Supplementary material # ToxTracker reporter cell lines as a tool for mechanism-based (geno)toxicity screening of nanoparticles – metals, oxides and quantum dots Sarah McCarrick¹, Francesca Cappellini¹, Amanda Kessler², Nynke Moelijker³, Remco Derr³, Jonas Hedberg², Susanna Wold², Eva Blomberg^{2, 4}, Inger Odnevall Wallinder², Giel Hendriks³, Hanna L Karlsson¹ - ¹ Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. - ² KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, , Stockholm , Sweden. - ³ Toxys, Leiden, The Netherlands. - ⁴ RISE Research Institutes of Sweden, Division Bioscience and Materials, Stockholm, Sweden #### Supplementary materials and methods – oxide characterization Raman spectroscopy Raman spectroscopy was performed using a Horiba Yvon Jobin HR800 Raman spectrometer. Dry powders were studied using a 785 nm laser and a 50X microscope objective. The powders were checked using an optical microscope for laser beam-induced damages. *X-ray photoelectron spectroscopy* X-ray photoelectron spectroscopy (Kratos AXIS UltraDLD X-ray photoelectron spectrometer, Kratos Analytical, Manchester, UK) studies were performed on dry powder applied onto carbon tape. High-resolution detailed spectra (pass energy 20 eV) were acquired using monochromatic Al K α X-ray source on Cr 2p, Mn 2p, Sn 3d, Sb 3d, V 4f and O 1s. All binding energies were corrected versus the C 1s adventitious peak at 285.0 eV. X-ray Diffraction PANanalytical X'Pert PRO diffractometer (CuK α 1 λ = 1.54060 Å, CuK α 2 λ = 1.54443 Å), generator settings at 30mA and 45kV, 2 θ range from 25 to 130° with step size 0.01°. Dry powders were studied. Several runs were conducted and averaged to produce spectra with high signal to noise ratio. ### Supplementary results - oxide characterization Manganese (Mn) and manganese oxide (Mn₃O₄) NPs XRD spectra of Mn and Mn $_3O_4$ NPs (Figure S1) showing the presence of MnO and Mn metal peaks for the Mn NPs and the diffraction pattern of Mn $_3O_4$ and MnO for the Mn $_3O_4$ NPs. The Mn NPs *Nanomaterials* **2019**, 9 2 of 7 displayed in addition vibrational Raman modes at 280, 309, 364, 468, and 650 cm⁻¹, and the Mn₃O₄ NPs essentially the same bands. All observed bands indicate Mn₃O₄ [25], though the presence of Mn₂O₃ cannot be excluded due to peak overlap. The Mn NPs have earlier been characterized by means of XPS indicating a surface oxide composed of MnO₂ and Mn₂O₃/Mn₃O₄. The presence of MnO₂ and Mn₂O₃ was supported by cyclic voltammetry (CV) measurements and MnO by means of XRD findings [26]. Figure S1. XRD spectra of Mn NPs [3] and Mn₃O₄ NPs (bottom). Tin [4] and tin oxide (SnO2) NPs XRD results for Sn- and SnO₂ NPs are presented in Figure S2. Diffraction peaks corresponding to metallic Sn and the strongest peaks of SnO (minor intensity) were observed for the Sn NPs. The SnO₂ NPs only revealed the main peaks corresponding to SnO₂. The major peaks are marked according to reported assignments [30,31] XPS results imply SnO₂ (binding energy of Sn 3d at 486.4-486.9 eV) [27] Nanomaterials **2019**, 9 3 of 7 to be a main component of the outermost surface on both the Sn- and the SnO_2 NPs. However, the presence of SnO cannot be excluded due to peak overlap. The metallic signal (484.5 eV) for the Sn NPs implies a thin surface oxide (< 5-10 nm). Figure S2. XRD results for Sn NPs [3], and SnO₂ NPs (bottom). Antimony (Sb) and antimony oxide (Sb₂O₃) Raman spectra of Sb- and Sb₂O₃ NPs are displayed in Figure S3. The observed Raman bands at approximately 450, 370, 250 and 190 cm-1 correspond to Sb₂O₃ for both NPs [32]. The small difference in peak frequencies of the Sb- and Sb₂O₃ Raman bands may e.g. be attributed to differences in particle size [34] The XPS results imply the presence of Sb₂O₃ on both the Sb- and the Sb₂O₃ NPs, based on observed binding energies at 538.8-539.0 eV [33] The metallic signal observed for the Sb NPs implies a thin surface oxide, < 5-10 nm. Nanomaterials **2019**, 9 4 of 7 Figure S3. Raman spectra of Sb NPs (A) and Sb₂O₃ NPs (B). Vanadium (V) and vanadium oxide (V2O5) NPs The V-based NPs were characterized by means of XPS. The results imply the presence of both VO_2 and V_2O_5 oxides in the outermost surface of both the V- and the V_2O_5 NPs (516.2-516.4 eV and 517.4-517.9 eV, respectively [28]. The lack of metal signal of the V NPs indicates a surface oxide thicker than 5-10 nm. Chromium (Cr) and chromium oxide (Cr2O3) NPs XPS results indicate the presence of Cr_2O_3 in the surface oxide for both Cr and Cr_2O_3 NPs, as judged from the Cr 2p peaks at 578-581.5 eV [29]. The Cr NPs showed in addition also metallic Cr signal (binding energy 574.8 eV) that implies a thin surface oxide, < 5-10 nm [29]. *Nanomaterials* **2019**, 9 5 of 7 # Supplementary results - Viability of CdTe QDs **Figure S4.** Cytotoxicity in mES cells following 24 h exposure to CdTe QDs of 5 different sizes as well as CdCl₂. Cytotoxicity was determined by measuring the fraction of intact cells following exposure using flow cytometry. The results are presented as mean \pm standard error of the mean of three or four independent experiments (n=3-4). *Nanomaterials* **2019**, 9 6 of 7 # Supplementary results - Maximum ToxTracker activation **Table S1.** Maximum ToxTracker activation observed in response to metal and metal oxide NPs as well as CdTe QDs of various sizes and CdCl₂ Values correspond to maximun ToxTracker activation at viability levels above 25 %. Asterisks (*) indicate an induction observed at a viability level below 50 %. | NP/ | Oxidative stress | | DNA damage | | Cellular stress | | |--------------------------------|-------------------|-------------------|-----------------|-------------------|-------------------|-----------------| | compound | Srxn | Blvrb | Rtkn | Bscl2 | Ddit3 | Btg | | Ag | 2.67 ± 0.29 | 1.49 ± 0.09 | 1.06 ± 0.05 | 1.04 ± 0.03 | 1.15 ± 0.03 | 0.98 ± 0.03 | | Au | 0.96 ± 0.02 | 0.99 ± 0.01 | 0.96 ± 0.03 | 1.02 ± 0.02 | 1.03 ± 0.02 | 0.99 ± 0.01 | | CdCl ₂ | 9.21 ± 2.68 | 3.53 ± 0.96 | 1.06 ± 0.18 | 1.19 ± 0.09 | 2.11 ± 0.9 | 1.27 ± 0.21 | | CdTeQDs 1.5 | 5.37 ± 0.54* | 1.83 ± 0.2* | 1.64 ± 0.29 | 1.28 ± 0.03 | 1.13 ± 0.09 | 1.26 ± 0.08 | | CdTeQDs 2.6 | 5.39 ± 1.03* | 2.03 ± 0.15 * | 2.06 ± 0.21 | 1.54 ± 0.04* | 2.02 ± 0.24* | 1.71 ± 0.07 | | CdTeQDs 4.5 | 4.28 ± 0.55 * | 1.72 ± 0.2 | 1.51 ± 0.14 | 1.26 ± 0.13 | 2.92 ± 1.5* | 1.28 ± 0.07 | | CdTeQDs 6.5 | 4.88 ± 0.88 * | 2.05 ± 0.28* | 1.65 ± 0.14 | 1.53 ± 0.03 * | 1.62 ± 0.32* | 1.43 ± 0.07 | | CdTeQDs8.6 | 4.39 ± 1.01 | 2.01 ± 0.36 | 1.28 ± 0.09 | 1.29 ± 0.14* | 2.82 ± 0.31 * | 1.35 ± 0.04 | | Cr | 1.07 ± 0.16 | 1.08 ± 0.07 | 1 ± 0.08 | 1 ± 0.04 | 1.03 ± 0.13 | 0.92 ± 0.07 | | Cr ₂ O ₃ | 1.71 ± 0.26 | 1.44 ± 0.08 | 1.69 ± 0.18 | 1.06 ± 0.04 | 1.04 ± 0.06 | 1.18 ± 0.04 | | Mn | 19.96 ± 5.11 | 2.02 ± 0.13 | 3.53 ± 0.41 | 2.34 ± 0.13 | 7.77 ± 1.06 | 3.99 ± 0.47 | | Mn ₃ O ₄ | 21.91 ± 4.51 | 1.39 ± 0.12 | 3.31 ± 0.41 | 1.78 ± 0.13 | 4.08 ± 0.54 | 3.86 ± 0.32 | | Pt | 1.78 ± 0.05 | 1.53 ± 0.07 | 0.96 ± 0.03 | 1.12 ± 0.02 | 0.95 ± 0.04 | 1.01 ± 0.03 | | Sb | 7.13 ± 1.73* | 4.71 ± 0.71 | 0.88 ± 0.05 | 1.23 ± 0.03 | 5.28 ± 1.09* | 1.21 ± 0.13 | | Sb ₂ O ₃ | 10.64 ± 1.51 | 4.66 ± 0.63 | 0.91 ± 0.03 | 1.19 ± 0.03 | 4.25 ± 0.76* | 1.16 ± 0.12 | | Sn | 11.98 ± 3.19* | 4.5 ± 0.62* | 1.32 ± 0.41 | 1.24 ± 0.12 | 2.06 ± 0.32* | 1.8 ± 0.37 | | SnO ₂ | 1.94 ± 0.53 | 1.13 ± 0.11 | 1.05 ± 0.06 | 1.04 ± 0.04 | 1.12 ± 0.08 | 1.03 ± 0.03 | | v | 1.34 ±0.1 | 1.23 ± 0.07 | 1.47 ± 0.12 | 1.02 ± 0.08 | 0.94 ± 0.16 | 1.14 ± 0.09 | | V ₂ O ₅ | 2.53 ± 0.21* | 2.29 ± 0.11 | 2.34 ± 0.37 | 1.15 ± 0.08 | 1.55 ± 0.09 | 1.85 ± 0.16 | *Nanomaterials* **2019**, 9 7 of 7 # Supplementary results - dose metric modelling analysis **Figure S5.** Equi-response curves for CdTe QDs (1.5, 2.6, 4.5, 6.5, 8.6 nm) representing a 20 % decrease in cell viability compared to control or a 1.5-fold increase in reporter activation. Slopes plotted according to Delmaar et al. [24] where Numb stands for number of particles and d stands for diameter of the particle (nm).