542-bp and 8.3-kb fragments correspond to the mutant p53 allele.

(C) Kaplan-Meier survival plot of the indicated p53 genotypemice.Median survival ages (weeks) were as follows:R/R, 109;R/C, 105;C/C, 80. Significance testing

in comparison with wild-type p53.

(D) Cancer incidence in mice (R/R, n = 30; R/C, n = 32; C/C, n = 32).

(E) Spectrum of cancer types by p53 genotype (R/R, n = 16; R/C, n = 20; C/C, n = 25).

(F) Body weight of male mice by age (n R 15).

(G) Fat and lean (muscle) body composition of 9-week-old male mice, measured by NMR analyzer (R/R, n = 25; C/C, n = 26; �/�, n = 13).

p53 R178 genotypes: wild-type p53178R/R (R/R), heterozygous mutant p53178R/C (R/C), homozygous mutant p53178C/C (C/C), and null p53�/� (�/�). Statistical

difference by c2 test in comparison with the wild-type (D), two-way ANOVA with repeated measures (F), and one-way ANOVA (G). Values are mean ± SEM.

*p < 0.05. See also Figures S1–S3.
p53178C/C iWAT Gene Expression Analysis Shows
Increased Expression of Lipid Metabolism Genes
The absence of the lipidomic changes in p53-null plasma raised

the possibility that a metabolic activity specifically induced by

mutant p53 may be conferring the low-fat phenotype of

p53178C/C mice. Because mutations of p53 can affect gene

expression of various biological processes, we investigated
whether p53 R178C can regulate the transcription of genes

related to lipolysis (Kastenhuber and Lowe, 2017; Pfister and

Prives, 2017). We first examined the level of lipolytic activity

associated with the p53 R178C mutation in different explanted

tissues by measuring their glycerol release (Figure 4A). iWAT tis-

sue showed a large increase in lipolytic activity associated with

the p53 mutation, whereas other adipose tissue types as well
Cell Reports 30, 783–792, January 21, 2020 785
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Figure 2. Homozygous p53178C/C Mice

Display a Lean Phenotype with Increased

Plasma Fatty Acids

(A) Representative images of 3 different fat tissue

types: inguinal white adipose tissue (iWAT), epidid-

ymal white adipose tissue (eWAT), and brown adi-

pose tissue (BAT). The weight of fat tissue dissected

from 10-week-old mice was normalized to body

weight (milligrams per gram) (n = 6).

(B) H&E-stained iWAT sections. Scale bars, 100 mm.

(C) Plasma lipid levels: total cholesterol (Chol) and

triglycerides (TG) (n = 10).

(D) Plasma non-esterified fatty acid (NEFA) levels

measured under free feeding (ad libitum,R/R, n = 15;

C/C, n = 23; �/�, n = 9) or fasting (fast for 4 h, R/R,

n = 8; C/C, n = 11; �/�, n = 3) states.

p53 R178 genotypes: wild-type (R/R), homozygous

mutant (C/C), and null (�/�). Statistical difference by

one-way ANOVA. Values are mean ± SEM. *p <

0.05, **p < 0.01. See also Figure S4.
as muscle and liver showed no discernable changes (Figure 4A).

Therefore, we performed RNA sequencing (RNA-seq) on iWAT

tissue in the basal state under which the lipolysis phenotype of

p53178C/C mice was observed.

Of all identified genes expressed in iWAT, 528 (�4%) and

1,472 (�12%) were up- and downregulated, respectively, in

p53178C/C compared with wild-type mice, using a significance

threshold of p < 0.05 (Figure 4B). Functional pathway analyses

of the RNA-seq data showed upregulation of genes involved in

fatty acid metabolism as well as arachidonic acid and cyto-

chrome P450 pathways in the iWAT of p53178C/C mice (Fig-

ure 4C). In particular, the upregulation of genes involved in

biosynthesis of 12,13-diHOME was in agreement with its

elevated plasma levels in p53178C/C mice (Figure S6A). Because

the human equivalent of the mouse p53 R178 residue mediates

DNA binding cooperativity, a mutation at this amino acid would

be expected to show reduced p53 target gene transactivation,

evidenced by decreased expression of the prototypical p53

target gene CDKN1A (p21) (Figure 4D; Schlereth et al., 2010).

In contrast, the mRNA expression level of a key lipolysis

enzyme, adipose tissue triglyceride lipase (ATGL), was signifi-
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cantly increased, consistent with the

higher lipolytic activity of p53178C/C iWAT,

whereas another important lipolysis

enzyme, hormone-sensitive lipase (HSL),

and the adipocyte transcription factors

PPARG and SREBF were relatively un-

changed (Figure 4D). Notably, the expres-

sion of b3-adrenergic receptor (ADRB3),

which is associated with obesity and pro-

motes lipolysis by activating protein ki-

nase A and phosphorylating HSL (Clément

et al., 1995; Cypess et al., 2015; Widén

et al., 1995; Zechner et al., 2012), was

markedly increased in p53178C/C mouse

adipose tissue. These data indicate that

the hydrolysis of triglycerides to free fatty
acids and their subsequent modification are upregulated by

p53 R178C in iWAT.

ChIP-Seq Analysis Identifies ADRB3 as a p53 Target
Gene and Potential Mediator of the p53178C/C Fat
Metabolism Phenotype
To further understand the mechanism underlying the gene

expression changes in p53178C/C mice, we performed chromatin

immunoprecipitation followed by sequencing (ChIP-seq) to

create a genomic profile of wild-type and mutant p53 binding.

Because of the difficulties associated with handling low levels

of endogenous p53 in tissues, we utilized a homogeneous pri-

mary culture of adipocytes differentiated from the stromal

vascular fraction (SVF) of iWAT tissue. Adipocytes differentiated

from the p53�/� SVF were also utilized for ChIP-seq to screen

out non-specific p53 binding peaks. Compared with wild-type

cells, immunoblotting of p53178C/C SVF adipocytes showed

higher levels of mutant p53 but lower levels of p21, consistent

with its diminished transcriptional activity and increased stabili-

zation, possibly because of loss of its negative feedback regula-

tion (Figure 5A). In contrast to the 6,094 high-confidence (false
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Figure 3. Plasma Metabolomic Profiling Re-

veals Altered Lipid Metabolism in p53178C/C

Mice

(A) Principal-component analysis (PCA) of all iden-

tified plasma metabolites of 10-week-old mice by

p53 genotype (n = 6).

(B) Heatmap comparison of the top 50 most statis-

tically different metabolites by p53 genotype shows

that 39 are lipid-related compounds. Metabolite

levels were normalized by median values. Relative

level is color-coded in red (increased) and blue

(decreased). In p53178C/C (C/C) mouse plasma,

8 of the 12 decreased metabolites are mono-

acylglycerols (MAGs) and diacylglycerols (DAGs),

and 31 of the 38 increasedmetabolites are fatty acid

derivatives.

(C) Relative levels of free carnitine and acyl carni-

tines (average of 32 different species).

(D) Relative levels of 12,13-diHOME and its isomer

9,10-diHOME and precursor linoleate.

p53 R178 genotypes: wild-type (R/R), homozygous

mutant (C/C), and null (�/�). Statistical difference

by one-way ANOVA. Values are mean ± SEM. *p <

0.05, **p < 0.01. See also Figure S5.
discovery rate [FDR] < 1E�10) p53 binding sites identified in

wild-type adipocytes by ChIP-seq analysis, only 794 such sites

were observed in p53178C/C adipocytes, the majority (683 sites,

86%) of which were shared with wild-type p53 binding sites (Fig-

ure 5B). Becausemutated p53 can gain function through associ-

ation with other transcription factors, we performed a motif

search and confirmed that the p53 motif was the most signifi-

cantly enriched binding sequence for both wild-type and mutant

p53ChIP-seq data (Table S1A; Do et al., 2012; Pfister and Prives,

2017). These analyses indicate that the mutant p53 R178C

retains DNA binding specificity, albeit with lower affinity, as sug-

gested previously for other cooperativity mutants of p53 (Schler-

eth et al., 2010).

Although hotspot mutations of p53 in its DNA binding

domain can abolish recognition of p53 binding sequences,

we observed a range of binding signals retained by p53

R178C (Figure 5C). Reflecting its partial transactivation of

p21, p53 R178C binding to the p21 genomic region appeared

to be reduced compared with that of the wild-type protein. It

also bound to only one of the two genomic binding sites of

MDM2 compared with wild-type p53, whereas there was

complete loss of binding to BAX (Figure 5C). Gene Ontology

(GO) analysis showed that p53 R178C retains binding to a

subset of genomic sites that regulate diverse activities under

basal conditions beyond its reported loss of apoptotic activity

(Table S1B; Schlereth et al., 2010). Because the increased

lipolytic activity of p53178C/C suggested a ‘‘gain of function,’’
Cell
we looked for genes induced by mutant

p53 in the iWAT RNA-seq data (>1.2-

fold, p < 0.05) and integrated them with

the p53 R178C ChIP-seq data, resulting

in identification of 15 upregulated genes

that were bound by mutant p53 (Fig-

ure 5D). Performing a de novo motif
search on these genes yielded the p53 binding sequence as

the only significantly enriched transcription factor motif, con-

firming a direct interaction with the mutant p53 (Figure 5D).

Among these upregulated genes, ADRB3 stood out as a

potential mediator of the adipocyte lipolysis phenotype, pos-

sessing a conserved p53 response element (RE) proximal to

the 30 region of the gene (Figure 5E).

Interestingly, the de novo motif analysis of the 15 p53 R178C

upregulated genes revealed that the mutant protein preferen-

tially binds to the p53 RE, with its core (CWWG) flanked by

GC-rich sequences (50 PuGG and 30 PyCC), as reported for

other cooperative binding mutants of p53 (Figure 5D; Ciribilli

et al., 2013; Schlereth et al., 2013). Because the p53 RE of

ADRB3 also showed higher GC content compared with p21,

we tested whether it was required for more effective transacti-

vation by the mutant p53 with loss of cooperative binding (Fig-

ure 5F). Indeed, a luciferase reporter construct with the ADRB3

p53 RE flanking sequences mutated from GC to AT showed

marked loss of transactivation by both wild-type and mutant

p53 protein, indicating their critical importance for p53 interac-

tion with its target gene (Figure 5F). In contrast, increasing the

GC content of the p53 RE of p21 resulted in increased transac-

tivation by p53 R178C to a level comparable with that of wild-

type p53, further demonstrating that the flanking GC

sequences may obviate the need for cooperative p53 binding

to its target genes, as suggested previously (Figure 5F; Jordan

et al., 2012).
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Figure 4. Increased Lipolysis and Expression of Genes Related to

Fatty Acid Metabolism in iWAT of p53178C/C Mice

(A) Release of glycerol into culture medium as a measure of basal lipolysis in

the indicated tissue explants: skeletal muscle (SKM), liver, eWAT, iWAT, and

BAT (n = 3).

(B) Number of genes identified by RNA-seq with significant changes in expres-

sion (p < 0.05) in the iWAT of p53178C/C compared with p53178R/R mice (n = 4).

(C) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis of genes with significant expression changes in

iWAT (>1.2-fold or <0.8-fold, p < 0.05).

(D) Relative expression levels of p21 and some lipid metabolism genes in iWAT

by p53 genotype.

p53 R178 genotypes: wild-type (R/R), homozygous mutant (C/C), and null

(�/�). Statistical difference by two-tailed unpaired t test (A) and one-way

ANOVA in comparison with the wild-type (R/R) (D). Values are mean ± SEM.

*p < 0.05. See also Figure S6.
p53 R178C Regulates ADRB3 and Lipolysis in
Adipocytes
Given the direct interaction between mutant p53 and the ADRB3

gene, we set out to clarify its functional significance. The

increased expression of ADRB3 in the iWAT of p53178C/C mice

relative to p53178R/R and p53�/� mice correlated with the levels

of basal p53 and phosphorylated HSL, known to be activated

by protein kinase A (PKA) in b-adrenergic receptor-stimulated

lipolysis (Figures 6A and 6B; Zechner et al., 2012). To confirm

that mutant p53 regulates this pathway, SVF cells isolated

from p53178C/C iWAT were stably transduced with lentiviral

shRNA to knock down p53 and then differentiated into adipo-

cytes. Both non-specific (NS) and p53 shRNA-transduced cells

showed similar degrees of adipocyte differentiation, as assessed

by oil red O cell staining and HSL expression levels (Figures 6C,
788 Cell Reports 30, 783–792, January 21, 2020
6D, and S6B). The depletion of mutant p53 specifically

decreased ADRB3 mRNA and protein levels in association with

decreased PKA activity, HSL phosphorylation and release of

glycerol (Figures 6C–6E). We controlled for potential shRNA

off-target effects by rescuing these changes with re-expression

of p53 R178C and further demonstrating that the human homo-

log p53 R181C can also confer HSL phosphorylation and ADRB3

mRNA expression activities in p53�/� SVF-derived adipocytes

(Figures S6C and S6D).

To demonstrate the role of ADRB3 in mutant p53-induced

lipolysis in vivo, we pharmacologically modulated ADRB3

signaling in wild-type and p53178C/C mice. Remarkably, the

increased levels of PKA activity and phosphorylated HSL asso-

ciated with the mutant p53 was reduced to wild-type levels by

treatment with the ADRB3 antagonist SR-59230A (Figure 6F).

In contrast, the low basal levels of phosphorylated HSL and

PKA substrate in wild-type p53 iWAT were increased to

p53178C/C levels by treatment with the ADRB3 agonist CL-

316243 (Figure 6F). These molecular alterations in the mediators

of lipolysis were accompanied by corresponding changes in fat

tissue body composition. Daily injections of the antagonist SR-

59230A for 5 days reverted the fat tissue phenotype in p53178C/

C mice to that of the wild-type, whereas treatment with the

agonist CL-316243 reproduced the lower fat composition of

the p53 mutant state in wild-type mice (Figure 6G). Taken

together, these data demonstrated that p53 R178C-regulated

ADRB3 expression plays an important role in activating the lipol-

ysis signaling pathway of white adipose tissue and in mediating

the lower body fat composition of p53178C/C mice.

DISCUSSION

Because physiologic characteristics can be difficult to discern

under heterozygous states in humans, we have created a p53

R178C knockin mouse to explore its role in metabolism. In our

current study, we have demonstrated that this mouse homolog

of the human TP53 R181C LFS mutation can confer a lipolytic

activity that likely contributes to its low body fat phenotype. As

observed in TP53 R181C LFS patients, p53 R178C knockin

mice displayed a mild cancer phenotype, even in the homozy-

gous mutant state, with a longer median survival time than that

of hotspot LFS mouse models (Lang et al., 2004; Olive et al.,

2004). Nonetheless, p53178C/C mice showed a unique metabolic

phenotype of decreased white adipose tissue mass with evi-

dence of increased fatty acid mobilization by lipolysis that has

not been observed in p53�/� or other LFS models, such as

p53172H/H mice (Park et al., 2009; Wang et al., 2013). Most

genome-wide p53 target gene studies have been performed

with cancer cell lines under stimulated conditions (Fischer,

2017). Here we examined the adipose tissue and cells relevant

to the phenotype under basal conditions to demonstrate that

p53 R178C retains the ability to transactivate ADRB3 and

mediate lipolysis.

The mobilization of fatty acid stores by lipolysis observed in

p53178C/C mice is notable because another LFS mouse model

with the p53 R172H knockin mutation has been shown to have

increased mitochondrial b-oxidation, suggesting that concerted

promotion of oxidative metabolism by p53 occurs through more
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Figure 5. Identification of ADRB3 as a Target

Gene of p53 R178C Using ChIP-seq Analysis

(A) Stromal vascular fractions (SVFs) isolated from

iWAT of the indicated p53 genotype mice, differen-

tiated into adipocytes and analyzed by immuno-

blotting.

(B) Heatmaps and Venn diagram of high-confidence

(FDR < 1E�10) p53 binding sites from ChIP-seq

analysis of R/R and C/C differentiated adipocytes

described in (A).

(C) Genome browser view of p53 binding peaks on

known wild-type p53 target genes.

(D) RNA-seq and ChIP-seq data were integrated to

identify genes that are upregulated and bound by

p53 R178C. p53-bound genomic sequences were

subjected to a transcription factor motif search,

which yielded a de novo motif (E value = 2E�44)

matching the p53 binding motif (E value = 3E�5).

(E) ChIP-seq profile of the ADRB3 gene region with

sequences containing the consensus p53 RE.

(F) Effect of GC-rich sequences in the p53 RE of

ADRB3 on transactivation by p53, assessed by

luciferase reporter assay. The GC-rich flanking se-

quences were mutated from GC to AT (Mut 1), and

the p53 RE core sequence was also mutated as an

additional negative control (Mut 2). The luciferase

reporter constructs were co-transfected with wild-

type p53, p53 R178C, or a control pcDNA empty

vector (CTL) into p53�/� 3T3L1 cells. p53 expression

levels were assessed by immunoblotting (center

panel), and luciferase activity levels of the respective

constructs were measured (n = 4).

p53 R178 genotypes: wild-type (R/R), homozygous

mutant (C/C), and null (�/�). Statistical difference by

two-tailed unpaired t test in comparison with the

vector control. Values are mean ± SEM. *p < 0.05.

See also Table S1.
than one specific gene or pathway (Wang et al., 2013). As sug-

gested previously, germline p53 mutations could be a double-

edged sword from an evolutionary perspective (Wang et al.,

2012). On one hand, mutant p53 promotion of fatty acid meta-

bolism could improve endurance running or thermogenesis, both

of which are beneficial for organismal survival, but in transformed

cancer cells, increased mitochondrial activity can contribute to

greater malignancy and metastatic potential (LeBleu et al., 2014;

Vazquez et al., 2013). Although likely challenging to detect in LFS

patient-derived cells, as observed in heterozygous p53178R/C

mice, it will be important to determinewhether there are also alter-

ations in lipid metabolism in humans (for example, using adipo-

cytes derived from homozygous TP53 R181C human iPS cells),
Cell
but the effects of p53 activity on in vitro cell

differentiation may be difficult to control

(Krstic et al., 2018).

The dual nature of p53 regulation of

metabolism under normal conditions and

in cancer cells is further exemplified by

the genes and metabolites identified in

this study. Although increased plasma

levels of 12,13-diHOME in p53178C/C mice

have the potential to improve metabolic
health, they can also stimulate proliferation of breast cancer cells

(Lynes et al., 2017; Markaverich et al., 2005; Stanford et al.,

2018). The increased expression of arachidonic acid metabolism

genes may also promote breast cancer growth through genera-

tion of eicosanoids (Figure S6A; Jiang et al., 2005; Mitra et al.,

2011). Consistent with the elevated lipolytic activity, bile acid

metabolites were the most highly increased compounds identi-

fied in p53178C/C plasma and have been reported to mediate

tumor metastasis to lymph nodes (Figure S5B; Lee et al.,

2019). There are limited data on the physiological effects of

germline LFS mutations, but our p53178C/C mouse model reveals

an activity of a relatively common LFS mutation that regulates

basal metabolism and may also affect cancer development.
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Figure 6. p53 R178C Promotes Lipolysis via

ADRB3 Signaling

(A) ADRB3 and p21 mRNA levels measured by RT-

PCR (top) and p53 protein expression evaluated by

immunoblotting in iWAT of the indicated p53 geno-

type (n = 4). Adipocytes differentiated from p53178C/C

SVF cells are shown as a positive control. p53 protein

levels were quantified relative to GAPDH by densi-

tometric scanning.

(B) Immunoblots of total and phosphorylated HSL

(Ser-660, p-HSL) in iWAT (n = 3).

(C) SVFs isolated from iWAT of p53178C/C mice were

transduced with a non-specific (NS) or p53 shRNA

lentivirus, differentiated into adipocytes, and

analyzed by RT-PCR (n = 3).

(D) The C/C adipocytes described in (C) were im-

munoblotted with antibodies, including those against

phospho-PKA substrates (RRXS/T motif) and the

PKAa catalytic subunit. Shown is one representative

of 4 experiments with 3 biological replicates.

(E) Glycerol release into culture medium by C/C ad-

ipocytes transduced with shRNA as an in vitro

measure of lipolysis activity (n = 4).

(F) Immunoblot of iWAT samples from the indicated

p53 genotype mice after control saline, ADRB3

agonist CL316243 (CL), or ADRB3 antagonist

SR59230A (SR) injection.

(G) Effect of daily injections of control saline, CL, or

SR for 5 days on body fat composition of mice

(�15weeks old), measured by NMR analyzer (n = 10–

11).

p53 R178 genotypes: wild-type (R/R), homozygous

mutant (C/C), and null (�/�). Statistical difference by

one-way ANOVA (A) and two-tailed unpaired t test (B,

E, and G). Values are mean ± SEM. *p < 0.05. See

also Figure S6.
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Mouse: C57BL6J < i > Trp53-R178C KI This paper N/A

Oligonucleotides

See Table S2 This paper N/A

Recombinant DNA

Mouse p53 shRNA lentiviral plamid OpenBiosystems TRCN0000012361

Lentiviral Packaging Mix Sigma-Aldrich SHP001

pcDNA-p53R178C This paper N/A

pLex-p53R178C This paper N/A

Mouse p53 CRISPR/Cas9 KO plasmid Santa Cruz Biotechnology Cat# sc-423059

Software and Algorithms

GraphPad Prism 7.0 GraphPad Software N/A

MetaboAnalyst 3.0 MetaboAnalyst N/A

MEME/TOMTOM MEME Suite N/A

DAVID Bioinformatics Resources National Institutes of Health N/A

SICER https://home.gwu.edu/�wpeng/Software.htm N/A

SeqPos motif tool Galaxy Cistrome N/A

R https://www.r-project.org/ N/A

Other

Comprehensive Laboratory Animal Monitoring

System (CLAMS)

Columbus Instruments N/A

Minispec NMR analyzer Bruker N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Paul M Hwang (hwangp@

mail.nih.gov). Unique reagents generated in this study will be made available under a standard material transfer agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse models
All mice were maintained and handled in accordance with the NHLBI Animal Care and Use Committee protocol. p53+/� mice (Jack-

son Laboratory) were of the C57BL6 strain. p53 R178C knockin mice were generated using the conventional embryonic stem (ES)

cell-mediated homologous recombination method (Lang et al., 2004; Park et al., 2018). Briefly, a gene-targeting construct containing

the CGC (Arg) to TGC (Cys) point mutation in exon 5 of p53 and neomycin resistance gene flanked by loxP sites was electroporated

into the V6.5mouse ES cell line. G418-resistant colonies were genotyped by PCR, and two correctly targeted ES cloneswere injected

into blastocysts collected from C57BL/6 mice for producing chimeric mice. The chimeras were then bred with wild-type C57BL/6

mice for germline transmission of the mutant allele. After crossing with CMV-Cremice (Jackson Laboratory) to remove the neomycin

resistance gene, the knockin mice were backcrossed for 8 generations into the C57BL/6 genetic background. Male mice (9-32 wk

old) were used for animal experiments, except for the cancer-free survival studies in which both female (F) and male (M) mice were

used (wild-type R/R, 17 F and 13 M; heterozygous R/C, 17 F and 15 M; homozygous C/C, 17 F and 15 M).

Cell culture
Adipose tissue stromal vascular fraction (SVF) was prepared and differentiated as previously described (Ma et al., 2015). Briefly, iWAT

was dissected from mice, minced, digested in buffer (123 mM NaCl, 5 mM KCl, 1.3 mM CaCl2, 5 mM glucose, 100 mM HEPES, and

4% BSA) containing collagenase (1 mg/ml) at 37�C for 45 min, filtered through a 100 m nylon screen, and centrifuged at 150x g for

5 min at room temperature. Cell pellets were washed twice, resuspended, and cultured in DMEMmedium containing 10% FBS and

1% penicillin/streptomycin with daily media changes. For adipocyte differentiation, the isolated SVF cells were stimulated with

0.5 mM isobutylmethylxanthine, 125 mM indomethacin, 5 mM dexamethasone, 20 nM insulin, 1 nM T3 and 1 mM rosiglitazone for
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48 h and subsequently maintained with 20 nM insulin and 1 nM T3 for 3-4 d, both in complete DMEM medium. Mouse embryonic

fibroblasts (MEF) were prepared from 13.5 d embryos and cultured in DMEM medium supplemented with 10% FBS and 1% peni-

cillin/streptomycin.

p53 null (p53�/�) preadipocyte 3T3-L1 cell line was generated using CRISPR-Cas9 technique (Ran et al., 2013). Cells transfected

with mouse p53 CRISPR/Cas9 KO plasmid (Santa Cruz, sc-423509) were subjected to serial dilution for isolating single clones and

subsequently treated with 5 mM nutlin-3 (Sigma) for selection. p53 null clones were selected by p53 western blot and confirmed with

genomic DNA sequencing.

METHOD DETAILS

Mouse phenotyping studies
For the cancer-free survival study, themice were euthanized if any external mass exceeded 2 cm in its largest dimension or when the

mouse met moribund criteria. Necropsies and histopathologic diagnoses were performed by qualified veterinary pathologists (Divi-

sion of Veterinary Resources, NIH). To induce p53 in vivo, micewere exposed to 5Gy total body g-irradiation (TBI) using a Gammacell

40 (K2K 1 3 8; MDS Nordion) (Chen et al., 2004) or injected with doxorubicin (20 mg/kg, i.p.) 6 or 18 h, respectively, prior to tissue

harvest.

Metabolic phenotyping was performed in male mice to control for gender dimorphism and due to resource limitations. Body

composition of non-anesthetized mice was measured using the Minispec NMR analyzer (Bruker). Energy expenditure, food intake,

and activity under room temperature (22�C) or thermoneutral condition (29.5�C) were measured using the Open Circuit Calorimetry

system (CLAMS, Columbus Instruments). For the glucose tolerance test (GTT) and insulin tolerance test (ITT), micewere fasted for 6 h

for after which glucose (1.5 mg/g BW) or insulin (0.5 mU/g BW) was administered by i.p. injection and blood glucose levels were

measured after injection using a glucometer (AlphaTrak2, Zoetis) over a 120 min period. Treadmill exercise testing was performed

as described previously (Park et al., 2009). For thermogenesis testing, mice were individually caged and exposed to 4�C for 5 h during

which hourly core body temperatures were measured per rectum using a mouse thermometer probe (THM-100, Indus Instruments).

For ADRB3 pharmacologic studies, iWAT tissue samples were collected from mice 20 min after injection with control saline or

CL316243 (1 mg/kg BW, i.p., Sigma-Aldrich), or 1.5 h after SR59230A (3 mg/kg BW, i.p., Sigma-Aldrich). Longer term effect of these

agents on body composition was measured 5 d after daily injections of saline, CL316243, or SR59230A at the same doses noted

above.

Southern blotting
Mouse embryonic fibroblasts (MEF) genomic DNAwas digestedwithEcoRI and analyzed by Southern blotting. The genomic blot was

hybridized with 32P random primed probe (Exon 1 region, Figure S1; Table S2) in Ultrahyb solution (Ambion) at 42�C overnight. The

blot was washed with 0.3% SSC + 0.1% SDS at 60�C for 1 h followed by 0.1% SSC + 0.1% SDS at room temperature for 1 h and

exposed to X-ray film at �80�C.

Histology and tissue biochemistry
Tissues were fixed in 4% formaldehyde, paraffin-embedded, sectioned, and hematoxylin and eosin stained. Differentiated adipo-

cytes were fixed in 4% formaldehyde, stained with Oil Red O solution (American MasterTech) for 20 min, and washed in PBS.

The stain was eluted with 100% isopropanol and quantified by measuring A490 nm. iWAT tissue norepinephrine (NE) levels were

measured using a noradrenaline ELISA Kit (AVIVA systems biology).

Lipid analysis and metabolomic profiling
Blood from 10 wk old male mice were collected in EDTA tubes and the resulting plasma samples were frozen in liquid nitrogen. Total

cholesterol and triglycerides levels weremeasured by the NCI Pathology/Histology Laboratory (Frederick, MD). Plasma levels of non-

esterified fatty acids (NEFA) were measured using a NEFA kit (Wako). Metabolomic profiling was performed by Metabolon (Durham,

NC), and the median value-normalized data were analyzed in MetaboAnalyst 3.0.

Lipolysis assay
Freshly isolated tissue or SVF differentiated adipocytes were incubated in DMEM + 1% fatty acid-free BSA for 1 h. Lipolysis rate was

determined by measuring the amount of glycerol released into the medium using Free Glycerol Reagent (Sigma) per manufacturer’s

protocol. Briefly, 5 mL of culture media were mixed with 200 ul of glycerol reagent, incubated at room temperature for 15 min, and

measured at 550 nm with a plate reader.

Mitochondrial respiratory complex activity assays
Mitochondria were isolated from brown adipose tissue using standard techniques as previously described (Frezza et al., 2007).

Respiratory complex I and IV enzymatic activities were measured using blue-native (BN) gel and in-gel assays. The mitochondrial

complexes were resolved using a Invitrogen NativePAGE 4%–16% Bis-Tris gel according to the manufacturer’s protocol, and the

enzymatic activities were visualized by incubating the gel as follows: respiratory complex I–50 mM potassium phosphate (pH 7.0)
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buffer containing 0.2 mg/ml Nitro BlueTetrazolium (NBT, Sigma-Aldrich) and 0.1 mg/ml NADH (Sigma-Aldrich); and respiratory

complex IV–50 mM sodium phosphate (pH 7.2) buffer containing 0.4 mg/ml diaminobenzidine (DAB, Sigma-Aldrich) and 1 mg/ml

cytochrome c (Sigma-Aldrich).

Cell cycle and cellular metabolic assays
CD4+ T cells were isolated from mouse spleen using CD4 MicroBeads (Miltenyi) according to the manufacturer’s protocol. To mea-

sure apoptosis, T cells were stimulated with anti-CD3/anti-CD28 antibodies (eBioscience) for 3.5 d, stained with Annexin V (BD Phar-

Mingen), and the apoptotic cells were analyzed by flow cytometry (BD LSR II). For the proliferation assay, splenic CD4+ T cells were

stained with 5 mM CellTrace Violet reagent (Thermo Fisher Scientific) prior to stimulation with anti-CD3/anti-CD28 and successive

generations of live cells were analyzed by flow cytometry. Proliferation was quantified using cell populations that underwent more

than 5 divisions normalized to total live cells. Senescence in MEFs was quantified by staining for b-galactosidase activity as previ-

ously described (Senescence b-Galactosidase Staining Kit, #9860, Cell Signaling Technology) (Park et al., 2018). Oxygen consump-

tion rate (OCR) and extracellular acidification rate (ECAR) in MEFs were measured by Seahorse XF 24 Analyzer (Agilent) as previously

described (Kang et al., 2014).

Antibodies and immunoblotting
Antibodies used in this study were as follows: ADRB3 and GAPDH (Thermo Fisher Scientific); a-tubulin (Sigma-Aldrich); p21

(CDKN1A, Millipore Sigma); PKAa cat (A-2, Santa Cruz Biotechnology); HSL, phospho-HSL (Ser660), phospho-PKA Substrate

(RRXS*/T*) and p53 (1C12) (Cell Signaling Technology); TFAM, Total OXPHOS Rodent Antibody Cocktail and UCP1 (Abcam).

Protein samples were solubilized in cold RIPA buffer supplemented with protease/phosphatase inhibitors (Roche), resolved by

Tris-glycine SDS-PAGE, and transferred to Immobilon-P membrane (Millipore) for standard ECL immunoblotting. For p53 immuno-

blotting in iWAT tissue, endogenous IgG in the tissue lysatewas depletedwith Dynabeads Protein G (Thermo Fisher Scientific) prior to

gel electrophoresis as previously described (Park et al., 2018).

Lentiviruses and cell transduction
Plasmids containing the sequences of non-specific shRNA and mouse p53 shRNA (Open Biosystems, clone # TRCN0000012361)

were used to prepare lentivirus according to manufacturer’s protocol (Sigma-Aldrich). The p53 R178C and R181C mutations were

introduced into mouse or human p53 cDNA, respectively, using QuickChange II site-directed mutagenesis kit (Agilent technologies),

and the human p53 R175H cDNA has previously been described (Wang et al., 2017). Mutations were confirmed by sequencing, and

the mutant p53 cDNAs were subcloned into pLEX-MCS plasmid (OpenBiosystems) for lentivirus preparation. The lentivirus and poly-

brene (6 mg/ml) were added to the SVF cells, and the transduced cells were grown for 2 d followed puromycin (2.5 mg/ml) selection.

For transient p53 expression, cells were transduced with the p53 cDNA containing lentivirus and grown for 2 d prior to use.

Luciferase reporter assay
The �1.2 -kb p21 and ADRB3 genomic fragments containing the p53 binding site were cloned into the pGL4.10-luciferase vector

(Promega) using the In-Fusion Cloning kit (Takara). Mutations were introduced into these constructs using the QuickChange II kit

(Agilent technologies) (see Table S2 for primer sequences). Luciferase activity was measured in p53�/� 3T3 L1 cells 24 h after co-

transfection with wild-type p53, p53 R178C, or empty vector pcDNA and pGL4.74 plasmid containing the TK promoter and Renilla

luciferase as a transfection efficiency control (Dual -Luciferase Reporter Assay System, Promega).

Gene expression analysis
Total tissue RNAwas purified using QIAzol Lysis Reagent and the RNeasy kit (QIAGEN), andmRNAwas isolated using the Dynabead

mRNAPurification Kit (Thermo Fisher Scientific). For RT-PCR, cDNAwas synthesized using Superscript IV (Thermo Fisher Scientific),

and real-time PCR was performed using SYBR green fluorescence on a HT7900 thermal cycler (ABI) as previously described (Patino

et al., 2006). The average cycle threshold (Ct) of the respective gene was normalized to housekeeping gene TIF (EIF3F) (see Table S2

for primer sequences). For RNA-Seq, mRNAs purified from 2 mg of iWAT total RNA were used to synthesize double-stranded cDNAs

using the SuperScript Double-Stranded cDNA Synthesis Kit (Thermo Fisher Scientific).

Chromatin immunoprecipitation (ChIP)
ChIP assay was performed as previously described with some modifications (Lee et al., 2017). Briefly, cells were treated with 1.5%

formaldehyde to cross-link at room temperature for 10 min, and their nuclei were isolated by incubating in lysis buffer (20 mM Tris

pH 8.0, 85 mM KCl, 0.5% NP-40, supplemented with protease inhibitors) on ice for 10 min followed by centrifugation at 3000x g

for 5 min. The nuclear pellet was resuspended in RIPA buffer (10 mM Tris-Cl, pH 7.5, 1mM EDTA, 0.1% SDS, 0.1% sodium

deoxycholate, 1% Triton X-100, supplemented with protease inhibitors) and sonicated at 20% amplitude for 15 s, repeated 20 times.

The sheared nuclear extracts were immunoprecipitated with anti-p53 (FL393, Santa Cruz #sc-6243) or control rabbit IgG (Santa Cruz

#sc-2027) antibodies (pre-bound with Dynabeads Protein A, Thermo Fisher Scientific) at 4�C overnight. Antibody-bound DNA

fragments were eluted in 100 mL of elution buffer (1% SDS, 0.1 M NaHCO3, supplemented with proteinase K to a final concentration

of 100 mg/ml) at 65�C for 5 h and purified by QIAquick PCR Purification Kit (QIAGEN).
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Sequencing and computational analysis
Sequencing libraries were constructed using NEBNext Ultra II DNA Library Prep Kit forIllumina (NEB). All ChIP-Seq and RNA-Seq

samples were sequenced on the Illumina HiSeq 2500. Sequencing reads were aligned to mouse reference genomemm9 using Bow-

tie 2. To identify p53 binding regions, we used the ‘SICER’ method with a window and gap sizes of 50 bp. To eliminate non-specific

binding of p53 antibody, we compared p53 ChIP-Seq data of p53�/� cells with that of p53178R/R and p53178C/C cells, and a FDR of <

1E�10was used to find high-confidence p53-binding regions. Heatmaps of p53 binding sites were generated with Python 2.7 scripts

and graphics package in R with 50 bp resolution. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology

(GO) analyses were performed with DAVID Bioinformatics Resources (https://david.ncifcrf.gov/; Huang et al., 2009). Motif search

(Table S1A) on the ChIP-Seq data was performed by SeqPos motif tool in Galaxy Cistrome as previously described (Lee et al.,

2017). Motif search with a limited number of sequences (< 50, Figure 5D) was done with MEME and TOTOM (http://meme-suite.

org/tools/meme).

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise specified, data were analyzed using the two-tailed unpaired t test. For data containing more than 2 experimental

groups, one-way ANOVA with Tukey’s posttest analysis was performed using GraphPad Prism (v7.02). Principal component anal-

ysis, ANOVA analysis, and heatmap clustering of metabolomic data were performed using MetaboAnalyst 3.0 (https://www.

metaboanalyst.ca/) (Xia et al., 2015).

DATA AND CODE AVAILABILITY

The accession number for the RNA-seq and ChIP-seq datasets reported in this paper is NCBI Gene Expression Omnibus:

GSE132715.
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Figure S1.  Strategy for generating p53 R178C knockin mouse, Related to Figure 1.

Conventional ES cell-mediated strategy was used to knockin the missense mutation into the p53

gene (p53R178C).  Mice with germline transmission of the mutation were crossed with Cre-

expressing mice to remove the neomycin (Neo) resistance gene flanked by loxP sites (triangles).  

Asterisk indicates the mutated nucleotide in exon 5 and horizontal arrowheads indicate forward 

and reverse primers for genotype screening. Genomic DNA was digested with EcoRI (R1) and 

analyzed with standard southern blot with the probe marked in red near Exon 1 region.
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Figure S2.  p53 R178C partially retains wild-type p53 activity, Related to Figure 1.

(A) mRNA levels of the indicated p53 target genes in -irradiated mouse tissues were quantified by RT-PCR 

(R/R and C/C, n = 4-5; -/-, n = 3). 

(B) mRNA levels of the indicated p53 target genes in spleen of doxorubicin treated mice (n = 6). 

(C) Apoptosis and proliferation of splenic T cells analyzed by flow cytometry (n = 4).

(D) Senescence in MEF cells imaged and quantified by -galactosidase staining (n = 4). 

(E) Oxygen consumption rate (OCR, mitochondrial respiration) and extracellular acidification rate (ECAR, 

glycolysis) in MEFs measured by Seahorse XF Analyzer (n = 6).

p53 R178 genotypes:  wild-type (R/R); homozygous mutant (C/C); and null (-/-).  Statistical difference by one-

way ANOVA (A, D, E) or two-tailed unpaired t test (B, C) in comparison with wild-type (R/R). Values are 

mean ± SEM. *P < 0.05
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Figure S3.  Metabolic phenotype characterization, Related to Figure 1.
(A) Body weight of female mice by age (n ≥ 12).
(B) Energy expenditure, food intake and activity of 10-13 wk old age-matched male mice with p53178C/C

mutant (C/C) compared to wild-type (R/R).  The parameters were measured using the Open Circuit 
Calorimetry system during the indicated cycle of the day; light cycle, 6 am to 6 pm; dark cycle, 6 pm to 
6 am (n = 27, for room temperature at 22 oC, n = 9 for thermoneutral condition at 29.5 oC).  
(C) Body composition measured by NMR expressed as percent of fat or lean of body weight (BW) in 30-
32 wk old mice (R/R, n = 22; C/C, n = 19).  
(D) Fat and lean mass of 9 wk old male mice (n = 24).  
(E) Glucose tolerance test (GTT) and insulin tolerance test (ITT) (n = 11). 
AUC, area under the curve.
(F) The endurance capacity measured with treadmill exercise of male mice.  
p53 R178 genotypes:  wild-type (R/R); homozygous mutant (C/C); and null (-/-).  Statistical difference by 
two-way ANOVA with repeated-measures (A) and two-tailed unpaired t test in comparison with wild-
type (R/R) (B-H).  Values are mean ± SEM.  *P < 0.05, **P < 0.01
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Figure S5.  Plasma metabolomics, Related to Figure 3.

(A) One-way ANOVA analysis of all metabolites.  Out of 706 total metabolites, 140 were 

significantly changed by p53 status (red, P < 0.05).  

(B) Heat map comparison of all lipid metabolites identified in plasma from R/R, C/C and -/- mice 

(n = 6).  Relative levels of the metabolites are color coded (left) and P < 0.05 between each group 

is presented as a gradient (right).
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Figure S6. p53 R178C is associated with regulation of lipid metabolism, Related to Figure 4 and 6.

(A) Arachidonic acid pathway genes enriched in C/C iWAT. Genes related to 12,13-diHOME biosynthesis are 

shown in bold and underlined; CYP2E1 (Cytochrome P450, family 2, subfamily e, polypeptide 1) and EPHX2 ( 

Epoxide hydrolase 2, cytoplasmic). 

(B) SVF cells isolated from C/C iWAT were transduced with p53 or non-specific control (NS) shRNA 

lentivirus, differentiated into adipocytes for 6 d, and stained with Oil-Red O.  The stain was eluted with 100% 

isopropanol and quantified by measuring A490 nm (n = 3).

(C) Control experiment to assess for off-target effect of shRNA.  Control (CTL) or p53 R178C cDNA 

containing lentivirus was transduced for 2 d in p53178C/C SVF adipocytes stably expressing p53 shRNA 

(described in B) to ensure that p53 R178C re-expression can rescue HSL phosphorylation and ADRB3 mRNA 

levels.  Representative immunoblot and mRNA levels of the respective genes are shown (n = 4).

(D) Effect of human p53 R181C, in contrast to a loss of DNA binding mutant p53 R175H, on HSL 

phosphorylation and ADRB3 expression.  Control (CTL) or p53 cDNA lentivirus was transduced into p53-/-

SVF cells and differentiated into adipocytes.  Representative immunoblot and mRNA levels are shown (n = 3).

Statistical difference by one-way ANOVA or two-tailed unpaired t test in comparison with wild-type (R/R). 

Values are mean ± SEM. *P < 0.05
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Motif P value 

TP53 9E-240 

PPARG::RXRA 2E-87 

HIC1 3E-85 

RXRB 2E-74 

PRDM4 9E-70 

ZFP187 2E-69 

EN1 5E-61 

E2F1 1E-58 

NFIC 4E-53 

NFIX 1E-52 
 
 
 
 

 

Table S1.  Motif and pathway analysis of p53 binding regions, Related to Figure 5.  

(A)Top 10 transcription factor binding motifs enriched in p53 binding regions from wild 

type (R/R) and p53178C/C(C/C) ChIP-Seq.  High confidence (FDR < 1E-10) peaks were 

subjected to motif analyses by SeqPos motif tool in Galaxy Cistrome.

(B) Gene Ontology (GO) biological process analysis of genes proximal to mutant p53 

R178C binding regions.

Motif P value 

TP53 2E-304 

RXRB 1E-107 

PRDM4 1E-106 

HIC1 3E-94 

E2F3 4E-89 

PPARG::RXRA 7E-83 

NR4A2 6E-75 

FOXJ3 9E-75 

GATA2 3E-74 

LMO2 6E-73 

 

Mutant p53 R178CWild-type p53
A

B  

Term P value 

Positive regulation of reactive oxygen species metabolic process 6E-04 

Intrinsic apoptotic signaling pathway in response to DNA damage 
by p53 class mediator 6E-04 

Response to drug 1E-03 

Oxidation-reduction process 7E-03 

Response to mechanical stimulus 9E-03 

Negative regulation of apoptotic process 1E-02 

Response to endoplasmic reticulum stress 2E-02 

Response to glucose 2E-02 

Aging 2E-02 

Response to toxic substance 2E-02 

Apoptotic process 3E-02 

Transcription, DNA-templated 4E-02 

GO:  Mutant p53 R178C associated genes



 Forward (5′ → 3′) Reverse (5′ → 3′) 

RT-PCR   

ADRB3 GGTAGTGGGACTCCTCGTAATG GGGTTGGTGACAGCTAGGTA 

BAX CCGGCGAATTGGAGATGAACT CCAGCCCATGATGGTTCTGAT 

CDKN1A (p21)  CTGTGGGTCTCTGCCAGCTGC GAGGCCTGTCTCACCACCAAG 

MDM2 GCCATTGAACCTTGTGTGATTT CATACTGGGCAGGGCTTATT 

LIPE (HSL) GTCCTCTGCTTCTCCCTCTC CGGAGGTCTCTGAGGAACAG 

BBC3 (PUMA) AGCAGCACTTAGAGTCGCC CCTGGGTAAGGGGAGGAG 

TIGAR GTGGCCATCTTCCGAGAAACC GAAGCCAGCCCACCAAACT 

EIF3F (TIF) CTGAGGATGTGCTGTCTGGGAA CCTTTGCCTCCACTTCGGTC 

Genotyping   

p53 R178C geno CGAGGCCATCTCTGACTACACAG GTCCAAGCACCATTGGACGC 

Southern probe   

p53 Exon1 GTAGCTTCAGTTCATTGGGACC GTGTGTACAACGCGTAGCGGAG 

Cloning   

p53 R178C CCCACCATGAGTGCTGCTCCGATGGTG
ATGGCCTGGCTC 

GAGCCAGGCCATCACCATCGGAGCAGC
ACTCATGGTGGG  

pLEX-p53 CCGACTCTACTAGAGGATCCTGGATGA
CTGCCATGGAGG 

GGCCCTCTAGACTCGAGTCAGTCTGAG
TCAGGCC 

pGL4.10-Adrb3RE CTGAGCTCGCTAGCCTCGAGACATCCC
CTGTGCTAAAACAG 

AGTACCGGATTGCCAAGCTTGGAGGAA
GTGCGTCACTTTG 

pGL4.10-p21RE 
GAGCTCGCTAGCCTCGAGTGTGTGAAT
GTGTGTGCATGTTTG 

GTACCGGATTGCCAAGCTTTGTGACCTC
CTGTGCCTTTAC 

ADRB3-AT(Mut1) 
GTCTGTGTTTCCAAGAACTGAACAAGTC
TAGACAAGTTCAACCCTCAGAAGCTGCC
CTG 

CAGGGCAGCTTCTGAGGGTTGAACTTG
TCTAGACTTGTTCAGTTCTTGGAAACAC
AGA 

ADRB3-T(Mut2) 
CTAAGTCTGTGTTTCCAAGAACTGGGTA
ATTCCAGGTAATTCCAACCCTCAGAAGC
TG 

CAGCTTCTGAGGGTTGGAATTACCTGGA
ATTACCCAGTTCTTGGAAACACAGACTT
AG 

p21-GC(Mut1) 
CTAGCTTTCTGGCCTTCAGGGGCATGTC
CTGGCATGTC 

CCTCTTCAATTCCAGGGCTGGACATGCC
AGGACATGCC 

p21-T(Mut2) 
GGGACTAGCTTTCTGGCCTTCAGGAATA
TTTCTTGATATTTTCAGCCC 

CCACCTCTTCAATTCCAGGGCTGAAAAT
ATCAAGAAATATTCCTGAA 

Sequencing   

p53 cDNA CAGTTCATTGGGACCATCCT  CAGCAGAGACCTGACAACTATC 

pGL4.10 CTAACTGGCCGGTACCTGAG GGCTTTACCAACAGTACCGGATTG 

 

Table S2.  Primer sequences, Related to Star Methods.
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