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Supplementary Table 1. Biological properties of the herbal components of UGS.

.. . . . Supplementary
Scientific name Symbol Biological properties References
Uncaria sinensis Cl1 Neuroprotection, Anti neuroinflammation [1~4]

. . Neuroprotection, Anti neuroinflammation, Anti N
Atractylodes japonica C2 nociception, Promote differentiation [5~9]
Poria cocos C3 Neuroprotection, Immune modulation [10~12]
Bupleurum falcatum C4 Anti neuroinflammation, Antioxidant, Antidepressant [13~17]
Angelica gigas C5 Neuroprotection, Anti inflammation, Growth inhibition [18~21]
Cnidium officinale Co6 Antioxidant, Anti neuroinflammation, Anticancer [22~26]
Glycyrrhiza uralensis 7 Bioactive Constituents, Anti inflammation, [27~30]

Detoxification, Immune modulation
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Supplementary Table 2. List of enriched pathways from SPIA based on the phosphorylation levels of signaling proteins.

FDR FDR
Pathways HT22 | BV-2 | HBVP Pathways HT22 | BV-2 | HBVP
Pathways in cancer| 7.13E-14| 6.81E-17| 2.09E-04| Melanoma| 3.85E-03 3.45E-04| 247E-02
Viral carcinogenesis| ~ 1.44E-09| 223E-07| 7.80E-03 Leukocyte transendothelial migration|  5.51E-03! 1.85E-02
Pancreatic cancer| ~ 7.15E-09|  1.20E-06 1.07E-03 Apoptosis| 5.54E-03| 3.01E-02 4.64E-03
Prostate cancer| 1.60E-08| 2.11E-10| 4.62E-04 Bacterial invasion of epithelial cells| 5.54E-03| 2.89E-02
Focal adhesion|  1.90E-07| 2.74E-07| 1.77E-02 NF-kappa B signaling pathway| 6.32E-03| 2.16E-05| 2.52E-02
ErbB signaling pathway|  3.06E-07| 9.01E-10| 2.52E-02 Aldosterone-regulated sodium reabsorption| 5.08E-03| 4.79E-02| 5.52E-03]
Osteoclast differentiation| ~ 3.06E-07|  1.92E-07| 3.02E-02 Oocyte meiosis| 8.07E-03 1.34E-03| 2.52E-02
Acute myeloid leukemia|  4.68E-07| 1.92E-07 4.81E-03 Dopaminergic synapse| 8.78E-03| 7.65E-03| 1.31E-02
Chemokine signaling pathway| 4.686-07| 2.74E-07|  2.52E-02 Wnt signaling pathway| 9.256-03| 3.61E-02| 144E-02
Epstein-Barr virus infection| ~ 4.68E-07|  6.06E-11|  5.52E-03 Amphetamine addiction|  1.31E-02 9.60E-03;
Tuberculosis|  4.68E-07| 3.84E-07|  1.52E-02 Fc epsilon Rl signaling pathway| 131E-02| 1.30E-05 4.38E-02
MAPK signaling pathway| 6.24E-07| 6.91E-10| 4.81E-03 Fc gamma R-mediated phagocytosis| 1.59E-02| 1.34E-03| 4.13E-02
Endometrial cancer|  4.32E-06| 1.79E-04| 1.05E-02 Progesterone-mediated oocyte maturation| =~ 1.59E-02| ~ 2.16E-05| 1.22E-02
Chronic myeloid leukemia| ~ 4.32E-06| 6.00E-06 3.00E-04 Bladder cancer| 1.62E-02| 1.38E-02
Neurotrophin signaling pathway| 7.91€E-06| 1.01E-06| 1.62E-03 Melanogenesis| 1.83E-02| 8.28E-03 4.38E-02
HTLV-l infection| ~ 2.07E-05| 3.65E-06| 6.83E-04 Cocaine addiction| 1.93E-02| 3.85E-02| 1.77E-02
Measles| ~ 2.26E-05| 2.97E-06| 4.17E-02 Alzheimer's disease| 1.94E-02| 3.10E-02| 9.60E-03;
VEGF signaling pathway| 2.76E-05| 1.071E-06| 8.81E-03 Gap junction|  1.74E-02| 3.49E-02| 1.67E-02
Cytokine-cytokine receptor interaction| — 4.74E-05|  9.36E-03  1.49E-02 Amoebiasis| 1.76E-02
Adipocytokine signaling pathway| 5.09E-05| 3.50E-03| 4.62E-04] Leishmaniasis| 1.76E-02| 6.96E-03
Hepatitis C|  5.17E-05|  6.92E-07 5.52E-03 Gastric acid secretion|  1.43E-02
Epithelial cell signaling in Helicobacter pylori infection| ~ 6.83E-05( 9.33E-05| 2.23E-02 Huntington's disease| 1.67E-02. 5.46E-03;
Influenza A|  9.81E-05| 1.32E-05| 8.81E-03 Pertussis|  1.87E-02|  1.86E-02
Toxoplasmosis| ~ 1.38E-04| 1.92E-07| 5.46E-03 Viral myocarditis|  1.87E-02 9.60E-03;
Small cell lung cancer|  1.61E-04| 4.70E-03|  1.53E-03 Renal cell carcinoma| 2.37E-02| 1.29E-02
Glioma|  1.95E-04| 1.86E-04| 2.19E-02 Thyroid cancer|  2.55E-02 2.19E-02
Insulin signaling pathway| ~ 1.86€-04 4.286-07| 1.07E-03 Salmonella infection| 2.836-02| 3.41E-03
Regulation of actin cytoskeleton| ~ 1.91E-04| 3.25E-03| 2.44E-02 Cholinergic synapse| 2.89E-02
Non-small cell lung cancer| 2.01E-04| 2.16E-03| 2.87E-02 TGF-beta signaling pathway| 2.06E-02 2.42E-02
Colorectal cancer|  2.24E-04| 5.26E-04| 2.39E-03 Long-term depression| 2.19E-02|  1.34E-03| 3.14E-02
Cell cycle| 2.58E-04 8.97E-05 5.52E-03 NOD-like receptor signaling pathway| 2.66E-02| 537E-04| 2.23E-02
Jak-STAT signaling pathway| 2.46E-04| 2.27E-03 Long-term potentiation| 3.86E-02| 831E-03| 2.63E-02
GnRH signaling pathway| 2.67E-04|  5.60E-06 p53 signaling pathway| 4.46E-02| 141E-02| 1.76E-02
Chagas disease (American trypanosomiasis)|  6.35E-04| 2.07E-03| 4.81E-03 Cytosolic DNA-sensing pathway| 4.57E-02| 1.25E-02| 5.52E-03]
Transcriptional misregulation in cancer| 6.35E-04| 267E-02| 2.19E-02 Alcoholism|  4.41E-02 3.94E-05| 1.49E-02
Herpes simplex infection| ~ 6.60E-04| ~ 7.00E-03|  2.35E-02 Vascular smooth muscle contraction 1.03E-03 3.96E-02
T cell receptor signaling pathway|  8.84E-04| 4.57E-07| 2.87E-02 Type Il diabetes mellitus. 2.23E-02( 2.39E-03;
Amyotrophic lateral sclerosis (ALS)|  1.04E-03| 9.39E-04| 1.38E-02 Axon guidance 1.34E-02
Calcium signaling pathway|  1.56E-03| 2.69E-02| 2.37E-02 Antigen processing and presentation: 2.56E-02
Natural killer cell mediated cytotoxicity| ~ 1.30E-03|  2.07E-04 RIG-I-like receptor signaling pathway 2.74E-02(  1.38E-02;
Shigellosis| ~ 1.76E-03|  5.54E-03|  4.56E-03 Retrograde endocannabinoid signaling 2.39E-02
Pathogenic Escherichia coli infection|  1.78E-03 5.52E-03 Glutamatergic synapse 2.52E-02
mTOR signaling pathway| ~ 192E-03|  1.29E-02  1.62E-03 Dorso-ventral axis formation 3.54E-02
Tight junction|  2.28E-03| 3.49E-02| 2.56E-03 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 3.08E-02| 1.49E-02
B cell receptor signaling pathway| 3.35E-03| 2.54E-04| 1.77E-02 Legionellosis: 4.81E-03
Toll-like receptor signaling pathway|  3.55E-03|  1.54E-04| 4.95E-03 Parkinson's disease 5.52E-03!
Carbohydrate digestion and absorption 2.96E-02




Supplementary Table 3. List of individual chemical compounds included in each functional subcategory of kinase inhibitors.

Cell cycle inhibitors Inhibitors of growth factor receptors MAPK inhibitors

Other cell
CDK ATM kinase  Mitotic | EGFR VEGFR
ycle

MEK RAF Other MAPK
sitors inhibitors.

inhibitors inhi

bitors  inhibitors  inhibitors inhibitors  inhibitors

inhibitors

[CDK inhibitors K07762753  aminopurvalanol-a 5]
K31268420 NSC-693868 o
K37312348 kenpaullone o
aloisine o
palbociclib o

K71726959

726959 o
K72726508 arcyriaflavin-a o
K72783841  tyrphostin-AG-
K87932577 CDK1-5-inhibitor o]

ATM kinase inhibitors ~ A11678f
AS0737080 CGK-733
K02404261 caffeine
K15592317
k25311561

Mitotic inhibitors A06352508 SB-218078
K19136521 indirubin
K46056750 AZD-7762
K63923597 barasertib
K83963101 MLN-8054

Other cell cycle inhibitors K13514097 everolimus
K13646352 midostaurin
K2973303
K35687265 ON-01910
K84937637 sirolimus

EGFR inhibitors K03670461 tyrphostin-AG-82

K08132273 tyrphostin

K11158509 tyrphostin-B44

K13087974 4,5-dianilinophthalimide

K14441456 tyrphostin-AG-556

K16977723 PP-3

K19687926 lapatinib

K21853356 RG-14620

k23583188  lavendustin-a

K32292990 CGP-53353

K32906660 bis-tyrphostin

K34533029 tyrphostin-AG-494

K43797669 genistein

K47943470 tyrphostin-51

K49657628 ~tyrphostin-AG-18

K50168500 canertinib

K59469039 AG-879

K64052750 _gefitinib

K66175015  afatinib

K68336408 tyrphostin-AG-1478

K68407802 KINOO1-055

K70401845 erlotinib

K70914287 BIBX-1382

K72420232 WZ-4002

K73203050 WZ-3146

K76908866 CP-724714

K79930101 GW-583340

K80725632 lavendustin-c

K81209512 AG-494

K82688027 RG-13022

K85606544 neratinib

K88741031  methyl-2,5-dihydroxycinnamate

K96778649 tyrphostin-47

U08759356 EI-346-erlotinib-analog

U25771771 WZ-4-145

20287671 SU-4:

K34995470 SU-1498

k41337261

K5181670

K63504947 semaxanib

K67831364

K96084870

76 wortmannin

ocoo0o0O0

Cell cycle inhibitors

ococoooo

deforolimus

ocoooo
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Inhibitors of growth factor receptors

VEGFR inhibito

oo
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o

o

FGFR inhibitors K0788 danusertib o
masitinib [e]

dovitinib o

K71035!
K8540230

o

MEK inhibitors K05104363 PD-184352
K12244279  MEK1-2-inhibitor
K18787491 U-0126
K49865102 PD-0325901
K88677950 PD-198306
K89014967 AS-703026

RAF inhibitors K01253243  SB-5
KO: 44
K07859598
K16478699

K2

0O000O0O0

MAPK inhibitors

885

oo

o

o

o

67 sorafer

K74514084 pazopa
Other MAPK inhibitors k31283835 tofacitinib
K42500029 CGP-57380
K50387473  XMD-892
K64857848 XMD-885
K68756823 FR-180204

O0Oo0o0O0O0
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Con S UGS Mix1 Mix2 Mix3 Con S C1 C2 C3 C4 C5 C6 CcC7

MMP-9

Supplementary Fig. S1. Full length images of gels of Fig. 1c. HBVP cells were treated with TGF-1 (10 ng/mL) and each herbal extract for 24 h.
MMP-9 enzymatic activity was assessed by gelatin zymography using the culture supernatants of each sample. Areas of gelatinase activity were
detected as clear bands against the blue-stained gelatin background. Con represents untreated control samples and S represents TGF-B1-treated
samples.
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Supplementary Fig. S2. Effects of UGS and its herbal components on LPS-stimulated BV-2 microglia. BV-2 microglial cells were pretreated with each
herbal extract for 2 h and then stimulated with LPS (1 ug/mL) for an additional 22 h. The supernatants were collected and applied to ELISA for IL-6. The
left panel presents the effects of UGS and the 3 herbal component mixtures (Mix), while the right panel presents the effects of individual herbal
components (C1-C7). The white bar (Con) represents untreated control samples and the black bar (S) represents LPS-stimulated samples. Data
represent the mean + standard error of 3 independent experiments. ###p < 0.01 vs untreated cells; *p < 0.05, **p < 0.01 or ***p < 0.001 vs LPS-

stimulated cells.
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Supplementary Fig. S3. Effects of UGS and its herbal components on the AB-induced mouse model of Alzheimer’s disease. For the
immunohistochemistry (IHC) assay, AB aggregates (10 ymol per 10% dimethyl sulfoxide in PBS) were injected into the intracerebroventricular (ICV)
region of ICR mice in stereotaxic coordinates. Vehicle or each herbal extract was orally administered for 21 days. Expressions of NeuN and desmin in
the hippocampus and Iba-1 in the cortex were determined by IHC (magnification, x200) and then quantified using ImageJ as shown in right panel. Data
represent the mean + standard error of 3 independent experiments. ###p < 0.01 vs untreated samples; *p < 0.05, **p < 0.01 or ***p < 0.001 vs AB-
stimulated samples. The length of the scale bar indicates 250 pum.



Recovery rate by herbal components
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Supplementary Fig. S4. Therapeutic similarities between neurovascular cell types based on in vitro experiments. HT22, BV-2, and HBVP cells
exposed to H,0,, LPS, and TGF-$1, respectively were treated with each herbal component. For HT22 cells, cytotoxicity was determined by the CCK
assay. For BV-2 cells, the amount of TNF-a was measured. For HBVP cells, MMP-9 enzymatic activity was assessed. The therapeutic effect of each
herbal component was measured as recovery ratio compared with untreated cells, then compared among neurovascular cell types.



Supplementary Fig. S5. Functional connections between neurovascular cells based on gene expression. HT22, BV-2, and HBVP cells were exposed to
H202, LPS, and TGF-B1, respectively. Total RNA extracts from cultivated cells were analyzed by RNA-seq technology. Gene expression levels were compared with
those of control cells to obtain expression ratios. Genes showing expression ratios above 2 or below 0.5 in each experimental condition were identified as DEGs. GO
terms associated with DEGs from each stimulated neurovascular cell type were identified with DAVID, and redundancies removed using ReviGO. The resultant GO
terms were connected with each other based on the common genes (p < 0.001) included in each pair of GO terms, as determined by the Enrichment Map. Node size
and edge thickness represent the number of genes included in a GO term and shared by a pair of GO terms, respectively.
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Supplementary Fig. S6. Functional connections between neurovascular cells and mouse hippocampus based on gene expression. HT22, BV-2, and HBVP
cells were exposed to H,0,, LPS, and TGF-B1, respectively. Mice were injected with AR into the intracerebroventricular (ICV) region. Total RNA extracts from
cultivated cells and mouse hippocampus were analyzed by RNA-seq technology. Gene expression levels were compared with those of control cells to obtain
expression ratios. Genes showing expression ratios above 2 or below 0.5 in each experimental condition were identified as DEGs. GO terms associated with DEGs
from each stimulated neurovascular cell type were identified with DAVID and redundancies removed using ReviGO. The resultant GO terms were connected with
each other based on the common genes (p < 0.001) included in each pair of GO terms, as determined by the Enrichment Map. Node size and edge thickness
represent the number of genes included in a GO term and shared by a pair of GO terms, respectively.
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Supplementary Fig. S7. Therapeutic similarities between neurovascular cell types based on gene expression. Gene expression ratios were measured in
HT22, BV-2, and HBVP cells exposed to H,O,, LPS, and TGF-B1, respectively, by RNA-seq technology. For hippocampal tissue, mice were injected with Af into
the intracerebroventricular (ICV) region. DEGs were defined as genes showing expression ratios above 2 or below 0.5 in each stimulated neurovascular cell type.
Recovered genes were defined as those whose expression levels were restored to normal level (expression ratio between 0.5 and 2). By measuring the similarity
between each pair of herbal components (Mix1, Mix2, Mix3, and C7) in terms of commonly recovered genes, therapeutic networks were constructed. Node size
and edge thickness represent the number of genes recovered by each herbal component and the number of shared recovered genes between two herbal
components, respectively. The structure of the therapeutic network obtained from each neurovascular cell type was then compared with those from other cell types
to obtain correlation patterns between neurovascular cell types.
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Supplementary Fig. S8. Therapeutic similarities between neurovascular cells based on pathway activity. Pathway activities from stimulated neurovascular
cells were calculated by linearly combining the expression levels of the genes included in each pathway. As in the case of gene expression, by measuring the
similarity between each pair of herbal components in terms of commonly recovered pathways, therapeutic networks were constructed. Differentially regulated
pathways were selected as pathways with FDR < 0.01 in stimulated neurovascular cells. Among such differentially regulated pathways, a 50% reduction in activity
by herbal components was considered pathway activity recovery. Node size and edge thickness represent the number of pathways recovered by each herbal
component, and the number of shared recovered pathways between two herbal components, respectively. The structure of the therapeutic network obtained from
each neurovascular cell type was then compared with those from other cell types to obtain correlation patterns between neurovascular cell types.
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Supplementary Fig. S$9. Regulation of phosphorylation by UGS and its components. The phosphorylation status of signaling proteins was
measured using antibody array technology in stimulated neurovascular cells. Protein phosphorylation levels were compared with those of control
samples to obtain phosphorylation ratios. A phosphorylation profile was obtained by hierarchically clustering approximately 310 proteins showing

significant variation (standard deviation > 1.0) over all neurovascular cell types. The red and green colors reflect high and low protein phosphorylation,
respectively, as indicated by the scale bar.



B cell receptor signaling pathway
NF-kappa B signaling pathway

Melanoma

Regulation of actin cytoskeleton
Oocyte meiosis Gli
T cell receptor signaling pathway

Amyotrophic lateral sclerosis (ALS)
Non-small cell lung cancer

oma
Natural killer cell mediated cytotoxicity

Fc gamma R-mediated phagocytosis

Salmonella infection Vascular smooth muscle contraction

Long-term depression NOD-like receptor signaling pathway

Leishmaniasis

BV-2

Alcoholism

Epithelial cell signaling in'Helicobacter pylori

= z y infection
Herpes simplex infection
GnRH signaling pathwAav.

Focal adhesion Measles

ErbB signaling pathway

Dopaminergic synapse Endometrial cancer
Jak-STAT signaling pathway

Chemokine signaling pathway

Tuberculosis
Osteoclast differentiation

Transcriptional misregulation in cancer
Cytokine-cytokine receptor interaction

T22

Bacterial invasion of epithelial ce

Calcium signaling pathway

Leukocyte transendothelial migration

Melanogenesis

Progesterone-mediated oocyte maturation

Fc epsilon Rl signaling pathway

Colorectal cancer

Neurotrophin signaling pathway

Influenza A Pancreatic cancer

VEEF signallngipatiway Viral carcinogenesis

Enstein-Barr virus infection 5
Toxoplasmosis Insulin signaling pathway
Chronic myeloid leukemia
Chagas disease (American trypanosomiasis)
Toll-like receptor signalina nathway Adinacvtokine signaling pathway
HTLV-linfection  Hepatitis C pathways in cancer
anigellosis
Cell cycle Acute myeloid leukemia

Prostate cancer

Cytosolic DNA-sensing pathway

MAPK signaling pathway lung cancer Huntington's disease

Parkinson's disease

. : H BV P Legionellosis
mTOR signaling pathway

Apoptosis Alzheimer's disease

Tight junction Amphetamine addiction
o Type |l diabetes mellitus
Pathogenic Escherichia coli-infection

Viral myocarditis

Aldosterone-regulated sodium reabsorption

Supplementary Fig. $10. Regulation of phosphorylation by UGS and its components. The distribution of significant pathways (FDR < 0.01) from
SPIA was displayed in connection with neurovascular cell types.
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Supplementary Fig. $11. Regulation of phosphorylation by UGS and its components. Relationships between neurovascular cell types were
measured in terms of their FDR values for common pathways (FDR < 0.01).
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Supplementary Fig. $S12. Regulation of phosphorylation by UGS and its components. Enriched phospho-based pathways (FDR < 0.01) from SPIA
were hierarchically clustered based on FDR values.



Stimulants
FDR (-log10)
15 0 5
135
HT22 ) ‘b:. . e
o 3% I
) ‘ '.:._f_.g-.;—u.v
BV-2 Utk

-4.5-4.0-3.5-3.0-2.5

HBVP

C1

FDR (-log10)
15 10 -5
HT22 : L
L] 4
BV-2 y
-10-8 -6 -4 -2
HBVP

HT22

HT22

UGS

C2

FDR (-log10)
108 -6 4 2

BV-2

FDR (-log10) FDR (-log10) FDR (-log10) FDR (-log10)
5 10 5 A5 40 5 15 10 5 20 15 10 5
o o - B o s
che * oS8 © o Pl aoe? wpl O
Laeea '-.’7. ' . 9 --tﬁ; H k~'t
G HT22| - WEROHT22) HT221 o328 e
LX 0 : : o N Lo
-~ ) Lw .
[ v v ’8.
. -?if“? ..x,*;#,u?
o S
BV-2 DR BV-2 5 BV-2 v oen R BV-2
© L Lo
108 -6 -4 -2 15 10 -5 -é ‘7 -é Ls -Lt 5 é -10-8 -6 -4 -2
HBVP HBVP HBVP HBVP
FDR (-log10) FDR (-log10) FDR (-log10) FDR (-log10) FDR (-log10)
N -5 -10 5 -10-8 6 -4 -2 o -16,-12, -8-6-4-2 14, -10_ -6 -2 -15 -10 5
o ey : e © Y] L Coei > e Y
L L oa¥F clfhe T e N Lo R R SE
whaile HT22 | owlt L Siit o HT22 SalloHT22| e sedde HT22| L sl HT22 LNy el A
L Leo . u; [y " :‘9. e LN ) Lo :
F2 - 3 ' '
: B3 1S F&
R -,~—<§‘ b o
, e 'l s
L TR L i Sne
7 BV-2 BV-2 L el BV-2 A BV-2 ° BV-2 R
: & R R |
8 6 -4 2 5 J4 3 -2 10-8 -6 -4 2 108 6 42 1210-8 -6 4 2
HBVP HBVP HBVP HBVP HBVP

Mix1

Mix2

Mix3

Supplementary Fig. S13. Correlation patterns between neurovascular cell types based on FDR distribution. Enriched phospho-based pathways
(FDR < 0.01) in stimulated neurovascular cell types were identified with SPIA. On these enriched phospho-pathways, the effects of herbal components
were measured in terms of FDR values. Correlation patterns among FDR values were then measured between neurovascular cell types.
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Supplementary Fig. S14. Major modules from neurovascular cells. Modules were identified with the Reactome FI Cytoscape plugin program,
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from each neurovascular cell type. Expression levels are depicted in red and blue for up- and downregulated genes, respectively.
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Supplementary Fig. S15. Expressional levels of marker genes of neurovascular cells in hippocampal mouse tissues. Neuronal markers, such as Eno2 (51),
Rbfox3 (NeuN) (52), Map2 (53), and Tubb3 (54), were highly expressed when compared with markers of pericytes and AB-activated microglia in hippocampal mouse
tissues. Gene expression levels were measured by FPKM (Fragments Per Kilobase of transcripts per Million mapped reads) from QuantSeq analysis. Iba1, CD11b,
CD45, and TMEM119 were used as markers of activated microglia. PDGFRB, NG2, and desmin were used as markers of pericytes. The averaged value for all spots
of genes was used as a control.
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