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Materials and Methods  

Mice 

Six- to eight-week-old male or female mice were used for all experiments in this study. All mouse 

procedures were approved by the Johns Hopkins University Institutional Animal Care and Use 

Committee. C57BL/6, BALB/c, OTI, CD90.1 and Rag2-/- mice were initially obtained from The Jackson 

Laboratory. P14 transgenic mice were kindly provided by Dr. David A. Hildeman (Cincinnati Children's 

Hospital Medical Center). 

 

Drugs  

6-diazo-5-oxo-L-norleucine (DON) was purchased from Sigma-Aldrich (St. Louis, MO, USA).  JHU083 

(Ethyl 2-(2-Amino-4-methylpentanamido)-DON) was synthesized using previously described methods 

(19, 25, 28).  CB839 was purchased from Cayman Chemical (Ann Arbor, Michigan).  

  

Cell lines 

MC38 cells were donated by CORVUS pharmaceuticals. B16-OVA melanoma cells were a gift from Hyam 

Levitsky. MC38OVA cells were a gift from Drew Pardoll (Johns Hopkins University). B16-F10, CT26, EL4, 

4T1, 3LL (LL2) cell lines were obtained from the American Type Culture Collection (ATCC). The E)771 cell 

line was purchased from CH3 BioSystems. All cell lines were mycoplasma free via ELISA-based assays 

performed every 6 months.  Unless otherwise noted, for in vitro assays, adherent cell cultures were 

incubated with 1 µM DON for 24 h before harvesting for analyses. 
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Flow cytometry, intracellular staining and cell sorting reagents 

Antibodies against the following proteins were purchased from BD Biosciences: CD4 (RM4-5), CD69 

(H1.2F3), CD90.1 (OX-7), CD122 (9TM-beta1), B220 (RA3-6B2), BCL-6 (K112-91), CD127 (M1/69), IFNg 

(XMG-1.2), TNFa (MP6-XT22), IL-2 (JES6-5H4). Abs against the following proteins were purchased from 

eBioscience: CD44 (IM7), CD11b (M1/70), CD11c (N418), EOMES (Dan11mag), Ki-67 (SolA15), KLRG1 

(2F1), T-bet (eBio4B10). Abs against the following proteins were purchased from BioLegend: CD4 (RM4-

5), CD27 (LG7F9), CD45 (30-F11), CD62L (MEL-14), CD137 (17-B5), PD-1 (29F.1A12) Bcl2 (BCL/10C4), and 

Granzyme B (GB11). Normal rabbit IgG (2729), anti-phospho-S6S240/244(5364), anti-TCF-1/7,  anti-MCL-

1, anti-H3K27Me3 (C36B11), anti-H3K4Me3 (C42D8),  anti-H3K36Me3 (D5A7) were purchased from Cell 

Signaling Technology. Anti-VDAC1 (20B12AF2), anti-CPT1-alpha (8F6AE9), anti-TOMM20 (EPR15581-39) 

were purchased from Abcam. Anti-pimonidazole mouse IgG1 monoclonal antibody (MAb1) was 

purchased from Hypoxyprobe. Donkey anti-rabbit BV421 secondary Ab was purchased from BioLegend. 

Fc Block (2.4G2) and anti-CD28 (37.51) were purchased from BioXCell. Stimulatory anti-CD3 (2C11) was 

purified from hybridoma supernatants prepared in-house. Fixable viability dye eFluor780 was purchased 

from eBioscience; near IR fixable viability dye was purchased from Invitrogen. Flow cytometry 

experiments were performed on a FACS Celesta (BD Biosciences) and analyzed using FlowJo software 

(v.10.3; Tree Star). Cell sorting was performed on a FACSAria II or FACSAria Fusion (BD Biosciences). 

CD11b-CD11c-B220-CD45+TCRbeta+CD44+CD8+ TIL were isolated and collected in Trizol LS (Invitrogen) 

for RNAseq and RT-PCR experiments. Intracellular staining for cytokines was performed with BD 

Cytofix/Cytoperm fixation and/permeabilization solution (BD Biosciences). Intracellular staining for 

pimonidazole was performed with PFA (2%) fixation and 0.1% Triton X-100 permeabilization. All other 

intracellular staining was performed with eBioscience Foxp3 / Transcription Factor Staining Buffer Set 

(Invitrogen). Propidium iodide (ThermoFisher) staining was performed as per manufacturer’s 
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recommendations. Flow cytometry data analyzed with Flowjo v. 10.0.7. Cell cycle analysis performed 

with Cell Cycle platform in Flowjo. 

 

Western blot  

Antibodies against the following proteins were purchased from Cell Signaling Technologies: ACSS2 

(AceCS1) (#3658), c-Myc (#5605), phospho-AMPK (#2531), AMPK (#2532), CAD (11933), GMPS (14602), . 

Antibodies against the following proteins were purchased from Abcam: CTPS1 (ab133743), PFAS 

(ab186013), GFPT1 (ab125069). Antibody against ACSS2 (AceCS2) (17138-1-AP) was purchased from 

Proteintech. Antibody against pyruvate carboxylase (NBP1-4953655) was purchased from Novus. 

Antibody against GLS (701965) and PPAT (MA5-25926) were purchased from ThermoFisher. Antibody 

against ASNS (sc-365809) was purchased from Santa Cruz. 

 

Tumor growth and survival experiments 

Unless otherwise noted, all tumor injections were administered on the right flank. For the MC38 and 

MC38OVA, EL4 models, C57BL/6 wild type mice were injected with 5 × 105 tumor cells (s.c.) cultured in 

DMEM-based (MC38 and MC38OVA) or RPMI-based (EL4) media. 2 × 105 tumor cells (s.c.) were used in 

B16-F10 studies. For the CT26 model, BALB/c mice were injected with 5 × 105 CT26 cells (s.c.) cultured in 

RPMI-based media. JHU083 was dissolved in 2.5% ethanol in PBS (v/v) which was administered for all 

vehicle-treated control experiments. Groups were randomized based on tumor size on the day of 

beginning treatment. For MC38 and MC38OVA experiments, mice were treated with JHU083 or vehicle 

by daily gavage with 1 mg/kg/day in 100 μL for days 10-14 and with 0.3 mg/kg/day for day 15-24. For 

CD8 depletion studies, anti-mouse CD8β (clone 53-5.8), anti-mouse CD4 (clone GK1.5), and isotype 
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control (rat IgG1; clone HRPN) were administered (5 mg/kg) on the day before, the day after 

implantation, and weekly thereafter (31). For CT26 experiments, mice were treated with JHU083 or 

vehicle by daily gavage with 1 mg/kg/day in 100 uL for days 8-12 and with 0.3 mg/kg/day for day 13-22. 

For checkpoint experiments, anti-PD-1 mAb (RMP1-14, Bio X cell) was administered by i.p. injection (100 

μg/mouse) for 4 doses on days 10, 12, 14, 16 (MC38 model), or days 8, 10, 12, 14 (CT26 model). For 

adoptive cellular therapy experiments in the OVA-expressing B16 melanoma model, C57BL/6 wild type 

mice received an injection of 2 × 105 B16-OVA melanoma cells (s.c.) cultured under OVA selection media 

containing 400 µg/ml G418 (Life technologies). Mice were treated with JHU083 or vehicle by daily 

gavage with 1 mg/kg/day in 100 uL for days 7-9 post tumor inoculation. Ten days after tumor injection, 

mice received an adoptive transfer of 1.5 × 106 activated OTI cells (r.o.), which had been stimulated in 

vitro with SIINFEKL peptide for 48 h, expanded in IL-2 (1 ng/mL) for 24 h and isolated with Ficoll-Paque 

Plus (GE Healthcare)  gradient centrifugation. Mice were randomized based on tumor size before 

initiating anti-PD-1 therapy or transfer of activated OTI cells in the case of adoptive transfer 

experiments. Tumor burden was assessed every 2–4 days by measuring length and width of tumor. 

Tumor volume was calculated using the formula V = (L × W × W)/2, where V is tumor volume, W is tumor 

width and L is tumor length. Mice were sacrificed when tumor reached 2 cm in any dimension, became 

ulcerate or necrotic, or caused functional deficits.  Unless otherwise specified, average tumor volume is 

depicted up until the time of first sacrifice. 

 

TIL isolation 

For TIL isolation experiments mice were treated with 0.3 mg/kg/day in 100 μL for days 14-18. Tumors 

were harvested from sacrificed mice on day 18 post tumor inoculation. Mice undergoing hypoxia 

staining received 80 mg/kg of Anti-pimonidazole mouse IgG1 monoclonal antibody (Hypoxyprobe) 90 
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minutes prior to tumor harvest.    Explanted tumors were manually disrupted before incubating in 

collagenase type I (Gibco) and DNase (Roche) in RPMI for 30 min at 37 °C. Tumor mixtures, spleens and 

non-draining (left inguinal) and draining (right inguinal) lymph nodes were dissociated through a 70-µm 

filter and washed with PBS. Tumor suspensions were pelleted and resuspended in 40% Percoll solution 

which was underlaid with 80% Percoll in a 15 mL conical flask. After centrifugation at 2000 g for 30 min, 

the middle layer was removed, washed in PBS and counted. For in vitro stimulation assays, 

approximately 1x106 cells per well in 96-well plate were stimulated in the presence of GolgiStop (BD 

Bioscience) for 4 h at 37 °C with either 10 µg/ml OVA class-I peptide (SIINFEKL) or PMA (50 ng/ml) and 

Ionomycin (500 ng/ml).  

 

Histology 

In some experiments, after tumor growth and pimonidazole pulsing (80 mg/kg i.p.), 90 minutes before 

harvesting), tumors were dissected, formalin fixed and sectioned. As per manufacturer’s 

recommendations, warmed sections were de-waxed in xylene, rehydrated in stepwise decreasing 

concentrations of EtOH in water finally to 0.1% Tween 20 in Tris buffered saline. Tissue peroxidases 

were quenched with H2O2. Tissue was stained with hypoxyprobe-FITC conjugate and rabbit anti-FITC 

conjugated with horseradish peroxidase (Life Technologies), developed and counterstained with Gills #3 

hematoxylin stain. Sections were imaged with an Olympus IX83 microscope. 

 

Metabolomics and stable-isotope tracing  

For tumor tissue experiments, a 20% (w/v) solution of [U-13C]Glucose in PBS was sterile-filtered and 

100μl of this solution (i.e. 20 mg of [U-13C]Glc) was injected 3 times with 15-minute interval into the tail 
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vein of a restrained mouse without anesthesia.  For 13C and 15N-glutamine tracing studies, 200uL of 

0.2M solution were injected 3 times with 15-minute interval into the tail vein. Mice were killed via 

cervical dislocation at 45 min after first injection.  Tumor tissue was rapidly harvested and frozen using a 

BioSqueezer (BioSpec Products) to quench metabolism and stored at -80℃ prior to metabolite 

extraction. Metabolites were extracted from tissues weighing between 50-100mg in a methanol:water 

(80:20, v/v)  extraction solution after homogenization with ultrasonic processor (UP200St, Hielscher 

Ultrasound Technology). Samples were vortexed and stored at -80℃ for at least 2 hours to precipitate 

the proteins.  

For in vitro T cell tracing experiments, isolated P14 T cells were activated (as described) in RPMI-based 

media with vehicle or DON (1uM) for 3 days. Activated T cells were counted in triplicate and brought up 

in tracing media with IL-2 and incubated for 6 hours at 37℃ at 4x106 cells per mL. Cells were transferred 

to Eppendorf tubes, washed with PBS, and centrifuged and flash frozen in liquid nitrogen. The day 

before analysis, cells were suspended in 80% MeOH, vortexed and incubated for at least 2 hours at -

80℃ to precipitate proteins. (For targeted metabolomics experiments, including quantitation of a-

ketoglutarate levels, metabolite extraction was performed with acetonitrile/Methanol/H2O solution in a 

2/2/1 ratio with 25µM phenylhydrazine to preserve a-keto acids). For in vitro MC38 cell tracing 

experiments, 1x106 cells were plated on 10cm dishes in DMEM-based media for 24 hr, after which 

media was changed to media containing vehicle, DON (1 uM), or CB839 (1 uM) for an additional 24 

hours. Media was tracing media for an additional 6h. Media was withdrawn from dishes, washed with 

PBS x2, and ice-cold 80% MeOH was added directly to plates. Cells were removed with cell scraper and 

transferred to Eppendorf tubes followed by flash freezing in liquid nitrogen.  Samples were vortexed and 

stored at -80℃   for at least 2 hours to precipitate the proteins. Tracer conditions include: Normal 

growth media with dialyzed FBS (10%) and [1,2-13C]-acetate (100uM); Leucine-free growth media with 

dialyzed FBS and 1mM 13C6-leucine; Glutamine-free growth media with dialyzed FBS (10%) and [13C-U]-
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glutamine (4mM); Glucose-free growth media with dialyzed FBS (10%) and [13C-U]-glucose (25 mM for 

DMEM; 11mM for RPMI).   

For all metabolomics and tracing experiments, supernatant was isolated after centrifugation at 15,000xg 

for 10min and dried under nitrogen gas and frozen at -80℃ for subsequent analysis by liquid-

chromatography mass spectrometry (LC-MS). Dried metabolite extracts were resuspended in 50% 

acetonitrile solution. LC-MS based metabolomics profiling was performed on an Agilent LC-MS system.  

consisting of an Agilent 1290 Infinity Binary UHPLC pump and a 6230 time-of-flight mass spectrometer. 

Samples were analyzed in negative-ion mode. Chromatographic separations were performed using an 

Agilent 1290 ultra high performance liquid chromatography system with a wellplate autosampler 

(Agilent, Santa Clara, CA, USA). An ion pairing method was developed suing a C18 column (Agilent 

Zorbax Extend C18, 2.1 x 150 mm, 1.8 μm) with tributylamine as an ion- pairing agent, which enables the 

detection of most of the metabolites in central carbon metabolisms. The LC parameters were as follows: 

autosampler temperature, 4 ℃; injection volume, 2 μl; column temperature, 40 ℃; and flow rate, 0.25 

ml/min. The solvents and optimized gradient conditions for LC were: Solvent A, 97% Water/3% 

methanol containing 5 mM TBA and 5.5 mM acetic acid; Solvent B, Methanol containing 5 mM TBA and 

5.5 mM acetic acid; A non-linear gradient from 0% B to 99% B in 22 minutes with 5min of post-run time. 

A 6520 accurate-mass Q-TOF LC-MS system (Agilent) equipped with a dual electrospray (ESI) ion source 

was operated in negative-ion mode for metabolic profiling. The optimized ESI Q-TOF parameters for MS 

experiments were: ion polarity, negative; gas temperature, 325℃; drying gas, 10 L/min; nebulizer 

pressure, 45 psig; capillary voltage, 4000 V; fragmentor, 140 V; skimmer, 65 V; mass range, 50–1100 

m/z; acquisition rate, 1.5 spectra/s; instrument state, extended dynamic range (1700 m/z, 2 GHz). 

Spectra were internally mass calibrated in real time by continuous infusion of a reference mass solution 

using an isocratic pump connected to a dual sprayer feeding into an electrospray ionization source. Data 

were acquired with MassHunter Acquisition software. A metabolite database with retention times based 
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on the ion-pairing method was developed using Agilent MassHunter PCDL manager software. The 

isotopologue peak extractions were achieved by Agilent MassHunter Profinder software. Relative 

metabolite abundance calculations were normalized per unit weight of tissue or, for in vitro MC38 

experiments, per relative cell counts as determined by parallel cultures. T cell experiments were 

normalized across samples by cell counts. 

 

In vitro T cell activation studies 

Naïve P14 T cells were isolated with naïve CD8 negative selection cocktail and LS columns (Miltenyi) 

from splenocytes of P14 transgenic T cell mice. One million cells/mL in 12-well plate were activated with 

plate-bound anti-CD3 (5µg/mL) with soluble anti-CD28 (2µg/mL) and IL-2 (10ng/mL) in the presence of 

vehicle or DON (1uM) for 2 days. For FACS analysis of activation, memory and survival markers, cells 

were moved to non-coated plates and expanded with IL-2 (10 ng/mL) for 2 additional days with 

continued vehicle or DON. Cells were harvested, washed and analyzed by FACS. For restimulation 

experiments, including intracellular cytokine analysis by FACS, after the initial 2 days of activation, cells 

were moved to non-coated plates for 4 additional days, expanded on day 2 and day 4 with IL-2 (10 

ng/mL) and continued vehicle or DON exposure. For restimulation, 1x106 cells were washed and plated 

on a 96-well plate, precoated with anti-CD3 (1μg/mL) with soluble anti-CD28 (2µg/mL) for 4 h. Cells 

were washed and stained as described. For Seahorse metabolic flux analyses, isolated CD8+ T cells were 

activated for 3 days (as described above), washed and plated on Seahorse metabolic flux analysis plates, 

1.5x105 cells per well in a 96-well plate, and analyzed as described below.  

 

LCMV-Armstrong infection  
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Two hundred fifty thousand naïve, CD90.1+ P14 T cells were adoptively transferred through retro-orbital 

injection into C57BL/6 mice that also received vaccination with LCMV-Armstrong virus (2x105 PFU) on 

the same day. Mice were treated on days 1-6 post infection with either vehicle or JHU083 (1 

mg/kg/day); splenocytes were harvested on day 8 and analyzed by FACS. LCMV-Armstrong virus was 

originally obtained as a kind gift from Susan Kaech (Salk Institute for Biological Studies). 

 

Metabolic Assays 

P14 T cells activated in the presence of vehicle or DON as described above; for MC38 cells, 1x106 cells 

were plated on 10cm dishes in DMEM-based media for 24 hr, after which media was changed to media 

containing vehicle, DON (1 uM), or CB839 (1 uM) for an additional 24 hours; cells were washed and 

trypsinized, counted and plated for seahorse analysis. Cells were plated on an XF96 cell culture 

microplate coated with poly-D lysine (50 μg/mL). Experiments were done in XF assay medium that 

contained 25 mM glucose, 2 mM L-glutamine and 1 mM Na pyruvate and analyzed using a Seahorse 

XF96 extracellular flux analyzer (Agilent Technologies). When indicated, the following were injected: 

oligomycin (1.5 μM), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 1.5 μM), rotenone 

(100 nM) and antimycin A (1 μM), BPTES (3 μM), etomoxir (4 μM), UK5099 (2 μM) (Sigma) . Basal ECAR, 

OCR and SRC reports were generated by Wave Desktop software (Agilent Technologies).  

 

Measurement of cellular NADPH/NADP+ ratio 

Total cellular NADPH/NADP+ ratio were determined by an NADPH/NADP-Glo assay kit (Promega, 

Wisconsin, USA) per manufacturer’s instructions. 
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Measurement of glucose-6-phosphate dehydrogenase activity  

Performed by Glucose-6-Phosphate Dehydrogenase (G6PD) Activity Assay Kit (Cell signaling #12581) 

performed according to manufacturer’s instructions. Protein was quantified using BCA kit per 

manufacturer’s protocol (Sigma) 

 

RNA Sequencing and Analysis 

CD11b-CD11c-B220-CD45+TCRbeta+CD44+CD8+ TIL from vehicle or JHU083 treated MC38 tumor-

bearing mice were sorted on BD FACSAria Fusion and collected in Trizol LS (Invitrogen) as described.  

Samples were sent to Admera Health for RNA extraction, library construction and sequencing. Total RNA 

from 5 individual mice (not pooled) in each treatment group was isolated. Paramagnetic beads coupled 

with oligo d(T) were combined with total RNA to isolate poly(A)+ transcripts based on NEBNext Poly(A) 

mRNA Magnetic Isolation Module manual. Prior to first strand synthesis, samples were randomly primed 

(5´ d(N6) 3´ [N=A,C,G,T]) and fragmented based on manufacturer’s recommendation (NEBNext 

Ultra Directional RNA Library Prep Kit for Illumina). The first strand was synthesized with the Protoscript 

II Reverse Transcriptase with a longer extension period (40 minutes for 42◦C). All remaining steps for 

library construction were used according to the NEBNext Ultra Directional RNA Library Prep Kit for 

Illumina. Illumina 8-nt dual-indices were used. Samples were sequenced on a HiSeq with a read length 

configuration of 1x75bp. 

The transcriptomic analysis work flow began with a thorough quality check by FastQC v0.10.1 and 

quality thresholding of the raw sequencing reads. The major stages of analysis included read mapping to 

the latest reference genome (GRCM38), assembly of the mapped reads to identify expressed transcripts 

and genes, followed by quantification and comparison of the assembled transcriptomes between cells. 

Gene and transcript expression between the comparing RNASeq samples were quantified and reported 
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as FPKM (Fragments Per Kilobase of transcript per Million mapped reads) units, followed by visualization 

and exploration of results. We employed GSEA in the context of gene ontology. To perform GSEA, we 

utilized gene sets available on the BROAD website (http://www.broadinstitute.org/gsea/).  Specific gene 

sets used include: GSE10239_MEMORY_VS_KLRG1HIGH_EFF_CD8_TCELL_UP (Fig. 3H), 

HALLMARK_HYPOXIA (Fig. 3E), REACTOME_APOPTOSIS (Fig. 3J), 

POSITIVE_REGULATION_OF_ALPH_BETA_T_CELL_PROLIFERATION (Fig. 3B), 

POSITIVE_REGULATION_OF_ALPH_BETA_T_CELL_ACTIVATION (Fig. 3C), 

SAFFORD_T_LYMPHOCYTE_ANERGY (Fig. S3C, right), 

GSE9650_EXHAUSTED_VS_MEMORY_CD8_TCELL_UP (Fig. S3C, left), 

GO_CELLULAR_RESPONSE_TO_OXIDATIVE_STRESS (Fig. S3G). Enrichment scores (ES), p-values and false 

discovery rates are denoted within the figures, with an FDR cutoff of <0.25 considered significant for 

hypothesis generation.  

 

Real-time PCR analysis 

CD8+ TIL were sorted as described. Total RNA was isolated from TRIzol LS reagent (Invitrogen) following 

the manufacturer’s protocol. RNA (800 ng) was then reverse transcribed to cDNA with ProtoScript II 

Reverse Transcriptase (New England BioLabs). Real-time PCR was performed using EagleTaq Universal 

Master Mix (Roche). Real-time PCR primers and probes were obtained from Applied Biosystems: BCL2 

Related Ovarian Killer (Bok; Mm00479422_m1); Caspase 12 (Casp12; Mm00438038_m1); BCL2 

Interacting Protein 3 (Bnip3;Mm01275600_g1); TNF Receptor Superfamily Member 10b (Tnfrsf10b; 

Mm00457866_m1); Fas Cell Surface Death Receptor (Fas;Mm01204974_m1); B Cell Receptor Associated 

Protein 31 (Bcap31;Mm00478914_m1); Caspase 7 (Casp7;Mm00432322_m1); Caspase 8 

(Casp8;Mm01255716_m1); (Nadsyn1; Mm00513448_m1) . Values of ΔΔ cycle threshold were 
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normalized to the housekeeping gene 18s rRNA (Life Technologies) and further normalized to the 

control group. Experiments were performed on an OneStepPlus 96-well instrument (Applied 

Biosystems). 

 

 

Stable knockdown cell line generation  

TRC lentiviral shRNAs targeting Asns, Cad, Ctps1, Gfpt1,Gls, Gmps1, Nadsyn1, Pfas, and Ppat were 

obtained from Sigma. The TRC number for each shRNA is as follows: 

Gene 
ID Gene Symbol Clone ID 

  

Gene 
ID Gene Symbol Clone ID 

14583 
Gfpt1 shRNA-

1 TRCN0000031644 14660 Gls TRCN0000051137 

14583 
Gfpt1 shRNA-

2 TRCN0000031646       

14583 
Gfpt1 shRNA-

3 TRCN0000031648 27053 Asns shRNA-1 TRCN0000031699 
      27053 Asns shRNA-2 TRCN0000031701 

229363 
Gmps shRNA-

1 TRCN0000045938 27053 Asns shRNA-3 TRCN0000031702 
            

231327 Ppat shRNA-1 TRCN0000031618 237823 Pfas shRNA-1 TRCN0000341134 
231327 Ppat shRNA-2 TRCN0000031614 237823 Pfas shRNA-2 TRCN0000341135 
231327 Ppat shRNA-3 TRCN0000031615 237823 Pfas shRNA-3 TRCN0000341062 

            

51797 Ctps shRNA-1 TRCN0000032546 78914 
Nadsyn1 
shRNA-1 TRCN0000112435 

51797 Ctps shRNA-2 TRCN0000032544 78914 
Nadsyn1 
shRNA-2 TRCN0000112437 

51797 Ctps shRNA-3 TRCN0000032545 78914 
Nadsyn1 
shRNA-3 TRCN0000112439 

            
231327 Ppat shRNA-1 TRCN0000031618 69719 Cad shRNA-1 TRCN0000032550 
231327 Ppat shRNA-2 TRCN0000031614 69719 Cad shRNA-2 TRCN0000032551 
231327 Ppat shRNA-3 TRCN0000031615       
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Lentivirus production and cell transduction 

HEK293T cells were seeded in 6-well plates. Cells were co-transfected with 1.6 μg lentiviral vector 

(empty vector or shRNA targeting indicated proteins) + 1.2 μg pspAX2 + 0.4 μg pMD2G using 

Lipofectamine 3000 (Thermo Fisher) according to manufacturer’s instructions. Media was changed after 

24 hr and at 48 hr and 72 hr, the supernatants were harvested and stored at −80°C. 

 

MC38 cells were seeded in 6-well culture plates. When cells were 40-50% confluent, lentiviral 

supernatants were added to culture medium. After 24 hr, cells were treated with puromycin (2ug/mL) to 

select transduced cells. 

 

Cell proliferation assays 

For adherent cultures, 2.5x103 cancer cells were plated in each well of a 96-well plate and allowed to 

attach for 24 h.  At 24 h additional media was added containing DON to allow final concentrations as 

noted. Cells were incubated for an additional 48-72 h at 37°C. After 48-72 h cells were quantitated with 

CyQUANT cell proliferation assay (Invitrogen) as per manufacturer’s directions.  

 

Statistics 

All graphs were created using GraphPad Prism software and statistical analyses were calculated using 

GraphPad Prism. Comparisons between two independent groups were assessed by two-tail Student’s t 

test or one-way ANOVA with Sidak correction for multiple groups comparison μM). Log-rank (Mantel-

Cox) tests were performed for survival data. Tumor growth curves were assessed by two-way ANOVA 
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with Sidak correction for multiple comparisons as recommended by GraphPad statistical program. A p 

value of less than 0.05 was considered statistically significant. Principal component analysis was 

performed with JMP statistical software v.13 (SAS).   

Supplementary Figure Legends 

Fig. S1 Glutamine blockade suppresses cancer cell proliferation, viability and cell cycle progression.  

(A-C) Cell proliferation assay of MC38 (A), CT26 (B) and EL4 (C) tumor cells treated with increasing 

concentrations of DON for 48h. (D) Cell viability assay of MC38 cells treated with increasing 

concentrations of DON for 24 hours. (E) Cell cycle analysis of MC38 cells incubated with 1uM DON for  

24 hours. Data are representative of three independent experiments (A-C, E) with 3-4 technical 

replicates per data point. Statistics for cell cycle data were assessed with two-tailed student’s t-test for 

multiple comparisons. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001. 

Fig. S2 DON prodrug JHU083 demonstrates in vivo antitumor efficacy in multiple tumor models. (A) 

Chemical structures of L-glutamine, DON, and JHU083. (B) 1H NMR data for JHU083, compound 4a in 

(25). (C) Pharmacokinetic analysis of JHU083 in the MC38 tumor model demonstrating tumor site 

enrichment over plasma. Of note, due to higher levels of circulating enzymes in mice and other rodents, 

the prodrug is much more rapidly converted to active drug (DON) in these species when compared with 

larger animals. Thus, while rodents are not ideal hosts to evaluate pharmacokinetics for these 

compounds, we demonstrate the establishment of a robust therapeutic window.  (D-F) Tumor growth 

curve (left) and survival curve (right) from vehicle and JHU083 treated CT26 (D), B16 (E), and EL4 (F) 

Data	S1		

RNAseq	expression	data	comparing	CD11b-CD11c-B220-CD45+TCRbeta+CD44+CD8+	TIL	from	MC38	
tumor	bearing	mice	treated	with	vehicle	or	JHU083.	

15



  
 

tumor-bearing mice. (G) Global metabolite pool sizes from explanted vehicle and JHU083-treated MC38 

tumors. (H) CT26 bearing BALB/c mice treated with vehicle, JHU083, anti-PD-1, or combination JHU083 

and anti-PD-1 beginning on day 8 after tumor inoculation. Tumor growth curve (left) and survival curve 

(right) are shown. Error bars represent SEM. Log-rank (Mantel-Cox) tests were performed for survival 

data. Tumor growth curves were assessed by two-way ANOVA with Sidak correction. Data are 

representative of three independent experiments with n = 5-10 per group. **p < 0.01, ****p < 0.0001.  

 

Fig. S3 Glutamine blockade conditions CD8+ TIL towards a highly proliferative, activated and long-lived 

phenotype  

(A-C, F-H) C57BL/6 mice with MC38 OR MC38OVA tumors were treated with vehicle or JHU083 (0.3 

mg/kg/day) on days 14-18. Tumors were harvested on day 18 and CD44+CD8+ TIL were sorted for 

RNAseq analysis (C, G-I) or RT-PCR (L). Volcano plots showing changes in gene expression in CD44+CD8+ 

TIL from vehicle treated vs JHU083 treated MC38-bearing mice (A-B). (C) GSEA tracings for exhausted vs 

memory CD8 phenotype (left) and T lymphocyte anergy (right). (D-E, I-J) C57BL/6 mice with MC38 

tumors were treated with vehicle, anti-PD-1 (200μg/mouse on days 14 and 16), JHU083 (0.3 mg/kg/day 

on days 14-18), or combination JHU083 (0.3 mg/kg/day on days 14-18) and anti-PD-1 (200μg/mouse on 

days 14,16).  FACS summary data for MFI of CD44 (D), percentage PD-1+LAG-3+ double positive CD8+ TIL 

(E). (F) FACS plots and data summary showing percentage IL-2+ cells per TetOVA+CD8+ from MC38OVA 

model after ex vivo stim. (G) GSEA tracing for oxidative stress. (H-I) GSEA tracing (H) and heat map (I) of 

leading edge genes driving apoptotic pathways in CD44+CD8+ TIL. FACS summary data for MFI of CD62L 

(J), CD122 (K) for CD8+ TIL. (L) Relative mRNA expression levels of apoptotic gene from CD8+ TIL by RT-

PCR. (M-O) 2.5x105 naïve CD90.1+ P14 T cells were adoptively transferred into C57BL/6 mice that 

received vaccination with LCMV-Armstrong virus. Mice were treated on days 1-6 post infection with 
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vehicle or JHU083 (1 mg/kg/day); splenocytes were harvested on day 8 and analyzed with GP33-

tetramer staining by FACS. Summary data is shown for activation markers (A), memory markers (B) and 

survival markers (C). Error bars represent SEM. For MC38 experiments FACS summary plots are 

combination data from 2 independent experiments with n = 5 mice per group. RNA-seq data are from 

treated and untreated groups of 5 mice in each group. For LCMV viral challenge experiments data are 

representative from 3 independent experiments with n = 4 mice per group. *p < 0.05, **p < 0.01, 

***p < 0.001 using two-tailed Student’s t test for multiple groups comparison or two-tailed Student’s t 

test.  

 

Fig. S4 Activated CD8+ T cells and cancer cells display distinct metabolic phenotypes in response to 

glutamine antagonism. (A-B) ECAR (left) and OCR (right) trace of CT26 (A) and B16-F10 (B) tumor cells 

pretreated for 24 h with vehicle or DON (5 µM). (C) Data summaries from metabolic flux analysis from 

P14 T cells activated for 3 days as described in the presence or absence of DON (1 µM). (D) LCMS 

analysis of TCA intermediates after stable isotope tracing with [13C6]-L-leucine. (E) Transcript levels for 

ACSS1 (left) and ACSS2 (right) from RNA seq data set. (F) Western blot analysis of ACSS1, ACSS2 and c-

MYC expression in murine cancer cell lines +/- DON as noted. Error bars represent SEM. *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001 using two-tailed Student’s t test.  

 

Fig. S5 Suppression of glutamine requiring metabolic pathways by glutamine antagonists. LCMS 

analysis of TCA intermediates after stable isotope tracing with [U-13N] glutamine (top and center rows) 

and [U-13C] glutamine (bottom row) for in vitro DON-treated MC38 cells (first column), JHU083-treated 

in vivo MC38 tumors (center column) and in vitro DON-treated activated P14 T cells (last column). Error 

17



  
 

bars represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 using two-tailed Student’s t test 

for multiple groups comparison or two-tailed Student’s t test.  

 

Fig. S6 Comparison of metabolic adaptations of MC38 cells treated with glutamine antagonism vs 

targeted glutaminase inhibition.  (A-G) MC38 cells treated for 24 hours with Vehicle, DON, or CB839 

before 6-hour tracing incubation. LCMS analysis of TCA intermediates after stable isotope tracing with 

[U-13C] glucose (A). Relative [U-13C] glucose labeling of TCA isotopologues characteristic of pyruvate 

carboxylase (PC) activity (B). Western blot analysis of pyruvate carboxylase (PC) and c-MYC expression in 

vehicle, DON, or CB839 treated MC38 cells, and vehicle or DON-treated activated P14 T cells (C). 2-NBDG 

uptake by FACS (D). Western blot analysis of phospho-AMP kinase (p-AMPK) and total AMPK in vehicle, 

DON, or CB839 treated MC38 cells (E). Relative AMP/ATP ratio from LCMS (F). Relative NADPH/NADP+ 

ratio (G). Error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 using two-tailed 

Student’s t test for multiple groups comparison.  

 

Fig. S7 Targeted inhibition of glutamine dependent pathways partially contributes to the metabolic 

phenotype of DON-treated MC38 cells. (A) Glutamine requiring enzymes targeted for shRNA 

knockdown in the MC38 cell line are shown. (B) Western blots showing knockdown efficiency in MC38 

cells using multiple constructs (constructs selected for data presentation shown in red). (C) RT-PCR 

showing transcript knockdown for Nadsyn1. (D) Western blot analysis for c-MYC in wild type and shRNA-

Lentivirus transfected MC38 cells with and without DON treatment for 24 hours (EV; Empty Vector); 

densitometry for c-MYC shown below blot, DON-treated in red; blot representative of 4-5 independent 

experiments. (E) 2-NBDG uptake by flow cytometry analysis for shRNA-Lentivirus transfected MC38 cells; 

data is combined and normalized from 2 independent experiments. (F) Cell proliferation assay of shRNA-
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Lentivirus transfected MC38 cells at 96 hours; data is combined and normalized from 2 independent 

experiments. (G) Principal component analysis of shRNA-Lentivirus transfected MC38 using data from 

(D-F) for c-MYC expression, 2-NBDG uptake, and CyQuant proliferation assay. Error bars represent SEM. 

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 using one-way ANOVA statistical analyses.  
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