Name	Abbreviations	Sequences (5´→3´)				
C17	C17	CCCCCCCCCCCCCC				
C6G5C6	C6G5C6	CCCCCCGGGGGCCCCCC				
SEA aptamer	Apt	AGCAGCACAGAGGTCAGATGTACTTATGCATTTCCTCC ACGATCTTATTTGAGAGTGACCCTATGCGTGCTACCGT AA				
C17-aptamer	C17-apt	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC				
C6G5C6- aptamer	C6G5C6-apt	CCCCCGGGGGGCCCCCC <u>AGCAGCAGAGGGTCAGATGT</u> <u>ACTTATGCATTTCCTCCCACGATCTTATTTGAGAGTGACC</u> <u>CTATGCGTGCTACCGTGAA</u>				

Table S1. Oligonucleotides names, abbreviations and DNA sequences

	Table S2. Comparison of the performance of the developed bioassay detected SEA with other methods.	nods.
--	--	-------

Method Strategy	Detection	LOD (ng ml-1)	Linear range	Ref.
quartz crystal microbalance	antibody	1 ng /mL	50-1000 ng/mL	[1]
electrochemical immunosensor	antibody	33.9 ng/mL	0.016-0.150 mg/mL	[2]
DAS-ELISA	antibody	32 pg/mL	4-1000 pg/mL	[3]
chemiluminescence enzyme immunoassay	antibody	3.2 pg/mL	6.4 pg/mL-1600 pg/mL	[4]
surface plasmon resonance	antibody	100 ng / mL	100-1000 ng/mL	[5]
LC-ESI / MS		0.5 ng/mL	1-100 ng/mL	[6]
capillary electrophoresis with laser-induced fluorescence detection	antibody	3 aM	0.3 nM and 6.5 nM	[7]
evanescent wave biosensor	antibody	10 ng/mL	10–100 ng/mL	[8]
DNA-AgNCs-PPYNPs	aptamer	0.3393 ng/mL	0.5 to 1000 ng/mL	Present work

Figure S1. AgNCs synthesized with different nucleotides sequences (Table S1) as the template.

Figure S2. The secondary structure of Apt(A), C6G5C6-apt(B) and C17-apt(C)

Figure S3. UV-vis absorption spectrum of the PPyNPs

- Ben Haddada, M.; Salmain, M.; Boujday, S. Gold colloid-nanostructured surfaces for enhanced piezoelectric immunosensing of staphylococcal enterotoxin A. *Sensors and Actuators B: Chemical* 2018, 255, 1604–1613, doi:<u>https://doi.org/10.1016/j.snb.2017.08.180</u>.
- Pimenta-Martins, M.G.R.; Furtado, R.F.; Heneine, L.G.D.; Dias, R.S.; Borges, M.d.F.; Alves, C.R. Development of an amperometric immunosensor for detection of staphylococcal enterotoxin type A in cheese. *Journal of Microbiological Methods* 2012, 91, 138–143, doi:<u>https://doi.org/10.1016/j.mimet.2012.05.016</u>.
- Clarisse, T.; Michèle, S.; Olivier, T.; Valérie, E.; Vincent, L.M.; Jacques-Antoine, H.; Michel, G.; Florence, V. Detection and quantification of staphylococcal enterotoxin A in foods with specific and sensitive polyclonal antibodies. *Food Control* 2013, *32*, 255–261, doi:https://doi.org/10.1016/j.foodcont.2012.11.021.
- Zhang, C.; Liu, Z.; Li, Y.; Li, Q.; Song, C.; Xu, Z.; Zhang, Y.; Zhang, Y.; Ma, Y.; Sun, Y., et al. High sensitivity chemiluminescence enzyme immunoassay for detecting staphylococcal enterotoxin A in multi-matrices. *Analytica Chimica Acta* 2013, 796, 14–19, doi:<u>https://doi.org/10.1016/j.aca.2013.07.044</u>.
- Tsai, W.-C.; Li, I.-C. SPR-based immunosensor for determining staphylococcal enterotoxin A. Sensors and Actuators B: Chemical 2009, 136, 8–12, doi:<u>https://doi.org/10.1016/j.snb.2008.10.061</u>.
- Andjelkovic, M.; Tsilia, V.; Rajkovic, A.; De Cremer, K.; Van Loco, J. Application of LC-MS/MS MRM to Determine Staphylococcal Enterotoxins (SEB and SEA) in Milk. *Toxins* 2016, *8*, doi:10.3390/toxins8040118.
- Lam, M.T.; Wan, Q.H.; Boulet, C.A.; Le, X.C. Competitive immunoassay for staphylococcal enterotoxin A using capillary electrophoresis with laser-induced fluorescence detection. *Journal* of Chromatography A 1999, 853, 545–553, doi:<u>https://doi.org/10.1016/S0021-9673(99)00677-9</u>.
- Rasooly, L.; Rasooly, A. Real time biosensor analysis of Staphylococcal enterotoxin A in food. *International Journal of Food Microbiology* 1999, 49, 119–127, doi:https://doi.org/10.1016/S0168-1605(99)00053-7.