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S1. UPDATED SYNTHETIC POPULATION GENERATION

For this work, we have continued development of our agent based model of dengue transmission for Yucatán State,
Mexico. The model is described in detail in [2] and [3]. We have updated our data sources and approach to generating
the synthetic population used by the transmission model.

As an overview, our transmission model requires the following input:

• a list of locations representing households, schools, and workplaces;

• a list of mosquito movement probabilities between these locations; and

• a list of people, including household membership and school or workplace associations

In summary, our model explicitly represents 1,817,735 people, living in 376,400 households, some of whom go to
either 3,124 schools or 114,713 workplaces. These individuals are aged 0 to 100 years old, and may be male or female,
which is used when determining the potential for maternal-antibody-dependent enhancement when model infants are
exposed to dengue. Age composition of households and employment and student status are according to distributions
for each of the 106 municipalities in the State of Yucatán. Demographic and spatial distributions are based on
real-world spatial-demographic data. The data sources we use include:

• Locality and municipality shapefiles

– Source: Mexican population and housing census 2010, provided by Instituto Nacional de Estadística y
Geografía (INEGI) via Sistema para la Consulta de Información Censal (SCINCE)

– Description: INEGI has provided shapefiles of the 106 municipalities of Yucatan and the localities within
them. For urban localities, polygons are provided; for rural localities, only points are provided.

– Usage: Random allocation of schools coordinates – localities and municipalities of schools that cannot be
geocoded are matched with these shapefiles.

– Additional references: Download links (in .exe) and more information.

• Nighttime light raster - VIIRS Day/Night Band Nighttime Lights

– Source: Earth Observation Group, NOAA [4]
– Description: Annual composites of the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night

Band (DNB) radiance in 2015. Data provider has removed the outliers, screened out the ephemeral lights
and set the background (non-lights) to zero.

– Usage: As a proxy for population and building density.

• Household census data

– Source: Integrated Public Use Microdata Series, International (IPUMS) [5]
– Description: 5% sample of Yucatan households, stratified by municipality
– Usage: Determining household size and composition (age, sex, and daytime activity)

• Workplace location data

– Source: DENUE [6]
– Description: Data table containing names, addresses, localities and municipalities of 114,713 non-school

workplaces
– Usage: To generate workplace coordinates

• School location data

– Source: SEGEY [7]
– Description: Data table containing names, addresses, localities and municipalities of 3,290 schools
– Usage: To generate schools coordinates
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Figure S1. Model Spatial Illustration. Higher resolution versions of insets from Main Text Fig. 1.
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A. Households

We use the same algorithm for placing households as in [2, 3], but with updated shapefile and remote sensing data.
Households for each of the 106 municipalities in Yucatán are sampled from IPUMS microcensus data. The number
of households sampled for each municipality is based on the expected household size, and the 2010 Mexico census [8].
Households are placed within municipality boundaries as defined by [8], in pixels (resolution of ≈ 500m) proportional
to the light output recorded by NOAA/VIIRS nighttime satellite imagery[4]. Within pixels, households are located
uniformly randomly. The satellite images are composite images taken on nights with no moonlight. The composite
images do not contain clouds, and in this updated data from NOAA, background noise (e.g. reflected star light) has
been removed.

B. Workplaces

Our workplace placement model previously Of the 117728 registered business entries, 9619 of them have non-unique
coordinates (in latitude and longitude). We calculated the 5th percentile of longitudinal and latitudinal difference
among businesses in Merida, which are 0.001◦ and 0.0006◦ respectively. Non-unique coordinates were randomly
jittered by these values.

The work place size data is provided in size categories, but we need specific sizes for our algorithm. To get sizes,
we fit a power-law distribution model to the category data, then drew from that distribution to obtain specific sizes.

Although schools are included among the workplaces provided by DENUE, we found that the school data provided
by SEGEY was more accurate and complete. We therefore omitted schools from the DENUE data and placed them
as described in the section below. Schools are also workplaces, however, and thus we determined the number of
employees by first assigning students to the closest school, and then setting the expected number of employees to
twice the student:teacher ratio for Mexico [9]. We doubled the student-teacher ratio in order to account for support
staff, consistent with our observations when visiting schools in Yucatán.

We use a censored gravity model for assigning people to workplaces. If the IPUMS data for a given person indicates
that they are employed, we sample an employer from the 1000 workplaces closest to their house with probability
proportional to workplace size over Euclidean distance to the workplace squared.

C. Schools

Our school placement model previously relied on postal code data. In rural areas we found this approach sometimes
lead to unrealistic placement, with schools placed several kilometers outside of the rural villages they actually exist
within. We confirmed that the postal code data was unreliable by finding schools, in person, in four rural villages
that supposedly did not have schools. By using Google Maps and Google Street View, we further confirmed that even
very small and remote villages have official schools, but these schools often do not have official addresses. We have
thus completely revised our algorithm for locating schools.

Our model does not distinguish between types of schools (e.g. primary and secondary), but [7] lists them as distinct
schools even if they operate in the same building. We consolidated entries with identical name, address, locality and
municipality into one entry. The number of students in these consolidated entries are the sum of all duplicated entries.
This reduced the number of school locations from 3290 to 3124. The geographic coordinates for the 3124 schools were
determined using following steps:

1. We used the Google Maps Geocoding API to convert the school addresses to coordinates. Many, but not all, of
the coordinates returned were acceptable. The results that satisfied the following rules were accepted:

• The coordinate (from Google) is less than 5km from its nominal locality (i.e. town, village, or city) and
municipality (from SCINCE shapefiles). Some school and street names match different localities than the
school is actually in.

• The coordinate is unique. When Google does not know where an a street address is, it sometimes chooses
the center of a locality. While this might be an acceptable approximation if a village only has one school,
we did not permit schools with distinct names and addresses to be located at the same point.

2. Based on these rules, we accepted the Google’s coordinate for 1576 school entries.

3. For the rest of the 1548 schools, we imputed their coordinates. For each school, we matched the locality and
municipality with the SCINCE shapefiles.
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4. There were 1495 schools with matching polygons (urban) or points (rural), 44 of which had more than one
match. We used the following steps to place these:

• For each urban polygon, all pixels within the polygon were selected.
• For each rural points, all pixels (a) within the 5km distance from the point, (b) within the municipality,

and (c) not belong to an urban polygon were selected.
• Randomly sample one out of the selected pixels, with probability of selection weighted by the pixels’

nighttime light value.
• Sample coordinates uniformly within the pixel, and assign them to the school.

5. For the remaining 53 schools that had municipality information, but did not have a locality that could be
matched to the SCINCE shapefiles, we assigned locations according to the following steps:

• Select all pixels within the municipality’s polygons that do not belong to an urban polygon (i.e. assuming
the school is not in urban area).

• Randomly sample one out of all selected pixels, with probability of selection weighted by the pixels’ night-
time light value.

• Sample coordinates uniformly within the pixel, and assign them to the school.

People age 5–11 years old or designated as students by IPUMS are assigned to the schools that are closest to their
houses.

D. Serological Testing Model for CYD-TDV

Current guidance for CYD-TDV is that the vaccine should only be administered to seropositive individuals, but an
appropriate rapid diagnostic test is not currently available. As a rapid diagnostic test does not yet exist, we judge that
to be practical to develop and acceptable to use, the test will prioritize specificity over sensitivity. Thus we assume
for main text results that the test has 5% probability of misclassifying a seronegative individual as seropositive (i.e.,
95% specific) and has a 20% probability of misclassifying a seropositive individual as seronegative (80% sensitive). In
Figs. S9-, we show results for alternative test performance assumptions, as well as vaccinating without testing.

Individuals in eligible age classes are randomly selected to be considered for vaccination depending on coverage
(generally assumed to be 80%). Vaccination with CYD-TDV in our simulation then depends on the testing model
used for that replicate:

• for the no testing model, all individuals randomized for coverage receive the vaccine.

• for the perfect testing model, after individuals are randomized for coverage, they only receive the vaccine if they
are seropositive, i.e. they have been previously infected (including if they are currently infected)

• for the imperfect testing model, after individuals are randomized for coverage, serostatus is sometimes incorrectly
determined by the test. Observed seropositives receive the vaccine. If they are seronegative, they may be
observed as seropositive according to the false positive rate, and likewise if they are seropositive they may be
observed as seronegative according to the false negative rate. Whether correctly determined or misclassified,
individuals are vaccinated (or not) according to their observed serostatus.
We considered imperfect tests with different misclassification properties, mixing higher performance (5% chance
of misclassification) vs lower performance (20% chance of misclassification) assumptions for both aspects of
testing performance (false positive and false negative rates).

S2. FITTING WITH ABCSMC

Refitting was necessary because of changes to the synthetic population as described above. As these changes to
geography seemed unlikely to significantly impact model fit, we resumed fitting from the estimates in [3], using [10]
to compute 5 more sets of 10k particles each. From each set, the top 500 were chosen for the predictive prior. The
final posterior was the 1k best particles of the 50k simulated; these are the 1000 parameter combinations that were
used when simulating results.
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Parameter Sampled Prior Modeled Prior Posterior
Mean Range Median 95% IR

RFm N (-2.944439, 1.4) 0.0595 [0.01, 1] 0.0283 [0.01,0.486]
URm,95 N (-0.5, 1) 0.384 [0.01, 1] 0.0112 [0.01,0.114]
RF s N (-1.098612, 0.8) 0.265 [0.02, 1] 0.167 [0.02,0.999]
SP N (0.8472979, 0.7) 0.7 [0, 1] 0.399 [0.0804,0.995]
SS N (-2.197225, 2.25) 0.1 [0, 1] 0.009 57 [8.94e-06,0.277]
PSSR N (0, 1) 0.5 [0, 1] 0.398 [7.46e-07,1]
λE N (-4.5, 1.5) 0.275 [0, 25] 2.26 [0.00302,22.4]
Mpeak N (0, 0.7) 60.5 [1, 120] 40.8 [28,52.8]

Table S1. Prior distributions (sampled and modeled) and posterior medians and 95% interquantile ranges (IR) for fitted
epidemic model parameters. Standard logistic transformations (i.e., k = 1, x0 = 0) were used to convert sampled parameter
values into model parameter values based on the ranges specified. RFm is the reported fraction for mild disease; URm,95 is the
fraction by which mild cases are under-reported pre-1995; RF s is the reported fraction for severe disease; SP is the reference
(secondary infection with DENV 1) pathogenicity; SS is reference (secondary case) probability of severe disease; PSSR is the
relative-risk of severe disease in primary cases; λE is the introduction rate (number of exposures per serotype per day, for the
entire modeled population); Mpeak is the mean number of mosquitoes per location, on the day when mosquito populations are
largest.

In previous work, the proposal mechanism was described as using the between parameter covariance for noising
in addition to within parameter variance when recommending new parameter combinations during fitting. The
between parameter portion was not incorporated correctly, leading to slower convergence rates. We corrected the
implementation of this feature for this round of fitting. Based on the difference between metric fits between these
results and the previous fit [3], the proposal error does not seem to have had a substantial effect on the final parameters.
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Metric Observed Posterior
Mean Median 95% IR

mean 101 116 99.3 [15, 295]
minimum 0 0.0424 0 [0, 0.547]
25th percentile 2.73 7.58 5.15 [0, 28.3]
median 38 44.8 36.4 [0.048, 141]
75th percentile 129 128 107 [8.11, 365]
maximum 464 754 625 [98, 2130]
SD 140 182 146 [24.2, 523]
skewness 1.38 2.09 2.08 [1.36, 2.91]
median-crossing rate 0.25 0.265 0.278 [0.167, 0.333]
1987 seroprevalence, 8–14 yo 0.6 0.701 0.702 [0.503, 0.886]
pre-1995 severe proportion 0.000 697 0.103 0.0898 [0.0246, 0.247]
modern severe proportion 0.29 0.147 0.131 [0.0376, 0.327]
2014 seroprevalence, 0–4 yo 0.278 0.239 0.233 [0.0673, 0.445]
ibid., 5–9 yo 0.49 0.432 0.438 [0.304, 0.537]
ibid., 10–14 yo 0.616 0.561 0.571 [0.375, 0.685]
ibid., 15–19 yo 0.727 0.665 0.679 [0.499, 0.762]
ibid., 20–29 yo 0.741 0.777 0.786 [0.645, 0.852]
ibid., 30–39 yo 0.708 0.903 0.91 [0.81, 0.949]
ibid., 40–49 yo 0.808 0.957 0.963 [0.865, 0.991]
ibid., 50–59 yo 0.742 0.981 0.986 [0.914, 0.998]
ibid., 60+ yo 0.828 0.995 0.998 [0.971, 1]

Table S2. Observed data and model fitting posterior means, medians, and 95% interquantile range (IR) for epidemic model
metrics. Posterior values are for simulations on the Yucatán population after averaging across 10 realizations for each of the
1000 parameter combinations that resulted from the fitting procedure. The 1987 seroprevalence survey concerned only 8–14
year old Mérida residents, which were explicitly subset from the simulated Yucatán population. The Mérida population was
defined as people whose household is within the bounding box constrained by latitudes 20.847583 and 21.076652, and longitudes
-89.752178 and -89.504299.
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S3. EXPANDED RESULTS

Figure S2. Single Intervention Annual & Cumulative Effectiveness.. Medians (lines) and interquartile range (shaded
ribbons) for all single intervention scenarios. Annotations are consistent with main text Fig. 2, with column faceting by
vaccine mechanism (none versus CYD-TDV versus D70E). In addition to annual effectiveness (top row), this figure also shows
cumulative effectiveness (bottom row), i.e. cases prevented since introduction of the intervention.
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Figure S3. Combined Intervention Interactions. The interaction regions from main text Fig 4, shown as a trend line
instead of a distance between two curves. The lines correspond to the shaded height shown in that figure (with additional rows
in the faceting, for readability), while the ribbons here show the interquartile range for those lines. Where the line is above
0 (in the blue area) the interaction is typically amplifying, and where below 0 (in the red area), the interaction is typically
interfering.
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Figure S4. Combined Intervention Annual & Cumulative Effectiveness. The combined intervention medians (lines)
from main text Fig 4, with interquartile range (ribbon).
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Figure S5. Staggered Intervention Starts. Medians (line) and interquartile range (ribbon) for combined 75% TIRS and
the D70E vaccine with a catch up campaign, faceted by the time delay before the second intervention is introduced.

Figure S6. CYD-TDV Mosquito Population Sensitivity.. Medians (line) and interquartile range (ribbon) for the combined
intervention of 75% TIRS coverage and the CYD-TDV vaccine without a catch up campaign. The different mosquito population
levels are a surrogate for force of infection (see Fig SS7).
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Figure S7. Incidence vs. Relative Mosquito Population. Annual infections and cases at equilibrium respond to changes
in relative mosquito population, a surrogate for force of infection. The value at 1.0 corresponds to the population used for
intervention analyses. The top panel shows infections that result in cases and the bottom panel shows all infections. In both
panels, the dashed line shows the contribution from introduced infections. Note that cases begin to plateau at lower relative
mosquito population; this is due to lower risk of disease for post-secondary infections.
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Figure S8. CYD-TDV Sensitivity to Mosquito Population with & without Serotesting. Compares CYD-TDV
effectiveness with and without conditioning vaccination on serostatus, across different mosquito population levels. Serological
testing (as in the main text, with a 5% false positive rate, 20% false negative rate) prevents transient negative effectiveness in
the low transmission setting, unconditional vaccination almost always outperforms testing in the long run. The exception is
in the low transmission setting, in combination with TIRS: in that scenario, the natural force of infection has been driven so
low that there are few seropositives in the age class targeted for vaccination, and hence limited benefit to CYD-TDV. In this
instance, testing allows the intervention to benefit those few seropositives; without testing, the combination is less effective
than just using TIRS alone.
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Figure S9. CYD-TDV Annual Effectiveness Across Testing Assumptions. The black lines correspond to different
testing performance scenario results, with no testing (red) and perfect testing (blue) reference lines repeated for each facet.
The main text results focus on the bottom left scenario: 5% false seropositive rate, 20% false seronegative rate for testing.
Interventions with testing generally have better early effects, but because the model interventions do not consider re-testing,
eventually the assumed longer-term benefits do not appear for non-vaccinees. An intervention with high false negative rate tests
fails to prevent about a third of the cases compared to a no testing approach. This provides additional support for the recent
concerns about the cost-effectiveness of an intervention with limited benefit when negative predictive value is insufficient[1].
However, this gap is relative to total case count only; the difference framed in terms of costs may be smaller due to the potential
for CYD-TDV to increase the incidence of severe disease.
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Figure S10. CYD-TDV Cumulative Effectiveness Across Testing Assumptions. Same results as Fig. SS9, but pre-
sented as cumulative effectiveness since starting the intervention. Cumulative effectiveness more clearly demonstrates the
early performance benefit of testing (black), as it limits vaccine-accelerated cases. However, as most of those cases would
have eventually happened in this high transmission setting, effectiveness is eventually penalized by the missed vaccination
opportunities (relative to not requiring a positive serological test; red). In the transmission setting we considered, there is a
crossover for low false seronegative rates (i.e., black falls below red) between 10-15 years (for a program with catchup) after
the intervention begins. For high false seronegative rates, testing and no testing are roughly comparable for the first 5 years,
but after that unconditional vaccination is consistently superior at the population level. Because this effectiveness measure
concerns total reported cases and does not directly account for case severity, this is not a recommendation for CYD-TDV
without testing; rather, we are highlighting how much potential the intervention loses with poor test performance on false
seronegative classification. A scenario with a perfect test (blue) is provided as a reference, but is less realistic than having an
imperfect test.
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Figure S11. 75% TIRS & CYD-TDV Annual Effectiveness Across Testing Assumptions. Same presentation as
Fig. SS9, but with concurrent TIRS. Like the results for CYD-TDV vaccination only, the early performance of testing inter-
ventions is better, while the long-term performance of unconditional vaccination is superior. However, there is a generally a
smaller long-term mismatch and a larger short-term benefit. Given the probable product lifetime for CYD-TDV, these much
later trends are likely not practically important.
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Figure S12. 75% TIRS & CYD-TDV Cumulative Effectiveness Across Testing Assumptions. Same results as
Fig. SS11, but presented as cumulative effectiveness. Like the results for vaccination with CYD-TDV only, the combined
interventions with unconditional vaccination eventually perform (at the population level) slightly better than approaches with
test. However, the cross-over points are much later, from 20 to 30 years (sooner for high false negative rates and later for low
ones) after initiating the intervention.



19

Figure S13. Sensitivity of Intervention Effectiveness to Conventional Vaccine Efficacy. Similar to the D70E results
presented in main text Fig. 4, though including conventional, durable vaccines with 50% and 90% efficacies (i.e., D50E and
D90E, respectively). Increasing efficacy of individual interventions increases overall effectiveness, particularly beyond 10-20
years. Combined interventions including a conventional vaccine always outperform the individual components, but at the
90% vaccine efficacy level, a high-coverage vaccination campaign may make vector control unnecessary for eliminating dengue.
Though not examined here, control of Ae. aegypti may still be warranted to contain other diseases. While we regard 90%
tetravalent efficacy irrespective of serostatus as optimistic, such vaccine efficacy is not impossible: durable, near perfect vaccine
efficacy is observed for many viral pathogens. Should a very high efficacy vaccine become available, the choice between a
one-time catch-up campaign and increased vector control will depend on other factors (e.g. vaccine availability, distribution
logistics, presence of other Aedes-borne diseases).
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