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Supporting Information Text

Data

Participants. A demographically balanced cohort of 306 adolescents (153 females) aged 14-26 years was considered for inclusion
in this study. Of these, 303 were scanned at "baseline", with approximately 60 participants in each of 5 age-defined strata: 14-15
years inclusive, 16-17 years, 18-19 years, 20-21 years and 22-26 years. Subsequently, 29 participants were scanned approximately
6 months later, and 224 participants were scanned approximately a year later. Thus, a total of 556 scans were acquired.
Following exclusion of certain scans, 520 scans were retained; see below and Fig. S1.

Participants provided informed written consent for each aspect of the study, and parental consent was obtained for those
aged 14–15 years. None of the included participants were currently being treated for a psychiatric disorder or for drug or alcohol
dependence; had a current or past history of neurological disorders or trauma; or had a learning disability. The study was
ethically approved by the National Research Ethics Service and was conducted in accordance with NHS research governance
standards.

MRI acquisition and pre-processing. Scanning took place at three sites, all operating identical 3T MRI systems (Magnetom
TIM Trio, Siemens Healthcare, VB17 software version) with standard 32-channel radio-frequency (RF) receive head coil and RF
body coil for transmission. Resting-state fMRI data were acquired using a multi-echo echoplanar imaging (ME-EPI) sequence
with online reconstruction (1): 263 volumes; repetition time (TR) = 2.42 s; GRAPPA with acceleration factor = 2; flip angle =
90◦; matrix size = 64 x 64 x 34; FOV = 240 x 240 mm; in-plane resolution = 3.75 x 3.75 mm; slice thickness = 3.75 mm with
10% gap, sequential slice acquisition, 34 oblique slices; bandwidth = 2,368 Hz/pixel; echo time (TE) = 13, 30.55 and 48.1 ms.

Following processing of individual structural scans using FreeSurfer v5.3.0 (including skull-stripping, segmentation of cortical
grey and white matter and reconstruction of the cortical surface and grey-white matter boundary) (2), all scans were stringently
quality controlled by re-running the reconstruction algorithm after the addition of control points and white matter edits (as
described previously; 3, 4).

The pre-processing for ME-ICA analysis was done using AFNI. Volumes acquired during steady-state equilibration (15 s)
were omitted. The data of the middle TE were used to compute parameters of motion correction and anatomical-functional
coregistration, and the first volume after equilibration was used as the base EPI image. Matrices for de-obliquing and
six-parameter rigid body motion correction were computed. Then, 12-parameter affine anatomical-functional coregistration
was computed using the LPC cost functional (5), using the EPI base image as the LPC weight mask. Matrices for de-
obliquing, motion correction, and anatomical-functional coregistration were combined into a single alignment matrix using the
concatenation approach from the AFNI tool align_epi_anat.py. The dataset of each TE was then slice-time corrected and
spatially aligned through application of the alignment matrix. Coregistration of structural and functional scans was visually
assessed.

For pre-processing of functional scans, we used multi-echo independent component analysis (ME-ICA; 6, 7) to identify
the sources of variance in the fMRI time series that scaled linearly with TE and could therefore be confidently regarded as
indicative of BOLD contrast. Other sources of fMRI variance, such as head movement, which were not BOLD-dependent and
therefore did not scale with TE, were identified by ME-ICA and discarded. The retained independent components, representing
BOLD contrast, were optimally recomposed to generate a broadband denoised fMRI time series at each voxel (8). This was
bandpass filtered by the discrete wavelet transform (Daubechies 4 wavelet), resulting in a BOLD signal oscillating in the
frequency range 0.025-0.111 Hz (wavelet scales 2 and 3).

During processing, re-alignment of scans was used to estimate 6 motion parameters for each participant (3 translation
parameters and 3 rotation parameters). Subsequently, these were used to calculate an overall estimate of motion - the framewise
displacement (FD), defined as the sum of the absolute derivatives of the six motion parameters, following conversion of
rotational parameters to distances by computing the arc length displacement on the surface of a sphere with radius 50 mm (as
in (9) and (10)):

FDt =
∑

d

∣∣d(t−1) − dt

∣∣+ 50 · π

180 ·
∑

r

∣∣r(t−1) − rt

∣∣ [1]

where d denotes translation distances {x,y,z}, and r denotes rotation angles {α,β,γ}. For each participant, mean FD was
calculated by averaging the FD time series.

Parcellation and network construction. Each participant’s cortex was parcellated using two parcellations: a recent multi-modal
parcellation into 360 bilaterally symmetric regions based on data from the Human Connectome Project (11), as well as a
sub-parcellation of the Desikan-Kiliany anatomical atlas (12) into 308 parcels of approximately equal surface area (∼5cm2; 13).
Additionally, 16 subcortical regions were provided by FreeSurfer software (14), and included bilateral pairs of the following
regions: thalamus, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens and the ventral diencephalon.
Thus, the combination of each of the two cortical parcellations with the subcortical regions yielded parcellations of cortex and
subcortex into 376 regions (henceforth referred to as the HCP parcellation) and 324 regions (henceforth referred to as the
DK-sub parcellation) respectively (before exclusion of "dropout" regions; see below).

Surface parcellations generated by Freesurfer were transformed into the volume using Freesurfer command mri_aparc2aseg.
Subsequently, regional BOLD time series were estimated by averaging time series over all voxels in each volumetric parcel.
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Some regions (particularly near the frontal and temporal poles) were excluded because of low regional mean signal, defined
by a low Z-score of mean signal intensity in at least one participant (Z < -1.96); this resulted in the exclusion of 30 cortical
regions for the HCP parcellation, and 26 regions for the DK-sub parcellation, primarily in inferior temporal and pre-frontal
cortex. Thus, the final number of regions (both cortical and subcortical) used for analyses was 346 in the HCP parcellation,
and 298 in the DK-sub parcellation.

Finally, FC matrices were constructed by cross-correlating the BOLD time series between pairs of the retained regions
(using Pearson’s correlation).

Exclusion criteria and final sample. A total of 36 scans were excluded. Of these: 17 scans were excluded due to high in-scanner
motion (defined as mean FD > 0.3 mm or maximum FD > 1.3 mm), 9 due to coregistration errors, 7 due to a lack of
convergence of the ME-ICA algorithm, 2 due to parcellation errors, 1 due to extensive dropout (defined above).

Following quality control and participant exclusion, 298 adolescents (151 females), scanned a total of 520 times, were
included in the study. Of these, 298 scans were acquired at "baseline", 27 were acquired approximately 6 months later, and
195 were acquired approximately a year later (Fig. S1). Within the final included sample, 95 participants were scanned once,
184 participants were scanned twice, and 15 participants were scanned three times. Thus, the study included 520 unique FC
matrices capturing pair-wise FC of 346 (HCP) and 298 (DK-sub) cortical and subcortical regions.

Effects of motion on functional connectivity

We first verified whether participants’ overall motion (quantified using time-averaged FD) changes as a function of age (using
linear mixed effects models; see details below). Moreover, to evaluate potential residual effects of motion on FC, we calculated
the correlation between FC at each edge and participants’ motion (across participants). Subsequently, to assess whether motion
affects FC in a distance-dependent manner, we correlated the upper triangular part of this matrix (of correlations between FC
and motion) to the upper triangular part of a matrix of Euclidean distances between the centroids of all regions, as in (15).

We found that the average participant motion (as measured by FD) did not change with age (t(219) = 1.27, P = 0.20;
Fig. S2A). However we did find residual signatures of motion in our data, including relationships between average participant
motion and FC at several spatial scales, and a weak distance-dependence of the relationship between FC and motion at each
edge (Fig. S2B,C). In the present work, we have removed these residual effects using regression, as has been applied previously
(16) (Fig. S2D). Following regression of mean FD from edge-wise FC, mean FC was not related to mean FD across participants
(t(221) = −1.1, P = 0.27; Fig. S2F).

Additionally, to demonstrate that our results are not biased by the specific processing methods we have used, we repeated
analyses in a subset of data showing no discernible motion, as well as in data preprocessed using global signal regression (GSR);
for details, see Sensitivity analyses section below, Fig. S24-S37 and Table S4.

Maturation of functional connectivity

Maturation of FC as a function of age was modelled using linear mixed effect models. These models included age as the main
fixed effect of interest, sex and scanner site as fixed effect covariates, as well as a subject-specific intercept as a random effect,
as follows:

FC = βage · age+ βsex · sex+ βsite · site+ γsubj · (1|subj) + ε [2]

where FC refers to functional connectivity (at one of several possible levels of spatial resolution; see below); β refers to
coefficients for the fixed effects, γ refers to coefficients for random effects and ε represents the residual error. We further
explored inclusion of an interaction term between age and sex, as well as intra-cranial volume (ICV) as additional covariates.
These models presented poorer fits (as indicated by increased AIC and BIC) than models without these terms fitted to the
same data. Therefore, we focused on fixed effects of age and sex only.

Additionally, we fitted locally adaptive mixed effect smoothing splines (generalized additive mixed models) to regional
trajectories, better suited than quadratic models at modelling non-linear trajectories (17). Specifically, we used the gamm
function in R, with effect of age modelled as a weighted sum of 10 cubic b-splines with knots placed at quantiles of the data
and smoothing optimized using restricted maximum likelihood (REML) (18). We inspected for evidence of non-linearity using
the degrees of freedom (df ) of the smoothing splines. However, we found no substantial evidence of strong non-linearities, and
thus focused on linear trajectories (see Fig. S8).

Linear mixed effect models were fitted at multiple spatial scales: (i) globally, at the level of the correlation distribution, (ii)
regionally, using average nodal FC and (iii) edge-wise.

Global maturation of functional connectivity. To evaluate maturational shifts in the functional correlation distribution, we first
summarised each individual distribution using its four moments: the mean, variance, skewness and kurtosis, fitting linear models
as a function of age to each. Further, to more precisely characterise potential local age-shifts in the correlation distribution,
we fitted linear models to the value of correlation at each percentile of the distribution, and compared the effect sizes across
percentiles.
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The correlation between fMRI time series for a pair of cortical and/or subcortical regions was generally positive indicating FC
through coherent in-phase low frequency BOLD oscillations. The global parameters of the correlation distributions, estimated
over all ∼60,000 edges in each correlation matrix, shifted over adolescence. Between 14 and 26 years, there was a weak but
significant trend for the average or mean correlation to increase (t(221) = 2.3, P = 0.023). There were also stronger age-related
effects on the higher-order parameters of the correlation distribution: variance or spread increased (t(221) = 4.9, P = 1.7·10-6));
skewness decreased (t(221) = -2.1, P = 0.040)); and kurtosis or peakiness decreased (t(221) = -4.4, P = 2.0·10-5) (Fig. S3A).
We also characterised changes in the correlation distribution more precisely by fitting linear models to estimate the effect of
age on the value of correlation at each percentile. Higher percentiles of the correlation distribution demonstrated the most
rapid rates of further increase in positive correlation over the course of adolescence (Fig. S3B).

Nodal maturation of functional connectivity. We next focused on individual regions using node strength. We calculated node
strength separately over subsets of cortical edges (between the 330 cortical regions and all 346 regions) and subcortical edges
(between the 16 subcortical regions and all 346 regions). We characterised regional development of FC by fitting linear models
of changes in node strength as a function of age. In addition to the effect size of changes as a function of age (∆FC14−26), we
extracted predicted FC at age 14 years (FC14). Maps of cortico-cortical and cortico-subcortical connectivity are reported in
main Fig. 1B. For maps of and subcortico-cortical and subcortico-subcortical connectivity, see Fig. S4.

Moreover, we constructed maps of subcortico-cortical maturation of FC for each of the eight bilateral pairs of subcortical
regions listed in section Parcellation and network construction above. Maps of the baseline FC (FC14) and development of FC
(∆FC14−26) to each cortical node were obtained by fitting linear models to the average of the two edges between each bilateral
pair of subcortical regions and each cortical region (main Fig. 1C).

While many of the subcortico-cortical age-related changes were statistically significant at an uncorrected probability threshold
(P < 0.05), only the amygdala and the hippocampus had significantly increased connectivity to some cortical areas when
controlling the false discovery rate (FDR < 0.05; Table S3).

Edge-wise maturation of functional connectivity. Finally, the most fine-grained description of FC development was obtained by
fitting linear models as a function of age to each edge (Pearson’s correlation) in the FC matrix. This led to matrices of the
edge-wise effect sizes of age (∆FC14−26), as well as edge-wise baseline (FC14). These matrices were explored in several ways.

Maturational Index. As described in the main text, we evaluated at each node the relationships (Spearman’s ρ) between
corresponding edge-wise parameters: FC14 and ∆FC14−26, which we term "Maturational Index" (MI). By being derived from
connection-wise mixed-effects linear models, the MI describes connection-level effects; however (by definition of the MI as a
correlation between edge-wise FC14 and ∆FC14−26 at each node) these results are presented at the regional or nodal level.

Edge-wise maturation within and between cytoarchitectonic classes and functional networks. To further illustrate changes at the con-
nection level, we visualised edge-wise matrices of FC14 and ∆FC14−26 within (a) von Economo cytoarchitectonic classes (19),
and (b) functional MRI networks previously derived by Yeo et al. (20). For details regarding mapping of these atlases to the
cortical parcellations used, see section Contextualising findings below. We plotted summary matrices of FC14 and ∆FC14−26
both at the level of individual edges (with nodes sorted by decreasing value within network), and at the average within- and
between-network level, to provide a comprehensive visual assessment of network-wise edge-level effects (Fig. S6).

Panels in Fig. S6 complement the maturational index to illustrate differences in adolescent development of functional
connectivity within and between (i) primary cortical subnetworks, and (ii) association cortical and subcortical subnetworks.
Generally, (i) in "lower-order" primary classes and networks, high baseline connectivity (FC14) within and between subnetworks
corresponds to high adolescent rates of increase in connectivity (∆FC14−26). Conversely, (ii) "higher-order" association-cortical
and subcortical subnetworks undergo a more diverse combination of increases and decreases in connectivity over adolescence
(as apparent from both positive and negative edge-wise entries in ∆FC14−26 matrices), which average to low values of overall
apparent change. The MI further illustrates that this association-cortical and subcortical combination of increases and decreases
in FC is not random, but rather patterned according to edge-wise baseline connectivity.

Relationship of edge-wise maturation to Euclidean distance. We next inspected potential effects of the distance of functional con-
nections on their maturation, by evaluating Spearman’s correlation between the upper triangular parts of the matrices of
Euclidean distance (between pairs of region centroids) and ∆FC14−26.

We found no evidence of such a relationship; in data reported in the main text (Spearman’s ρ = 0.0024, P = 0.56; Fig. S7),
in a low-motion subset data (Spearman’s ρ = 0.013, P = 0.00098) or in data processed using GSR (Spearman’s ρ = 0.0045, P
= 0.27). This indicates that adolescent maturation of FC was not greater for longer (or shorter) distance connections.

Fitting of smoothing splines to edge-wise FC trajectories. Finally, to inspect maturational trajectories for the potential presence of
non-linearities, we fitted locally adaptive mixed effect smoothing splines to edge-wise data. Subsequently, we extracted the
effective degrees of freedom (df ) of the smoothing splines (df = 2 corresponds to a linear trajectory).

Most trajectories were linear: of all edges (in the HCP parcellation), 71.7% trajectories had df < 2.1, and 80.0% had df <
2.5 (Fig. S8A). The cortical distribution of average nodal df (averaged across all of a node’s edges) showed that regions with df
> 2.5 were scattered across cortex, and not systematically located within specific anatomical or functional areas (Fig. S8B).
Finally, the maturational index (MI) showed a weak relationship with average nodal df (Spearman’s ρ = -0.11, P = 0.045,
Pspin = 0.016), with a tendency of "disruptive" regions (with MI < 0) to show more (weakly) non-linear trajectories (Fig. S8C).

Váša et al. 5 of 55



This is in line with prior work showing adolescent non-linearities in association-cortical trajectories of both cerebral perfusion
(21), and structural covariance (4). However, given that most regions showed approximately linear trajectories, we focused on
results extracted using linear mixed effect models, and on linear rates of change (∆FC14−26), in main analyses.

Spatial permutation "spin" test for comparison of cortical maps

When relating pairs of regional cortical maps to each other across regions, non-independence among regions (due to spatial
auto-correlation amongst neighbouring parcels) should be taken into account. Here, we used an updated version of a regional
spherical permutation test implemented in Váša et al. (4), following earlier implementation of such tests at the vertex level
(22, 23).

The spatial permutation test was implemented in the following manner: First, we obtained the coordinates of the centroids
of each of our cortical regions on the FreeSurfer spherical projection of the parcellation. We next generated random rotation
matrices following the procedure described in Lefèvre et al. (24), by (i) generating 3 × 3 matrices with coefficients following
independent standard normal distributions, (ii) applying a QR decomposition, and (iii) keeping the orthogonal matrices Q
which are uniformly distributed. This is an improved approach for the generation of random rotations, compared to a prior
implementation in Váša et al. (4) (and the initial pre-printed version of this manuscript), where the sphere is rotated about the
{x,y,z} axes at three randomly generated angles, which results in non-uniform sampling of the space of spherical permutations;
for details, see (25).

Following rotation of the sphere, coordinates of the rotated regions were matched to coordinates of the initial regions, using
Euclidean distance and proceeding in a descending order of average Euclidean distance between pairs of regions on the rotated
and unrotated spheres (i.e.: starting with the rotated region that is furthest away, on average, from the unrotated regions).
The matching then provides a mapping from the set of regions to itself, that allows any regional measure to be permuted while
controlling for spatial contiguity and hemispheric symmetry.

P-values for the correlation between two maps were obtained by comparing the empirical value of Spearman’s ρ to a
null distribution of Spearman correlations, generated by correlating one of the empirical maps to a set of 10’000 spatially
permuted versions of the other map. Each analysis correlating values from two cortical maps is reported with both the P-value
corresponding to the Spearman correlation (P), as well as a P-value derived from the spherical permutation (Pspin).

All P-values (both Spearman P and Pspin) relating to comparisons of the Maturational Index with external cortical maps
were corrected for a total of 12 multiple comparisons using the false discovery rate (FDR). All FDR-adjusted P-values are
reported in Table S4.

Use of the spatial permutation test at the edge level. The spherical permutation test can also be used to rigorously evaluate
statistical significance of the correspondence between two sets of a region’s edges, as when relating edge-wise FC14 and
∆FC14−26 to calculate the maturational index at each node. In the edge-wise case, each edge connected to the region being
tested is assigned to its other (connecting) node. As with its regional application, the spherical permutation test can only be
applied within cortex; at the edge-level, this means that only cortico-cortical and subcortico-cortical edges can be spherically
permuted (i.e., the test does not apply to subcortico-subcortical edges).

Contextualising findings

von Economo and Yeo atlases. We mapped the von Economo atlas of 7 cytoarchitectonic classes (19) to our cortical parcellations.
For our in-house sub-parcellation of the Desikan-Killiany atlas (13) into 308 cortical regions, we used a manual labeling of
Desikan-Killiany regions to von Economo classes, previously described and used in (26). We then mapped this atlas to the
HCP parcellation, as follows. We first computed surface overlap (at the vertex level, using CIVET software; 27) between each
HCP parcel and each cytoarchitectonic class (based on manual assignment of cytoarchitectonic classes to Desikan-Killiany
regions), before assigning each HCP parcel to the class that it overlapped most. Due to symmetry of our original von Economo
atlas, we computed overlap across both hemispheres simultaneously, resulting in a symmetric assignment of von Economo
classes to HCP parcels. In addition to the seven classes used in (4, 26), we considered an additional "class", consisting of
the eight bilateral pairs of subcortical regions included in our anatomical atlas. The Yeo atlas (20) was mapped in a similar
manner, except that the original vertex-wise atlas was used.

Neurosynth. To perform the Neurosynth (28) functional meta-analysis, surface maps of the two modes of the maturational
index were converted from Freesurfer fsaverage to MNI space using barycentric interpolation via the SurfToSurf command in
AFNI (29). The resultant cortical surface maps were then uploaded to Neurovault and analyzed with the Neurosynth "decoder"
function. For each of the two modes, the 35 most relevant cognitive terms were visualised on a word-cloud plot, with size
scaled according to their correlation with corresponding meta-analytic maps generated by Neurosynth.

Neurosynth results are intended to contextualize the conservative and disruptive systems defined by adolescent development
of functional connectivity. However, these results do not imply that these brain regions or systems are exclusively specialized
for these psychological processes.

Maps of structural development from the NSPN study. Maps of cortical rates of thinning (∆CT; main Fig. 4A) and myelination
(∆MT; Fig. S9A) were derived from cross-sectional structural scans of 297 participants from this study, previously described by
Whitaker, Vértes et al. (3). As described in (3), rates of myelination were estimated at approximately 70% cortical depth.
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Maturation of structural covariance (SC) was derived from the cortical thickness (CT) data described in (3), following
sliding-window procedures described in (4). Specifically, SC was estimated by cross-correlating regional CT measures between
all pairs of regions for 9 consecutive and overlapping "windows" comprising ∼60 participants each (obtained by interpolating
the 5 age-strata of the NSPN study). Subsequently, rates of change of structural covariance (∆SCCT; Fig. S9B) were estimated
as the slopes of linear models fitted to "windowed" estimates of regional SC, as a function of median age of participants in each
window (4).

Independent cortical maps. PET maps of cerebral metabolic rate for glucose (CMRGlu; Fig. S9C), cerebral metabolic rate of
oxygen (CMRO2; Fig. S9D), cerebral blood flow (CBF; Fig. S9E) and cerebral blood volume (Fig. S9F) (all originally from
(30) and remapped by (31, 32)) were provided via personal correspondence with the research groups that had generated the
data. Cortical maps of postnatal surface expansion (main Fig. 4B) and evolutionary surface expansion (Fig. S9G) were made
available online by authors (33). Maps of cortical areal scaling (Fig. S9H) were made available by J.S. (who is also a co-author
on this study; 32).

We first converted these maps to the fsaverage6 surface template using standard transformations provided in the HCP
Connectome Workbench (v1.2.2) software package (https://www.humanconnectome.org/software/connectome-workbench).
Next, we transformed the fsaverage6 -aligned map to the MNI surface space by a direct surface-to-surface transformation in
which values at vertices in the target coordinate matrix were assigned by ones of their nearest neighbor vertices within a 10
mm radius in the source coordinate matrix. To relate these vertex-level maps to our parcel-based results, we first averaged the
vertex values within each parcel.

Due to the availability of only the group-level PET maps, the glycolytic index (GI; main Fig. 4C) was calculated at the
vertex level by taking the scaled (by 1000) residuals of the group average CMRGlu map regressed on the group average CMRO2
map, as performed at the participant level in (30).

Gene expression analyses. Prior work by Goyal et al. has identified 116 genes whose expression pattern across the cortex was
correlated with the extent to which different brain regions rely on aerobic glycolysis (34). Here, we used data from the Allen
Human Brain Altas (AHBA) – a transcriptomic dataset created by the Allen Institute for Brain Sciences (http://human.brain-
map.org) (35) – to ask whether the mean expression value of these 116 genes also correlates with the maturational index
derived from fMRI. The AHBA dataset is based on six donor brains from three Caucasian, two African-American and one
Hispanic donors. Their ages were 57, 55, 49, 39, 31 and 24 years. For the results reported in the main manuscript we used the
data made available alongside the recent paper (36) which had undergone the following processing steps (as described in the
paper): "(i) confirming and updating probe-to-gene annotations using the latest available data; (ii) background filtering, where
expression values that do not exceed background are removed; (iii) probe selection, which, for genes indexed by multiple probes,
involves selecting a single representative measure to represent the expression of that gene; (iv) sample assignment, where tissue
samples from the AHBA are mapped to specific brain regions in an imaging dataset (in this case mapping to the parcels in the
HCP parcellations); (v) normalization of expression measures to account for inter-individual differences and outlying values".

We then selected the genes from (34), averaged their expression across cortical brain regions (main Fig. 4D) and correlated
this vector with the maturational index. Note that four of the six AHBA donor brains were only sampled in the left hemisphere,
due to the presumed similarity of gene expression between hemispheres. For this reason we only use brain regions from the left
hemisphere in main text Figure 4D.

In this supplement, we show that the results are unchanged when using a previously published form of the AHBA data
preprocessed and matched to the DK sub-parcellation as described in (37) (including slightly different criteria for each of the
pre-processing steps described above).

Sensitivity analyses

Split-half analysis. To ensure robustness of our results, we recomputed the MI using edge-wise FC14 and ∆FC14−26 derived
from independent random half-splits of the data. At each iteration, we randomly split the dataset in half, leading to two
random sub-samples of 260 scans. We then separately fitted linear mixed-effect models to each half-dataset, to generate
separate estimates of FC14 and ∆FC14−26 from each half. Finally, we correlated these edge-wise parameters across the two
half-splits at each node, and averaged the two split combinations, to generate the maturational index. We have repeated this
random half-split procedure 1000 times, and averaged the results.

The resulting MI map shows slightly decreased values relative to the main text, but is otherwise fully consistent; see Fig. S10.

Separate estimation of MI using cortico-cortical and subcortico-subcortical edges. To account for potential differences in
temporal signal-to-noise ratio (tSNR) between cortical and subcortical regions, we re-estimated the maturational index by
separately using only cortico-cortical edges, and subcortico-subcortical edges.

The cortical MI map, estimated using only cortico-cortical edges, is fully consistent with the map reported in the main
text. The subcortical MI values, estimated using only subcortico-subcortical edges, are consistent with the main text in that
subcortical MI values are mostly negative (Fig. S11).

Alternative parcellation. As mentioned in the Parcellation and network construction section above, all results and figures
presented in the main text for the Human Connectome Project (11) parcellation were replicated with a different parcellation
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based on sub-parcellating the Desikan-Kiliany (DK) anatomical atlas (12) into 308 parcels of approximately equal surface area
(∼5cm2; 13), to demonstrate independence of results on the specific atlas used.

In Fig. S12-S15 we show that the key results for all Figures in the main text hold in this alternative parcellation. Similarly,
Table S3 recapitulates frequencies of regional increases and decreases in subcortico-cortical FC for both the HCP and DK-sub
cortical parcellations. Finally, Table S4 summarises the relationship between maturational index and a range of cortical maps
in both parcellations.

Cross-sectional data. Given that our analyses are based on longitudinal fMRI data, there is a potential concern that results
could be affected by "regression to the mean": whereby if a value was high at baseline measurement, regression to the mean
could drive its decline on follow-up. To exclude the possibility that our results were driven by regression to the mean, we
repeated main analyses with the subset of 298 cross-sectional scans from our dataset. The only difference in implementation
of code relative to main analyses was use of fixed-effect linear models, by excluding the random-effect term (accounting for
repeated measures within participants) from our linear models.

Results of these supplementary analyses were fully consistent with the main text. For details, see Fig. S16-S19 and Table S4.

Single-scanner data. Data used in this study was obtained at three scanner sites. We ran a mixed-effects model to test the
distribution of participant’s ages across sites, and found an effect of site (F(2,220) = 14.04, P < 0.0001). Although we included
site as a covariate in all mixed-effect linear models in main analyses, we have performed additional analyses to demonstrate
that our results are not driven by site effects. Specifically, we repeated main analyses using only scans from the largest imaging
site in our study (Wolfson Brain Imaging Centre [WBIC], Cambridge; 396 scans from 236 participants).

Results of these supplementary analyses were fully consistent with our main results; for details, see Fig. S20-S23 and
Table S4.

Low-motion subset of data. To ensure that our results are not biased by the specific processing methods we have used to
remove effects of head-motion, including ME-ICA to remove effects of head-motion from BOLD time-series and FD regression
to correct for residual dependence of edge-wise FC on mean FD, we repeated main analyses in a subset of data showing no
discernible head movement. Specifically, we identified segments of 100 consecutive volumes in 182 scans (from 132 participants)
which demonstrate no detectable motion (FD < 0.2 mm at every time-point, based on "detectable motion" criteria from (38)).
At TR = 2.42 s, this corresponds to 4.03 min of rs-fMRI data per scan.

We first investigated this subset of "low-motion" data for potential residual effects of motion (Fig. S24). Mean FD ranged
from 0.03 to 0.13 mm, and did not vary as a function of participants’ ages (t(47) = 0.29, P = 0.77; Fig. S24A). The edge-wise
correlation between FC and mean FD across participants was low (mean r = −0.0065) and showed no substantial relationship
to Euclidean distance spanned by edges (Spearman’s ρ = 0.036; Fig. S24B). Finally, average FC was not related to movement
(mean FD) across participants (t(47) = −0.45, P = 0.65; Fig. S24C). These results suggest that additional post-processing
steps such as FD-regression to control for residual effects of motion are not necessary in this subset of data.

Next, we repeated our main analyses (i.e. main Fig. 1-4) on this subset of scans. Results were broadly qualitatively
consistent; for the individual figures, see Fig. S25-S28, for a quantitative comparison of regional and edgewise FC14 and
∆FC14−26 and Maturational Indices between denoising pipelines, see Fig. S36 and S36 respectively, and for discussion, see
section Comparison of main results between denoising pipelines below.

Global signal regression (GSR). Global signal regression (GSR) involves regression of the average whole-brain signal (or
equivalently the gray-matter signal, which correlates at 0.99 ± 0.01 with the whole-brain signal; 38) from all voxel-wise
or regional time-series, prior to estimation of functional connectivity using correlations. Due to effects such as removal of
an unknown mixture of both signal and noise, and zero-centering of the correlation distribution, GSR is perhaps the most
controversial processing step in the fMRI literature (see e.g. (39) and references within).

Here, we re-processed the full sample (520 scans) with the addition of GSR. We implemented GSR by regressing average
gray-matter signal from all regional time-series, following ME-ICA, and prior to frequency filtering to the frequency band
0.025-0.111 Hz.

We investigated data processed with GSR for potential residual effects of motion (Fig. S29). The (lack of a) relationship
between mean FD and age (Fig. S29A) is independent of GSR and thus identical to the main processing pipeline (Fig. S2A).
The edge-wise correlation between FC and mean FD across participants was low (mean r = −0.0039), and showed a weak
relationship to Euclidean distance spanned by edges (Spearman’s ρ = -0.10; Fig. S29B). Finally, average FC was weakly related
to movement (mean FD) across participants (t(219) = −4.3, P = 2.8·10-5; Fig. S29C).

Next, we repeated our main analyses (i.e. main Fig. 1-4), and several supplementary analyses, on these data. For recreation
of main figures with GSR processed data, see Fig. S30-S33; for global and edge-wise changes in FC in data processed with GSR,
see S34 and S35; and for a quantitative comparison of (regional and edgewise) FC14 and ∆FC14−26 as well as Maturational
Indices between all three denoising pipelines, see Fig. S36 and S37. For discussion, see section Comparison of main results
between denoising pipelines below.

Comparison of main results between denoising pipelines

The key results of our main analysis are qualitatively recapitulated by analysis of both the low-motion dataset, and data
additionally processed with GSR; in all cases: (i) there are two modes of adolescent change in functional connectivity defined
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by positive and negative MI; (ii) conservatively maturing brain systems, defined by MI > 0, are concentrated in primary
cortical areas, and disruptively maturing brain systems, defined by MI < 0, are concentrated in subcortical and association
cortical areas; and (iii) conservatively and disruptively maturing systems are significantly co-located with prior maps of aerobic
glycolysis (AG) and AG-related gene expression.

Fig. S36 demonstrates that nodal and edge-wise functional connectivity at age 14 (FC14), and nodal and edge-wise change
in functional connectivity during adolescence (∆FC14−26), are both strongly positively correlated between main and low-motion
analyses. Fig. S37 further demonstrates that MI is strongly positively correlated between main and low-motion analysis for
both cortical and subcortical areas.

There are also differences between the results of our main analysis, and low-motion and GSR sensitivity analyses. When
comparing results of the main and low-motion analyses, we note that there are many points of difference between these two
analyses, besides the difference in pre-processing, that would be expected to contribute to differences in the results: (i) the
sample size for the main analysis (N = 520) was substantially larger than the sample size for low-motion analysis (N = 182);
(ii) the length of fMRI time series available for estimation of functional connectivity was substantially longer for the main
analysis (263 fMRI timepoints) than for the low-motion analysis (100 fMRI timepoints); and (iii) the demographic constitution
of the sample for the main analysis was prospectively balanced for age and sex whereas the subsample for low-motion analysis
was not. Any or all of these differences between the datasets could have contributed to the observed differences in results,
which can therefore not be certainly attributed to differences in pre-processing.

Regarding GSR: given that this step is known to substantially change the distribution of inter-regional correlations, making
negative correlations much more frequent and changing the rank order of correlations (39), it is not clear that the differences in
results are attributable to GSR having more completely corrected head movement effects than our main processing pipeline.
Indeed, there is a small but significant correlation between mean FC and mean FD in the GSR pre-processed data (Fig. S29)
whereas there is no significant correlation between FC and FD in either data used for main analyses (Fig. S2) or the low-motion
data (Fig. S24).

Taken together, our supplementary analyses results suggest that our choice of motion correction method did not drive our
main results and conclusions, of a "conservative" mode of adolescent development present in primary cortex and a "disruptive"
mode of adolescent development present in association cortex and subcortex, which are related to externally defined maps of
metabolic and genetic processes.
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Fig. S1. Distribution of scans as a function of age. Markers correspond to scans retained for inclusion in the study, connecting lines join consecutive scans for the same
participant. Participants are ordered by age at first "baseline" scan. A) Markers colored by scan occasion. B) Markers colored by scan site (WBIC: Wolfson Brain Imaging
Centre, Cambridge; CBSU: MRC Cognition and Brain Sciences Unit, Cambridge; UCL: University College London, London). C) Site-specific panels, with participants sorted
according to baseline scan site.
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Fig. S2. Effects of head motion on functional connectivity. A) Average participant motion (quantified as mean FD) does not change with age (the pseudo-r2 for generalized
mixed-effect models (GLMMs) includes variance in mean FD explained by age, as well as sex and scanner site). B) The correlation between FC at each edge and the
corresponding participant’s motion (across participants) shows a weak relationship with the Euclidean distance spanned by edges. Moreover, the average edge-wise correlation
between FC and motion is non-zero (as evidenced by a non-zero intercept of the linear regression on the y-axis). C) Mean participant motion is strongly related to mean FC
across participants, such that the functional networks of participants who move more are more strongly functionally connected (the pseudo-r2 for GLMMs includes variance
in mean FC explained by mean FD, as well as sex). D) To remove the dependence of FC on motion, mean FD was regressed from each edge; the residuals constitute
participant-specific FD-corrected FC, with intercepts retained to maintain the relative importance of edges across the group as well as the interpretability of FC values. Following
edge-wise correction of FC for motion, the correlation between FC and motion vanished - both E) at the level of individual edges (by definition), and F) at the whole-brain level
(the pseudo-r2 for GLMMs includes variance in mean FC explained by mean FD, as well as sex). Panels B and E depict 2D-histograms of the underlying dense data, with
hexagonal 2D-bins color-coded by the number of edges located within.
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Fig. S3. Global trajectories of the correlation distribution. A) Trajectories of the four moments of the correlation distribution as a function of age: (i) mean, (ii) variance, (iii)
skewness and (iv) kurtosis. B) Example distribution, colour-coded by percentile. Higher percentiles of the correlation distribution strengthen faster, as indicated by increasing
slopes of linear models fit to values of correlation at increasing percentiles. This is visualised using a plot of all the linear models as a function of age (centered along the y-axis
for visual clarity).
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Fig. S4. Maturation of subcortico-cortical and subcortico-subcortical functional connectivity. Parameters of linear models extracted from subcortico-cortical FC (left)
and subcortico-subcortical FC (right): FC14 (top row) and ∆FC14−26 (bottom row). The left/right arrow corresponds to left/right hemisphere. Regions are ordered by
decreasing average rate of change in subcortico-cortical connectivity.
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Fig. S5. Statistical significance of conservative and disruptive modes. Conservative and disruptive modes of the maturational index are significantly non-zero by several
statistical tests. A) Unthresholded maturational index, presented in main Fig. 2. B) Maturational index thresholded using P-values from Spearman’s ρ; only regions with
FDR-adjusted P < 0.05 are shown. C) Maturational index thresholded using P-values from a spherical permutation test (Pspin), controlling for spatial contiguity and hemispheric
symmetry of regions; only regions with FDR-adjusted Pspin < 0.05 are shown. (For further details regarding the sperical permutation test, see section Spherical permutation
"spin" test for comparison of cortical maps above, and in particular subsection Use of the spatial permutation test at the edge level.)
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Fig. S6. Maturation of functional connectivity at the edge level. Parameters of linear models extracted from mixed-effect models fitted to FC of individual edges. FC14
and ∆FC14−26 within and between A) cytoarchitectonic classes of the von Economo atlas (26), and B) resting state networks derived from prior resting state FC analysis by
Yeo (20). In both cases, subcortical regions were considered as an additional eighth class/subnetwork (grey). Values are depicted at the level of individual edges ("edge-wise",
top row) and as averages of within- and between-network blocks ("network µ", bottom row). In "edge-wise" plots, regions are sorted in decreasing order of average regional
value within each network.
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Fig. S7. Relationship of changes in FC to Euclidean distance. Distances spanned by edges were calculated as the Euclidean distance between coordinates of centroid of
the connected pair of regions. Changes in FC (∆FC14−26) were extracted using mixed-effect linear models at the edge level, across participants. The plot is a 2D-histogram
of the underlying dense data, with hexagonal bins color-coded by the number of edges located within.
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Fig. S8. Inspecting edge-wise trajectories for potential presence of non-linearities. A) Distribution of effective df of smoothing splines across edges. Most trajectories
are linear: 71.7% trajectories had df < 2.1. B) Cortical distribution of average nodal df (averaged across all of a node’s edges). C) Relationship of the maturational index (MI)
with nodal df.
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Fig. S9. Relationships between maturational index and additional cortical maps. Spatial correlations between regional maturational index, and eight cortical maps: A)
The rate of change of magnetization transfer (MT; a marker of myelination), extracted at 70% depth into cortex as in (3); B) The rate of change of nodal structural covariation of
cortical thickness (CT) across participants as in (4); C) metabolic rate of glucose; D) metabolic rate of oxygen; E) cerebral blood flow and F) cerebral blood volume, all (D-F)
from (30); G) rate of evolutionary expansion of the cortical surface, from (33); and H) areal scaling of the cortical surface, from (32). All P-values reported above were corrected
for a total of 12 multiple comparisons (including the four maps in main Fig. 4 and the eight maps above) using the false discovery rate (FDR). For further details see Table S4.
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Fig. S10. Association cortical and subcortical ’disruptive’ maturation is robust to random half-splitting of the data. The set of 520 scans was randomly split in half,
and edge-wise mixed-effect linear models were fitted separately to each half (of 260 scans), leading to two independent estimates of (i) FC at age 14 (FC14), and (ii) the
adolescent rate of change of FC (∆FC14−26). The correlation between the two matrices was then calculated across the random half-samples, and averaged between the two
split combinations. The results correspond to an average across 1000 random half-splits.
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Fig. S11. Association cortical and subcortical ’disruptive’ maturation is robust to separate estimation using cortico-cortical and subcortico-subcortical edges.
To account for potential differences in temporal signal-to-noise ratio (tSNR) between cortical and subcortical regions, the maturational index was re-estimated by separately
using only cortico-cortical edges (left) and subcortico-subcortical edges (right).
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Fig. S12. Replication of main text Fig. 1 in the DK-sub parcellation: Regional strength of functional connectivity of cortical areas and subcortical nuclei at 14
years (FC14) and regional change in strength of connectivity during adolescence (∆FC14−26). A) Regional strength for each of 282 cortical and 16 subcortical nodes
was regressed on a linear function of age for all participants (N = 520 scans from 298 participants; mixed effects model). B) Average cortico-cortical and cortico-subcortical
FC14 and ∆FC14−26. C) Heterogeneous FC14 and ∆FC14−26 of individual subcortical nuclei to cortex (subcortical regions are in the same order as main Fig. 1). Due
to bilateral symmetry, only left hemispheres are visualised.
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Fig. S13. Replication of main text Fig. 2 in the DK-sub parcellation: Maturational index. A) The maturational index (MI) for each brain region is defined as the correlation
of edge-wise baseline FC14 versus rate of change ∆FC14−26. Panel B) illustrates this for two example regions, including a positive MI in left somatosensory cortex, and a
negative MI in left posterior cingulate cortex. C) Visualisation of the Maturational Index for all cortical regions, and D) subcortical regions (the left/right arrow corresponds to
left/right hemisphere).
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Fig. S14. Replication of main text Fig. 3 in the DK-sub parcellation: Maturational index in anatomical and psychological context. A) Distribution of maturational index
for each cytoarchitectonic class of the von Economo atlas (26), and B) for resting state networks derived from prior resting state FC analysis by Yeo (20). In both cases,
subcortical regions were considered as an additional eighth class/subnetwork. The violin plots are coloured by average MI within the corresponding class of regions. C-D) Word
clouds of cognitive terms associated with cortical brain regions that have C) disruptive (blue) or D) conservative (red) modes of development (Neurosynth decoding (28)). The
size of cognitive terms corresponds to the correlation of corresponding meta-analytic maps generated by Neurosynth with each of the two modes (top).
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Fig. S15. Replication of main text Fig. 4 in the DK-sub parcellation: Disruptive and conservative modes of fMRI maturation in developmental and metabolic
context. A) Maturational index was positively correlated with ∆CT - regions which had disruptive development (MI<0) had faster rates of cortical thickness (CT) shrinkage
during adolescence. B) MI was negatively correlated with a prior map of postnatal cortical surface area - disruptive maturation was greater in regions that showed greatest
expansion after birth. C) MI was negatively correlated with a prior map of the glycolytic index, a measure of aerobic glycolysis (AG); and D) MI was negatively correlated with a
prior map of brain regional expression of AG-related genes. (33).
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Fig. S16. Replication of main text Fig. 1 in cross-sectional data: Regional strength of functional connectivity of cortical areas and subcortical nuclei at 14 years
(FC14) and regional change in strength of connectivity during adolescence (∆FC14−26). A) Regional strength for each of 330 cortical and 16 subcortical nodes was
regressed on a linear function of age for all participants (N = 298 scans from 298 participants; fixed effects model). B) Average cortico-cortical and cortico-subcortical FC14
and ∆FC14−26. C) Heterogeneous FC14 and ∆FC14−26 of individual subcortical nuclei to cortex (subcortical regions are in the same order as main Fig. 1). Due to
bilateral symmetry, only left hemispheres are visualised.
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Fig. S17. Replication of main text Fig. 2 in cross-sectional data: Maturational index. A) The maturational index (MI) for each brain region is defined as the correlation of
edge-wise baseline FC14 versus rate of change ∆FC14−26. Panel B) illustrates this for two example regions, including a positive MI in left somatosensory cortex, and a
negative MI in left posterior cingulate cortex. C) Visualisation of the Maturational Index for all cortical regions, and D) subcortical regions (the left/right arrow corresponds to
left/right hemisphere).
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Fig. S18. Replication of main text Fig. 3 in cross-sectional data: Maturational index in anatomical and psychological context. A) Distribution of maturational index for
each cytoarchitectonic class of the von Economo atlas (26), and B) for resting state networks derived from prior resting state FC analysis by Yeo (20). In both cases, subcortical
regions were considered as an additional eighth class/subnetwork. The violin plots are coloured by average MI within the corresponding class of regions. C-D) Word clouds of
cognitive terms associated with cortical brain regions that have C) disruptive (blue) or D) conservative (red) modes of development (Neurosynth decoding (28)). The size of
cognitive terms corresponds to the correlation of corresponding meta-analytic maps generated by Neurosynth with each of the two modes (top).
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Fig. S19. Replication of main text Fig. 4 in cross-sectional data: Disruptive and conservative modes of fMRI maturation in developmental and metabolic context.
A) Maturational index was positively correlated with ∆CT - regions which had disruptive development (MI<0) had faster rates of cortical thickness (CT) shrinkage during
adolescence. B) MI was negatively correlated with a prior map of postnatal cortical surface area - disruptive maturation was greater in regions that showed greatest expansion
after birth. C) MI was negatively correlated with a prior map of the glycolytic index, a measure of aerobic glycolysis (AG); and D) MI was negatively correlated with a prior map
of brain regional expression of AG-related genes. (33).
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Fig. S20. Replication of main text Fig. 1 in data from a single scanner: Regional strength of functional connectivity of cortical areas and subcortical nuclei at 14
years (FC14) and regional change in strength of connectivity during adolescence (∆FC14−26). A) Regional strength for each of 330 cortical and 16 subcortical nodes
was regressed on a linear function of age for all participants (N = 396 scans from 236 participants; mixed effects model). B) Average cortico-cortical and cortico-subcortical
FC14 and ∆FC14−26. C) Heterogeneous FC14 and ∆FC14−26 of individual subcortical nuclei to cortex (subcortical regions are in the same order as main Fig. 1). Due
to bilateral symmetry, only left hemispheres are visualised.
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Fig. S21. Replication of main text Fig. 2 in data from a single scanner: Maturational index. A) The maturational index (MI) for each brain region is defined as the
correlation of edge-wise baseline FC14 versus rate of change ∆FC14−26. Panel B) illustrates this for two example regions, including a positive MI in left somatosensory
cortex, and a negative MI in left posterior cingulate cortex. C) Visualisation of the Maturational Index for all cortical regions, and D) subcortical regions (the left/right arrow
corresponds to left/right hemisphere).
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Fig. S22. Replication of main text Fig. 3 in data from a single scanner: Maturational index in anatomical and psychological context. A) Distribution of maturational
index for each cytoarchitectonic class of the von Economo atlas (26), and B) for resting state networks derived from prior resting state FC analysis by Yeo (20). In both cases,
subcortical regions were considered as an additional eighth class/subnetwork. The violin plots are coloured by average MI within the corresponding class of regions. C-D) Word
clouds of cognitive terms associated with cortical brain regions that have C) disruptive (blue) or D) conservative (red) modes of development (Neurosynth decoding (28)). The
size of cognitive terms corresponds to the correlation of corresponding meta-analytic maps generated by Neurosynth with each of the two modes (top).
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Fig. S23. Replication of main text Fig. 4 in data from a single scanner: Disruptive and conservative modes of fMRI maturation in developmental and metabolic
context. A) Maturational index was positively correlated with ∆CT - regions which had disruptive development (MI<0) had faster rates of cortical thickness (CT) shrinkage
during adolescence. B) MI was negatively correlated with a prior map of postnatal cortical surface area - disruptive maturation was greater in regions that showed greatest
expansion after birth. C) MI was negatively correlated with a prior map of the glycolytic index, a measure of aerobic glycolysis (AG); and D) MI was negatively correlated with a
prior map of brain regional expression of AG-related genes. (33).
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Fig. S24. Effects of head motion on functional connectivity, in a low-motion subset of data. A) Average participant motion (quantified as mean FD) does not change
with age (the pseudo-r2 for generalized mixed-effect models (GLMMs) includes variance in mean FD explained by age, as well as sex and scanner site). B) The correlation
between FC at each edge and the corresponding participant’s motion (across participants) does not show a strong relationship with the Euclidean distance spanned by edges.
The average edge-wise correlation between FC and motion (average of data along the y-axis) is near-zero. C) Mean participant motion is not related to mean FC across
participants (the pseudo-r2 for GLMMs includes variance in mean FC explained by mean FD, as well as sex). Panel B depicts a 2D-histogram of the underlying dense data, with
hexagonal bins color-coded by the number of edges located within.
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Fig. S25. Replication of main text Fig. 1 in a low-motion subset of data: Regional strength of functional connectivity of cortical areas and subcortical nuclei at 14
years (FC14) and regional change in strength of connectivity during adolescence (∆FC14−26). A) Regional strength for each of 330 cortical and 16 subcortical nodes
was regressed on a linear function of age for all participants (N = 182 scans from 132 participants; mixed effects model). B) Average cortico-cortical and cortico-subcortical
FC14 and ∆FC14−26. C) Heterogeneous FC14 and ∆FC14−26 of individual subcortical nuclei to cortex (subcortical regions are in the same order as main Fig. 1). Due
to bilateral symmetry, only left hemispheres are visualised.
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Fig. S26. Replication of main text Fig. 2 in a low-motion subset of data: Maturational index. A) The maturational index (MI) for each brain region is defined as the
correlation of edge-wise baseline FC14 versus rate of change ∆FC14−26. Panel B) illustrates this for two example regions, including a positive MI in left somatosensory
cortex, and a negative MI in left posterior cingulate cortex. C) Visualisation of the Maturational Index for all cortical regions, and D) subcortical regions (the left/right arrow
corresponds to left/right hemisphere).
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Fig. S27. Replication of main text Fig. 3 in a low-motion subset of data: Maturational index in anatomical and psychological context. A) Distribution of maturational
index for each cytoarchitectonic class of the von Economo atlas (26), and B) for resting state networks derived from prior resting state FC analysis by Yeo (20). In both cases,
subcortical regions were considered as an additional eighth class/subnetwork. The violin plots are coloured by average MI within the corresponding class of regions. C-D) Word
clouds of cognitive terms associated with cortical brain regions that have C) disruptive (blue) or D) conservative (red) modes of development (Neurosynth decoding (28)). The
size of cognitive terms corresponds to the correlation of corresponding meta-analytic maps generated by Neurosynth with each of the two modes (top).
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Fig. S28. Replication of main text Fig. 4 in a low-motion subset of data: Disruptive and conservative modes of fMRI maturation in developmental and metabolic
context. A) Maturational index was not correlated with ∆CT in the low-motion subset of data. B) MI was negatively correlated with a prior map of postnatal cortical surface
area - disruptive maturation was greater in regions that showed greatest expansion after birth. C) MI was negatively correlated with a prior map of the glycolytic index, a
measure of aerobic glycolysis (AG); and D) MI was negatively correlated with a prior map of brain regional expression of AG-related genes. (33).
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Fig. S29. Effects of head motion on functional connectivity, in data processed with global signal regression (GSR). A) Average participant motion (quantified as mean
FD) does not change with age (the pseudo-r2 for generalized mixed-effect models (GLMMs) includes variance in mean FD explained by age, as well as sex and scanner site).
B) The correlation between FC at each edge and the corresponding participant’s motion (across participants) does not show a strong relationship with the Euclidean distance
spanned by edges. The average edge-wise correlation between FC and motion (average of data along the y-axis) is near-zero. C) Mean participant motion is weakly related to
mean FC across participants (the pseudo-r2 for GLMMs includes variance in mean FC explained by mean FD, as well as sex). Panel B depicts a 2D-histogram of the underlying
dense data, with hexagonal bins color-coded by the number of edges located within.
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Fig. S30. Replication of main text Fig. 1 in data processed with global signal regression (GSR): Regional strength of functional connectivity of cortical areas and
subcortical nuclei at 14 years (FC14) and regional change in strength of connectivity during adolescence (∆FC14−26). A) Regional strength for each of 330 cortical
and 16 subcortical nodes was regressed on a linear function of age for all participants (N = 520 scans from 298 participants; mixed effects model). B) Average cortico-cortical
and cortico-subcortical FC14 and ∆FC14−26. C) Heterogeneous FC14 and ∆FC14−26 of individual subcortical nuclei to cortex (subcortical regions are in the same
order as main Fig. 1). Due to bilateral symmetry, only left hemispheres are visualised.
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Fig. S31. Replication of main text Fig. 2 in data processed with global signal regression (GSR): Maturational index. A) The maturational index (MI) for each brain
region is defined as the correlation of edge-wise baseline FC14 versus rate of change ∆FC14−26. Panel B) illustrates this for two example regions, including a positive MI in
left somatosensory cortex, and a negative MI in left posterior cingulate cortex. C) Visualisation of the Maturational Index for all cortical regions, and D) subcortical regions (the
left/right arrow corresponds to left/right hemisphere).
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Fig. S32. Replication of main text Fig. 3 in data processed with global signal regression (GSR): Maturational index in anatomical and psychological context. A)
Distribution of maturational index for each cytoarchitectonic class of the von Economo atlas (26), and B) for resting state networks derived from prior resting state FC analysis
by Yeo (20). In both cases, subcortical regions were considered as an additional eighth class/subnetwork. The violin plots are coloured by average MI within the corresponding
class of regions. C-D) Word clouds of cognitive terms associated with cortical brain regions that have C) disruptive (blue) or D) conservative (red) modes of development
(Neurosynth decoding (28)). The size of cognitive terms corresponds to the correlation of corresponding meta-analytic maps generated by Neurosynth with each of the two
modes (top).
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Fig. S33. Replication of main text Fig. 4 in data processed with global signal regression (GSR): Disruptive and conservative modes of fMRI maturation in
developmental and metabolic context. A) Maturational index was not correlated with ∆CT in data processed with GSR. B) MI was negatively correlated with a prior map of
postnatal cortical surface area - disruptive maturation was greater in regions that showed greatest expansion after birth. C) MI was negatively correlated with a prior map of the
glycolytic index, a measure of aerobic glycolysis (AG); and D) MI was negatively correlated with a prior map of brain regional expression of AG-related genes. (33).
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Fig. S34. Replication of SI Fig. S3 in data processed with global signal regression (GSR): Global trajectories of the correlation distribution. A) Trajectories of the
four moments of the correlation distribution as a function of age: (i) mean, (ii) variance, (iii) skewness and (iv) kurtosis. B) Example distribution, colour-coded by percentile.
Higher percentiles of the correlation distribution strengthen faster, as indicated by increasing slopes of linear models fit to values of correlation at increasing percentiles. This is
visualised using a plot of all the linear models as a function of age (centered along the y-axis for visual clarity).
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Fig. S35. Replication of SI Fig. S6 in data processed with global signal regression (GSR): Maturation of functional connectivity at the edge level. Parameters of
linear models extracted from mixed-effect models fitted to FC of individual edges. FC14 and ∆FC14−26 within and between A) cytoarchitectonic classes of the von Economo
atlas (26), and B) resting state networks derived from prior resting state FC analysis by Yeo (20). In both cases, subcortical regions were considered as an additional eighth
class/subnetwork (grey). Values are depicted at the level of individual edges ("edge-wise", top row) and as averages of within- and between-network blocks ("network µ",
bottom row). In "edge-wise" plots, regions are sorted in decreasing order of average regional value within each network.
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Fig. S36. Comparison of regional and edge FC14 and ∆FC14−26 across denoising pipelines. A) Pairwise comparison of regional developmental parameters obtained
from three different denoising pipelines: FC14 (top) and ∆FC14−26 (bottom). The cortical maps being compared are presented in main Fig. 1 and analogous supplementary
figures, Fig. S25 and Fig. S30. B) Pairwise comparison of edge-wise developmental parameters obtained from three different denoising pipelines: FC14 (top) and ∆FC14−26
(bottom). Panels depict 2D-histograms of the underlying dense data, with hexagonal bins color-coded by the number of edges located within.
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Fig. S37. Comparison of Maturational Index across denoising pipelines. A) Maturational Index obtained from three different denoising pipelines (as presented in main
Fig. 2C, Fig. S26C and Fig. S31C). B) Correlations between pairs of MI maps. Quadrants are color-coded based on agreement of MI signs of corresponding regions, and
percentages of regions in each quadrant are indicated within. Within agreeing quadrants (i.e. both > 0 or both < 0), regions are further color-coded based based on magnitude
of MI: dark markers correspond to both MI > 0.3 (or both MI < -0.3). C) Cortical and subcortical plots of sign overlap, with color-coding for regions with agreeing signs
corresponding to panels B, and legends below.
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Table S3. Maturation of subcortico-cortical FC. Frequencies of increases (↑) and decreases (↓) in subcortico-cortical FC as a function of age, for both
the HCP and DK-sub cortical parcellations. These frequencies are listed as overall (all), and as numbers satisfying P < 0.05 - both without (Praw) and with
(PFDR) correction of P-values for multiple comparisons. Subcortical regions are listed in decreasing order of average rate of change with age.

parcellation amygdala hippocampus diencephalon putamen caudate accumbens pallidum thalamus

HCP

all 327 333 333 278 277 231 230 206
↑ Praw 161 119 99 26 13 24 8 18

PFDR 69 5 0 0 0 0 0 0

all 19 13 13 68 69 115 116 140
↓ Praw 0 0 0 0 2 2 2 0

PFDR 0 0 0 0 0 0 0 0

DK-sub

all 278 287 289 230 238 203 193 163
↑ Praw 132 106 71 14 10 11 2 13

PFDR 43 0 0 0 0 0 0 0

all 20 11 9 68 60 95 105 135
↓ Praw 0 0 0 0 0 2 1 0

PFDR 0 0 0 0 0 0 0 0
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