Supporting Information

Controlling the Isothermal Crystallization of Isodimorphic PBS-*ran*-PCL Random Copolymers by Varying Composition and Supercooling

by Maryam Safari¹, Agurtzane Mugica¹, Manuela Zubitur², Antxon Martínez de Ilarduya³, Sebastián Muñoz-Guerra³, Alejandro J. Müller *^{1,4}

- ¹ POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain.
- ² Chemical and Environmental Engineering Department, Polytechnic School, University of the Basque Country UPV/EHU, Plaza Europa 1, Donostia-San Sebastián, 20018, Spain.
- ³ Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, Barcelona, 08028, Spain.
- ⁴ IKERBASQUE, Basque Foundation for Science, María Díaz Haroko Kalea, 3, Bilbao, 48013, Spain.
- * Correspondence: alejandrojesus.muller@ehu.es; Tel.: +34 943018191

Copolyester	T_m^0 (°C)
PBS	131
BS91CL9	118
BS 78 CL 22	110
BS 66 CL 34	100
BS 62 CL 38	98
BS 55 CL 45	87
BS51CL49	85
BS45CL55(BS-rich)	78
BS45CL55(CL-rich)	35
BS 38CL62	38
BS 34 CL 66	42
BS 27 CL 73	47
BS 11 CL 89	63
PCL	88

Table SI-1. Equilibrium melting temperatures for CoP(BS_xCL_y) compositions and their corresponding homopolymers.

Figure SI-1. Nucleation kinetics studies by PLOM. Nuclei density as a function of time at different crystallization temperature for PBS-rich phase samples: (a) BS₉₁CL₉, (b) BS₆₆CL₃₄, (c) BS₆₂CL₃₈, (d) BS₅₅CL₄₅, (e) BS₅₁CL₄₉, and (f) BS₄₅CL₅₅. *T_c* employed are chosen so that ΔT = 40, 38, 36, 34, 32 °C for all samples.

Figure SI-2. Nuclei density during isothermal crystallization as a function of ΔT for PBS-rich (a) and for PCL-rich (b) copolyesters.

Figure SI-3. Hoffman–Weeks plots for PBS-*ran*-PCL compositions. The black solid line represents the thermodynamic equilibrium line $T_m=T_c$.

Figure SI-4. Plot of *log I* versus $1/T(\Delta T)^2$ and fitting to Turnbull–Fisher equation (Eq. 1) for PBS-rich (a) and PCL-rich (b) compositions.

Figures SI-5. Spherulitic growth rates *G* determined by PLOM for neat PBS and PBS-rich (a) and for neat PCL and PCL-rich (b) copolymers as a function of supercooling.

Figure SI-6. The fits to the Lauritzen-Hoffman equation using the free Origin plug-in developed by Lorenzo et al. [1] and the experimental data for the (a-a') PBS, (b-b') BS₇₈CL₂₂, and (c-c') BS₄₅CL₅₅.

Figure SI-7. The σ_e value versus CL-unit molar fraction that obtained for PLOM experiments (σ_e^G) and DSC experiments (σ_e^{τ}).

References

1. Lorenzo, A. T.; Arnal, M. L.; Albuerne, J.; Müller, A. J., DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polymer testing 2007, 26 (2), 222-231.