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1. Analogy between sharkskin denticles and Mie resonator pillars 

We use the metaphor of sharkskin because of the analogy in following 3 aspects:  

1) Pillar-like structures: The sharkskin features pillar-like denticle arrays on its surface1-3. In 

this paper we employ Mie resonator pillar arrays.  

2) Function in actively switching flow transmission: The sharkskin can smartly switch the 

surface fluid flow transmission4. This paper is to actively switch the acoustic flow 

transmission.  

3) Actuation via tilting pillars: The modulation of flow drag of the sharkskin is through 

tilting the pillar-like denticles2, 5, 6. The modulation of acoustic transmission in this paper 

is through magnetically-induced pillar bending/tilting.   
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2. Modeling of the Mie resonator pillar (MRP) 

Analytical modeling. Here, we estimate the resonance of the MRP based on a homogenization 

procedure presented in Reference7. For the MRP in Fig. S4a, the medium can be simplified into 

six channels (Fig. S4b), which are shorter than a wavelength8. Such a model can then be 

homogenized and equivalently represented as three two-dimensional regions with different 

effective properties as seen in Fig. S4c. The pressure fields in the different regions, denoted here 

as I, II and III, are expressed mathematically by a combination of Bessel function 𝐽௠ and Hankel 

function 𝐻௠ as7, 9: 

𝑃ூሺ𝑟ሻ ൌ ∑ 𝐺௠𝐽௠ሺ𝑘଴𝑟ሻ𝑒௜௠ఏ
௠ , 𝑟 ൏ 𝑟ଶ                                           (S1) 

𝑃ூூሺ𝑟ሻ ൌ ∑ ሾ𝐸௠𝐽௠ሺ𝑘ଵ𝑟ሻ ൅ 𝐹௠𝐻௠ሺ𝑘ଵ𝑟ሻሿ𝑒௜௠ఏ
௠ , 𝑟ଶ ൏ 𝑟 ൏ 𝑟ଵ                         (S2) 

𝑃ூூூሺ𝑟ሻ ൌ ∑ ሾ𝑐௠𝐽௠ሺ𝑘଴𝑟ሻ ൅ 𝐷௠𝐻௠ሺ𝑘଴𝑟ሻሿ𝑒௜௠ఏ
௠ , 𝑟 ൐ 𝑅                          (S3) 

where 𝑅 ൌ 𝐷/2 is the total radius of the individual resonator, 𝑟ଶ is the inner radius of the resonator 

housing the air core, and 𝑟ଵ ൌ 𝑟ଶ ൅ ሺ𝑅 െ 𝑟ଶሻ𝜂 is the outer radius of a uniform equivalent layer with 

𝜂 being the filling ratio of the air channels. In our case, the filling ratio 𝜂 is approximately equal 

to 0.36. Note here that all the radii are measured from the center of the resonator, i.e. 𝑟 ൌ 0. To 

satisfy the continuity at the interfaces 𝑟 ൌ 𝑟ଶ  and 𝑟 ൌ 𝑟ଵ , the pressure field and  
ଵ

ఘ
𝜕௥𝑃ሺ𝑟ሻ are 

matched at the boundaries10, which gives two sets of conditions: 

𝑃ூሺ𝑟ଶሻ ൌ 𝑃ூூሺ𝑟ଶሻ                                                             (S4) 

ଵ

ఘబ
𝜕௥𝑃ூሺ𝑟ଶሻ ൌ ଵ

ఘభ
𝜕௥𝑃ூூሺ𝑟ଶሻ                                                     (S5) 

𝑃ூூሺ𝑟ଶሻ ൌ 𝑃ூூூሺ𝑅ሻ                                                           (S6) 
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ଵ

ఘభ
𝜕௥𝑃ூூሺ𝑟ଶሻ ൌ ଵ

ఘబ
𝜕௥𝑃ூூூሺ𝑅ሻ                                                   (S7) 

where 𝜌଴,ଵ denote the density of regions I, III and II, respectively. Consequently, one can get the 

following equations, for the 𝑚th term of the summation: 

𝐺௠𝐽௠ሺ𝑘଴𝑟ଶሻ െ 𝐸௠𝐽௠ሺ𝑘ଵ𝑟ଶሻ െ 𝐹௠𝐻௠ሺ𝑘ଵ𝑟ଶሻ ൌ 0                              (S8) 

௞బ

ఘబ
𝐺௠𝜕௥𝐽௠ሺ𝑘଴𝑟ଶሻ െ ௞భ

ఘభ
ሾ𝐸௠𝜕௥𝐽௠ሺ𝑘ଵ𝑟ଶሻ ൅ 𝐹௠𝜕௥𝐻௠ሺ𝑘ଵ𝑟ଶሻሿ ൌ 0                (S9) 

𝑐௠𝐽௠ሺ𝑘଴𝑅ሻ ൅ 𝐷௠𝐻௠ሺ𝑘଴𝑅ሻ െ 𝐸௠𝐽௠ሺ𝑘ଵ𝑟ଵሻ െ 𝐹௠𝐻௠ሺ𝑘ଵ𝑟ଵሻ ൌ 0             (S10) 

௞బ

ఘబ
𝑐௠𝜕௥𝐽௠ሺ𝑘଴𝑅ሻ ൅ ௞బ

ఘబ
𝐷௠𝜕௥𝐻௠ሺ𝑘଴𝑅ሻ െ ௞భ

ఘభ
ሾ𝐸௠𝜕௥𝐽௠ሺ𝑘ଵ𝑟ଵሻ ൅ 𝐹௠𝜕௥𝐻௠ሺ𝑘ଵ𝑟ଵሻሿ ൌ 0  (S11) 

which can be cast into a compact matrix form: 

⎣
⎢
⎢
⎢
⎢
⎡

𝐽௠ሺ𝑘଴𝑟ଶሻ െ𝐽௠ሺ𝑘ଵ𝑟ଶሻ
௞బ

ఘబ
𝜕௥𝐽௠ሺ𝑘଴𝑟ଶሻ െ ௞భ

ఘభ
𝜕௥𝐽௠ሺ𝑘ଵ𝑟ଶሻ

െ𝐻௠ሺ𝑘ଵ𝑟ଶሻ 0

െ ௞భ

ఘభ
𝜕௥𝐻௠ሺ𝑘ଵ𝑟ଶሻ 0

0 െ𝐽௠ሺ𝑘ଵ𝑟ଵሻ

0 െ ௞భ

ఘభ
𝜕௥𝐽௠ሺ𝑘ଵ𝑟ଵሻ

െ𝐻௠ሺ𝑘ଵ𝑟ଵሻ 𝐻௠ሺ𝑘଴𝑅ሻ

െ ௞భ

ఘభ
𝜕௥𝐻௠ሺ𝑘ଵ𝑟ଵሻ ௞బ

ఘబ
𝜕௥𝐻௠ሺ𝑘଴𝑅ሻ⎦

⎥
⎥
⎥
⎥
⎤

൞

𝐺௠
𝐸௠
𝐹௠
𝐷௠

ൢ ൌ

⎩
⎪
⎨

⎪
⎧ 0

0
െ𝐽௠ሺ𝑘଴𝑅ሻ

െ ௞బ

ఘబ
𝜕௥𝐽௠ሺ𝑘଴𝑅ሻ

⎭
⎪
⎬

⎪
⎫

                                          (S12) 

where the coefficients 𝐺௠ through 𝐷௠ are now normalized by the coefficient 𝑐௠. We assume that 

the effective uniform medium density has the same bulk modulus as the background medium, but 

different density defined as 𝜌ଵ ൌ 𝜌଴/𝜂ଶ  10. Of interest here is the determination of scattering 

coefficient 𝐷௠ . Using the scheme presented in reference9 for calculating 𝐷௠  via a physically 

revealing model, the scattering coefficient is found by: 
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𝐷௠ ൌ െ ௎೘

௎೘ା௜ ௏೘
                                                     (S13) 

where 𝑖 is the imaginary unit and 𝑈௠ and 𝑉௠ are defined as the following determinants: 

𝑈௠ ൌ
ተ

ተ

𝐽௠ሺ𝑘଴𝑟ଶሻ 𝐽௠ሺ𝑘ଵ𝑟ଶሻ
௞బ

ఘబ
𝜕௥𝐽௠ሺ𝑘଴𝑟ଶሻ ௞భ

ఘభ
𝜕௥𝐽௠ሺ𝑘ଵ𝑟ଶሻ

𝑌௠ሺ𝑘ଵ𝑟ଶሻ 0
௞భ

ఘభ
𝜕௥𝑌௠ሺ𝑘ଵ𝑟ଶሻ 0

0 𝐽௠ሺ𝑘ଵ𝑟ଵሻ

0 ௞భ

ఘభ
𝜕௥𝐽௠ሺ𝑘ଵ𝑟ଵሻ

𝑌௠ሺ𝑘ଵ𝑟ଵሻ 𝐽௠ሺ𝑘଴𝑅ሻ
௞భ

ఘభ
𝜕௥𝑌௠ሺ𝑘ଵ𝑟ଵሻ ௞బ

ఘబ
𝜕௥𝐽௠ሺ𝑘଴𝑅ሻ

ተ

ተ
           (S14) 

𝑉௠ ൌ
ተ

ተ

𝐽௠ሺ𝑘଴𝑟ଶሻ 𝐽௠ሺ𝑘ଵ𝑟ଶሻ
௞బ

ఘబ
𝜕௥𝐽௠ሺ𝑘଴𝑟ଶሻ ௞భ

ఘభ
𝜕௥𝐽௠ሺ𝑘ଵ𝑟ଶሻ

𝑌௠ሺ𝑘ଵ𝑟ଶሻ 0
௞భ

ఘభ
𝜕௥𝑌௠ሺ𝑘ଵ𝑟ଶሻ 0

0 𝐽௠ሺ𝑘ଵ𝑟ଵሻ

0 ௞భ

ఘభ
𝜕௥𝐽௠ሺ𝑘ଵ𝑟ଵሻ

𝑌௠ሺ𝑘ଵ𝑟ଵሻ 𝑌௠ሺ𝑘଴𝑅ሻ
௞భ

ఘభ
𝜕௥𝑌௠ሺ𝑘ଵ𝑟ଵሻ ௞బ

ఘబ
𝜕௥𝑌௠ሺ𝑘଴𝑅ሻ

ተ

ተ
            (S15) 

where 𝑌௠  is the Bessel function of the second kind. Following the assumptions 𝑘଴𝑅 ≪ 1 and 

𝑘଴𝑟ଶ ≪ 1, the first monopole frequency is found by setting 𝑚 ൌ 0 7. If the diameter of the MRP 

is 1.5 cm, the Mie resonance is estimated as 𝑓ோ~8.9 kHz, which is found from the frequency 

response of |𝐷଴| where it approaches 1, signaling the occurrence of a scattering resonance (Fig. 

S4d) 7. The magnitude |𝐷଴|  and angle of 𝐷଴ are depicted in Figs. S4d, e. This result is close to the 

experimentally observed and numerically simulated 9.1 kHz (Fig. 2).  

 Effect of geometrical inconsistency. If the fabrication of the MRP cannot accurately follow 

the geometrical design, the diameter of the MRP may have geometrical inconsistency. If the 

diameter of the MRP varies from 1.4 cm to 1.6 cm (7% of variation around 1.5 cm), the Mie 

resonance frequency changes from 9.48 kHz to 8.3 kHz (Figs. S4d, e). This variation of the Mie 

resonance frequency can fully cover the interesting frequency range in the experiments: 8600-9200 

Hz. This theoretically predicted effect of the geometrical inconsistency also agrees well with the 

numerical simulations shown in Fig. S2c.   
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3. Theoretical analysis of magnetically-induced buckling  

Following the previously reported work on magnetically-induced buckling of tilted beam11, we 

here develop an analytical model for the magnetically-induced bending of the pillar. The 

magnetically-induced bending can be modeled as a tilted pillar under a magnetic field with an 

angle α to the pillar (Fig. S7). We construct two coordinate systems: global Cartesian coordinate 

(x,y) and local curvilinear coordinate (s,θ) shown in Fig. S7. The free energy of the magnetic-field 

deformed pillar can be written as11-16  

𝛱 ൌ ׬
ாூ

ଶ
ቀௗఏ

ௗ௦
ቁ

ଶ
𝑑𝑠

ு
଴ െ ׬ 𝐴 ቂ׬ 𝑴 ⋅ 𝑑𝑩

𝑩
଴ ቃ 𝑑𝑠

ு
଴                                   (S16) 

where s is the curvilinear coordinate along the beam, θ is the angle between the tangent line and 

the horizontal axis, E is Young’s modulus of the magnetoactive elastomer, H is the pillar length, I 

is the second moment of the cross-section area, A is the cross-section area, B is the applied 

magnetic field vector, and M is the magnetization vector.   

We first assume that the pillar aspect ratio (H/D) is relatively large, and the pillar can be 

considered as a slender structure. The variation of Eq. S16 leads to a governing equation of the 

magnetically-induced bending written as11-16 

𝜆ଶ ቀௗమఏ

ௗ௦మቁ ൅ 𝑠𝑖𝑛ሺ2𝜃 ൅ 2𝛼ሻ ൌ 0                                            (S17) 

where 𝜆 ൌ ඥ2𝐸𝜇଴𝐼 ሺ𝐴𝐵ଶ𝛥𝜒ሻ⁄  is a characteristic length, 𝜇଴ ൌ 4𝜋 ൈ 10ି଻𝑁 ⋅ 𝐴ିଶis the magnetic 

permittivity of the vacuum, and α is the initial tilted angle of the beam. ∆χ is the effective magnetic 

susceptibility difference between the axial and orthogonal direction and can be estimated as 𝛥𝜒 ൎ

𝜒 െ 𝜒 ሺ1 ൅ 𝜒 2⁄ ሻ⁄ , where 𝜒is the magnetic susceptibility of the elastomer.  

At the critical point of the buckling, the characteristic length 𝜆 should scale with the beam 

length H. Therefore, the critical magnetic field of the buckling should follow a scaling law as  
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𝐵௖ ∝ ට
ఓబா

௱ఞ
ቀ ூ

஺ுమቁ                                                     (S18) 

Once the applied magnetic field is larger than the critical magnetic field for the pillar buckling, the 

pillar will be bent and pinched on the substrate.  

According to Eq. S18, the critical magnetic field is affected by the Young’s modulus, 

magnetic susceptibility, cross-section geometry, and the length of the pillar. Besides, we notice 

that the critical magnetic field should also be affected by the tilting angle 𝛼 of the magnetic field. 

The effect of the tilting angle should be reflected by the pre-factor of the scaling law, 𝛽. In addition, 

Eq. S18 is derived based on a slender assumption. If the slender condition is relaxed to extended 

to relatively small pillar aspect ratio (e.g., H/D=2.83 in this work), the contribution of the 

geometrical factor H/D should be also reflected by the pre-factor 𝛽 . Therefore, the critical 

magnetic field of the buckling can be written as  

𝐵௖ ൌ 𝛽 ቀ𝛼, ு

஽
ቁ ට

ఓబா

௱ఞ
ቀ ூ

஺ுమቁ                                                     (S19) 

where the pre-factor is a function of tilting angle 𝛼 and pillar aspect ratio H/D. 

 To validate the theoretical model in Eq. S19, we employ Mie resonator pillars (MRPs) 

with varied concentration of the ferromagnetic iron particle within the magnetoactive elastomer 

but maintain the geometry of the pillar and tilting angle 𝛼 ൌ 𝜋 4⁄ . The variation of the iron 

concentration changes the Young’s modulus and magnetic susceptibility of the magnetoactive 

elastomer. We measure the material and geometrical parameters of the MRPs and show them in 

Table S2. Experiments verify that the critical magnetic field indeed follows a linear relationship 

with ට
ఓబா

௱ఞ
ቀ ூ

஺ுమቁ (Fig. 2n).  
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4. Design principle of the reconfigurable acoustic logic gates  

The design of the switchable logic gate is based on two mechanisms:  

(1) The transmission ratios of the MRP arrays decreases with the row number of the array. 

For example, the acoustic transmission through one row of MRP array is around 0.35 at 8760 Hz; 

thus, the acoustic transmission through two rows of MRP array is around 0.352=0.12 at 8760 Hz 

(Figs. 4c, h, m, and S14). If two inputs are applied, the output transmission of one-row MRP array 

is 0.35+0.35=0.7 (above 0.5), but the output transmission of two-row MRP array is only 

0.12+0.12=0.24 (below 0.5). We here denote that the normalized pressure equal to or larger than 

0.5 as “1” and otherwise as “0”. Then, these two types of MRP array show different output states: 

the former outputs “1” but the latter outputs “0”.  

(2) The magnetic field can be used to bend a row of MRP array to leave only one-row MRP 

array. On-off switching the magnetic field can one-demand switch between one-row array and 

two-row array.  

According to the design principle, to enable switching among NOT, AND, and OR 

operators, the acoustic transmission of one-row MRP array can be around 0.25-0.5. The 

corresponding frequency range is slightly below or above the Mie resonance frequency range, for 

example, 8700-8830 Hz and 8930-9070 Hz (according to data shown in Fig. S14a). To verify this 

working frequency range for the switching of three logic operators, we carry out numerical 

simulations that show the frequencies through 8700-8830 Hz and 8930-9070 Hz work well for the 

switching of three logic operators (Figs. S14 and S15). This point is also confirmed by 

experiments at 8700 and 9050 Hz which are located at two frequency branches, respectively (Fig. 

S16).  
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5. Supplementary tables 

Table S1. Experimentally-measured materials and geometrical parameters of Mie 

resonator pillars. The sound speed within the filled elastomer is estimated by assuming the 

Poisson’s ratio as 0.48.  

Iron 

weight 

per 22 g 

elastomer 

Iron 

volume 

fraction 

(%) 

Young’s 

modulus 

of filled 

elastomer 

(MPa) 

Density 

of filled 

elastomer 

(kg/m3) 

Sound speed 

within filled 

elastomer 

(m/s) 

Effective 

magnetic 

susceptibility 

difference 𝛥𝜒

Height H 

(cm) 

Cross-

section 

area of 

solid part 

(cm2) 

The 

second 

moment 

of area 

(cm4) 

5 3.14 0.22661 1019 43.05 0.169 

4.25 1.102 0.1772 

10 6.08 0.26147 1205 42.52 0.457 

15 8.85 0.28785 1307 42.84 0.953 

20 11.47 0.30889 1413 42.68 2.03 

25 13.94 0.36696 1675 42.73 6.02 

30 16.27 0.43402 1770 45.20 8.34 

35 18.48 0.49576 1860 47.13 11.53 
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6. Supplementary figures  

 

Figure S1. The fabrication process of a Mie resonator pillar.  
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Figure S2. (a) Configuration of the numerical simulation for single Mie resonator pillar (MRP). 

(b) Configuration of the numerical simulation for an MRP array. (c) The acoustic transmission of 

the MRP arrays with various relative spacing L/D in functions of the frequency. Within frequency 

9050-9150 Hz, the acoustic transmission increases with increasing pillar spacing.  
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Figure S3. (a) Schematic to show the Brillion zone. (b) The band structure of the MRP. The MRP 

exhibits a bandgap within 8.6-10.2 kHz for the horizontal wave and a bandgap within 8.9-9.2 kHz 

for waves with all directions.  
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Figure S4. (a) A picture of the cross-sectional area of MRP. (b) The equivalent physical model 

with air channels with low-sound speed as well as its realization based on the homogenization 

procedure. (c) The equivalent model used for the analytical model. The equivalent media (gray 

area) is used for the analytical estimation of the Mie resonance with 𝑑ଵ ൌ 2𝑟ଵ being the outer 

diameter of the equivalent uniform medium. Note here that the white areas in b represent the 

background fluid medium (air). (d, e) Frequency sweep of the absolute value of the complex 

scattering coefficient, i.e. |𝐷଴|, and its corresponding angle. The peak occurs at the scattering 

resonance, which approximately occurs at 𝑓ோ ൎ 8.9  kHz when D=1.5 cm. The resonance 

frequency varies from 9.48 kHz to 8.3 kHz when the diameter of the pillar D varies from 1.4 cm 

to 1.6 cm.  
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Figure S5. Schematics (a, d), samples (b, e), and transmission-frequency results (c, f) of MRP 

array (a-c) and solid pillar array (d-f) with the same pillar diameter and spacing. Scale bars in b 

and e denote 1 cm.  
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Figure S6. Schematic to show the application of the magnetic field to the MRP. The effective 

magnetic field is calculated by averaging the magnetic field at the bottom and the top of the MRP.  
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Figure S7. Schematic to show the deformation of a bottom-fixed magnetoactive beam under a 

tilted magnetic field.  
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Figure S8. (a) Schematic to show the acoustic transportation through an MRP array with two 

pillars with high iron volume fraction 18.48% and two pillars with low iron volume fraction 3.14%. 

(b) The experimentally measured and numerically simulated acoustic transmissions of a in 

functions of the frequency. (c) Schematic to show the acoustic transportation through an MRP 

array with the central two pillars bent by a magnetic field. (d) The experimentally measured and 

numerically simulated acoustic transmissions of c in functions of the frequency. 
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Figure S9. Configurations of the numerical simulations for the magnetoactive double-through 

switch shown in Fig. 3: (a) A off B off, (b) A on B off, (c) A off B on, and (d) A on B on. Note 

that the bent pillars in b-d are removed in the simulations. 

 

  



19 
 

 

Figure S10. (a) Schematic for an MRP array with two pillars with high iron volume fraction 18.48% 

and two pillars with low iron volume fraction 3.14%. (b) The numerically simulated acoustic 

transmission through the MRP array shown in (a) with various relative spacings L/D. The Mie 

resonance frequency changes from 8620 to 9300 Hz when the relative spacing L/D changes from 

1.47 to 1.58.  
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Figure S11. Configurations of the numerical simulations for the magnetoactive logic gates shown 

in Fig. 4: (a) NOT gate, (b) AND gate, and (c) OR gate. Note that the bent pillars in b and c are 

removed in the simulations.  
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Figure S12. Experimentally measured acoustic pressure signals at 8760Hz for the magnetoactive 

logic gates shown in Fig. 4: (a) NOT gate, (b) AND gate, and (c) OR gate.  
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Figure S13. (a) Schematic to show the application of magnetic fields to bend 2 pillars shown in 

Fig. 4g. (b) Schematic to show the application of magnetic fields to bend 6 pillars shown in Fig. 

4l. The selective actuation of the central six pillars is because of their higher iron volume fraction 

(18.48% by weight). The pillars for the channel walls have lower iron volume fraction (3.14% by 

weight).  
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Figure S14. (a) Schematic and data to reveal the working frequency range for the magnetoactive 

reconfigurable acoustic logic gate shown in Fig. 4. The shadowed areas indicate the feasible 

working frequency: 8700-8830 Hz and 8930-9070 Hz. Schematics for NOT gate (b), AND gate 

(c), and OR gate (d), and the corresponding numerical simulations at 8700 Hz (e), 8800 Hz (f), 

and 8830 Hz (g).   
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Figure S15. Schematics for NOT gate (a), AND gate (b), and OR gate (c), and the corresponding 

numerical simulations at 8930 Hz (d), 9000 Hz (e), and 9050 Hz (f). 
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Figure S16. Experimentally measured acoustic pressure signals at (a-c) 8700Hz and (d-f) 9050Hz 

for the magnetoactive logic gates: (a, d) NOT gate, (b, e) AND gate, and (c, f) OR gate.  
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Figure S17. Configurations of the numerical simulations for the magnetoactive acoustic cloak 

with four states shown in Fig. 5: (a) reference, (b) object, (c) cloaked, and (d) uncloaked.  
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Figure S18. Schematics for reference state (a), object state (b), cloak-like state (c), and blocked 

state (d), and the corresponding numerical simulations at 8520 Hz (e), 8650 Hz (f), and 8760 Hz 

(g). (h-k) The experimentally measured and numerically simulated acoustic transmission for four 

states in functions of the frequency.  
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Figure S19. Numerical simulations (a, c) and acoustic transmissions (b, d) for the forward (a, b) 

and backward (b, d) acoustic directions. 
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6. Supplementary movies  

Movie S1: Magnetically-induced cyclic bending of the central two pillars of a Mie resonator pillar 

(MRP) array. The speed of the movie is three times of the normal speed. The cycle period is around 

5 s.  

Movie S2: Magnetically-induced cyclic bending of the central two pillars of a Mie resonator pillar 

(MRP) array. The movie is real time. The cycle period is around 1 s. 

Movie S3: Magnetically-induced cyclic bending of the front two pillars within an MRP-enabled 

cloak-like waveguide. The speed of the movie is three times of the normal speed. 
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