
Supplementary information

Persistent and polarized global actin flow controls directionality

during cell migration
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In this document we derive the equations of the basic and extended cell fluid-mechanical

models used in the main text to describe the striking experimental observations, including

symmetry breaking and the emergence of stable flows, actin sink and myosin II accumulation

at the rear of cell front, high persistence of cell migration, sensitivity of flows to changes in

myosin II, and robustness of flows to changes in cofilin.

I. BASIC FLUID-MECHANICS MODEL FOR A CELL

The basic model is very similar to the 1D flow models in [1] used to explain spontaneous

symmetry breaking and emergence of flows (see also [2, 3]). This model contains three molec-

ular species, cortical actin (F-actin) with density ρ, cytosolic myosin II with concentration

c, and cortical myosin II with density µ. These line densities depend on angle θ = [−π, π]

and time t. The spatial-temporal dynamics are given by

∂tρ+R−2∂θ(ρ∂θΨ) = kp − kdρ (S1)

∂θ(−ζµ− αρ+ βR−2∂2
θρ) = ξ∂θΨ (S2)

∂tc = DcR
−2∂2

θc− konc+ koffµ (S3)

∂tµ+R−2∂θ(µ∂θΨ) = konc− koffµ+DµR
−2∂2

θµ, (S4)

where Eq. S1 describes actin polymerisation (with kp) and depolymerisation (with kd), Eq.

S2 describes the irrotational cortical flow with velocity v = (1/R)∂θΨ due to active stress

from contraction by myosin (−ζµ) and an actin-induced pressure (P = αρ − βR−2∂2
θρ).
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Parameter ξ denotes the friction with the external environment, α−1 is the compressibility

of the gel, and
√
β/α is the correlation length of the density fluctuations. Generally, we

neglect internal viscous effects of the gel. Eqs. S3 and S4 describe the cytosolic and cortical

myosin, including binding (with kon) and unbinding (with koff) to the cortex, as well as

diffusion (with Dc in cytosol and with Dµ in cortex).

The homogeneous steady state values are derived as follows. From Eq. S1 we obtain

ρ0 =
kp
kd
, (S5)

and from Eq. S3 we obtain

c0 =
koffµ0

kon
(S6)

with parameter µ0 being freely adjustable.

To understand when the homogeneous steady state becomes unstable in this active

system, we conduct linear stability analysis, where we expand around the steady state to

linear order using fluctuations

ρ(θ, t) = ρ0 + δρ(θ, t) (S7)

c(θ, t) = c0 + δc(θ, t) (S8)

µ(θ, t) = µ0 + δµ(θ, t). (S9)

This allows us to obtain for the linearised dynamics

∂t(δρ) =

[
− ρ0

ξR2

(
β

R2
∂4
θ − α∂2

θ

)
− kd

]
δρ+

ρ0ζ

ξR2
∂2
θδµ (S10)

∂t(δµ) = − µ0

ξR2

(
β

R2
∂4
θ − α∂2

θ

)
δρ+

[
µ0ζ

ξR2
∂2
θ − koff +

Dµ

R2
∂2
θ

]
δµ+ konδc (S11)

∂t(δc) = koffδµ+

(
Dc

R2
∂2
θ − kon

)
δc. (S12)

Next, we Fourier transform via substitutions ∂4
θ → i4k4 = k4 and ∂2

θ → i2k2 = −k2 in order

to remove the spatial derivatives at the expense of introducing a new variable, the wave

number k. To obtain the dispersion relation s(k), i.e. how the eigenvalue s depends on wave
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FIG. S1: Growth rate of deviations from the homogeneous steady state as a function of the

spatial wavenumber, k. Positive growth rates indicate pattern formation, and the first

non-zero spatial mode, l = 1, is located at k = l/R = 0.1.

number k, we need to solve the characteristic polynomial, given by the expression[
− ρ0

ξR2

(
β

R2
k4 + αk2

)
− kd − s

]
·
[(

µ0ζ

ξR2
k2 + koff +

Dµ

R2
k2 + s

)(
Dc

R2
k2 + kon + s

)
− konkoff

]
+

ρ0ζ

ξR2
k2 · µ0

ξR2

(
β

R2
k4 + αk2

)(
Dc

R2
k2 + kon + s

)
= 0. (S13)

The wave number can be expressed as k = l/R with l = 0, 1, 2, ...., where l = 1 is

the first non-homogeneous mode we are interested in. In particular, we are interested in

understanding when the real part of s(l = 1) becomes positive and hence the homoge-

neous steady state unstable. A key parameter to characterise the activity in this system

is the unitless Péclet number, which describes the ratio of advective and diffusive tenden-

cies and is given by Pé= −ζµ0/(D̃ξ) with the effective time-averaged diffusion constant

D̃ = (Dck
off + Dµk

on)/kon. For a sufficiently high Pé number, the real part is indeed posi-

tive, plotted in Fig. S1.

We can further characterise the emergence of foci, i.e., pattern formation, as a function

of the model parameters. Considering the first non-zero spatial mode, l = 1, we see that the

growth rate of fluctuations requires threshold values of both actin depolymerisation rate,

kd, and homogeneous steady state myosin concentration, µ0 (Fig. S2). We further note that
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FIG. S2: Growth rate of fluctuations from the homogeneous steady state with spatial

mode l = 1 as a function of actin depolymerisation rate, kd, and homogeneous steady state

myosin concentration, µ0. Positive growth rates indicate pattern formation, and negative

growth rates (here clipped at zero for visual emphasis) return to the homogeneous steady

state.

the pattern formation rate is much less sensitive to the actin depolymerisation rate, which

might reflect the observed robustness of the flow pattern to changes in cofilin levels, than it

is to myosin levels, which might reflect the observed sensitivity to myosin II levels (see main

text).

We solve the model numerically as a system of differential algebraic equations, with

v = (1/R)∂θΨ as the algebraic variable. We use Mathematica’s NDSolve, with periodic

boundary conditions and a MaxStepFraction of 1/100. For initial conditions we add a small

fluctuation to the homogeneous steady state in the form of κ cos(θ − π) with κ = 0.01. We

observed that a steady state was reached by T = 150s, and that the resulting pattern did

not change appreciably for longer solution times (though this will depend on the parameters

used).
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To investigate the robustness to perturbations, we apply a perturbation of the form

ρp = s
[
e−(θ−θp)2 + e−(θ−(θp+2π))2 + e−(θ−(θp−2π))2

]
(S14)

∂θΨp = ∂θ(−αρp + βR−2∂2
θρp)/ξ (S15)

on top of the steady state flows, where the functional form of the perturbation is chosen to

satisfy the periodic boundary condition, θp is the angular location of the perturbation, and

s is the strength of the perturbation relative to the height of actin peak at steady state.

The perturbation in actin is added to the steady state, and the corresponding instantaneous

change in the flow, ∂θΨp, is calculated to satisfy the system of differential-algebraic equations

(treating ∂θΨp/R = v as the variable to solve for numerically). To investigate how the steady

state is altered by this perturbation, the system is solved numerically with initial conditions

ρ = ρ∗+ρp, v = v∗+vp, µ = µ∗, c = c∗, where ∗ denotes the steady-state value of the variable

before the perturbation is applied. A new steady state was typically reached after a few to

tens of seconds of solution time.

This result shows that flows are exceptionally stable, which directly translate to highly

persistent cell motion. To see this, cell speed results from force balancing the retrograde

actin flow due to friction with the viscous external fluid, leading to a propulsive force on the

cell. To linear order this is given by Fp = (8π/3)h0R
2ξv0, where h0 is the cortical thickness

and v0 is the amplitude of the cortical flows [1]. Hence, if the intracellular flow is stable,

then cell motion is also stable and persistent.

Parameters are given in Table I, with ζ = −Pe · ξ · (Dck
off +Dµk

on)/(konµ0).
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TABLE I: Parameters used for basic model

Description Value Units

ξ friction with substrate 0.1 kg/(µm3 s)

kon myosin binding rate 1 s−1

koff myosin unbinding rate 0.1 s−1

Dµ cortical myosin diffusivity 1 µm2/s

Dc cytosol myosin diffusivity 10 µm2/s

β correlation length
√
β/α 103 kg/(µm s2)

α inverse compressibility 103 kg/(µm s2)

kd actin depolymerisation rate 0.1 s−1

R cell radius 10 µm

µ0 steady-state myosin concentration 104 µm−1

Pe Péclet number 2500 –

II. EXTENDED FLUID-MECHANICS MODEL FOR A CELL

Here, we extend the basic model to more realistic dynamics for actin and myosin. In

particular, we assume that in Eq. S1 actin polymerisation is self-activating (with saturation)

[4] and that the myosin II-induced stress promotes depolymerisation as contraction should

make F actin brittle [5]. We further assume that in Eqs. S3 and S4 myosin II binding to the

cortex is F actin dependent as F actin is the substrate for myosin II. As a result we obtain

the modified equations

∂tρ+R−2∂θ(ρ∂θΨ) = kp
ρ2

K2 + ρ2
− kdµρ (S16)

∂θ(−ζµ− αρ+ βR−2∂2
θρ) = ξ∂θΨ (S17)

∂tc = DcR
−2∂2

θc− konρc+ koffµ (S18)

∂tµ+R−2∂θ(µ∂θΨ) = konρc− koffµ+DµR
−2∂2

θµ (S19)

which we again solve numerically with Mathematica as a system of differential algebraic

equations, with v = (1/R)∂θΨ as the algebraic variable.

The homogeneous steady state is again obtained as follows. From Eq. S16 we obtain
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condition

kp
ρ2

K2 + ρ2
= kdµ0ρ0 (S20)

and hence

ρ1,2 =
kp

2kdµ0

±

√
k2
p

(2kdµ0)2
−K2 (S21)

with monostability for K = Kc = kp/(2kdµ0). If bistable, the upper state is stable. From

Eq. S18 we obatin condition

konρ0c0 = koffµ0 (S22)

and hence c0 = koffµ0/(k
onρ0). Parameter µ0 is freely adjustable.

To conduct the linear stability analysis, we expand around the steady state to linear order

using again Eqs. S7-S9, and obtain for the linearised dynamics

∂t(δρ) =

[
− ρ0

ξR2

(
β

R2
∂4
θ − α∂2

θ

)
+ kp

2K2ρ0

(K2 + ρ2
0)2
− kdµ0

]
δρ

+

[
ρ0ζ

ξR2
∂2
θ − kdρ0

]
δµ (S23)

∂t(δµ) =

[
− µ0

ξR2

(
β

R2
∂4
θ − α∂2

θ

)
+ konc0

]
δρ+

[
µ0ζ

ξR2
∂2
θ − koff +

Dµ

R2
∂2
θ

]
δµ

+konρ0δc (S24)

∂t(δc) = −konδρ+ koffδµ+

[
Dc

R2
∂2
θ − konρ0

]
δc, (S25)

which we again Fourier transform. To obtain the dispersion relation s(k), we solve the

characteristic polynomial, given by the lengthy expression[
− ρ0

ξR2

(
β

R2
k4 + αk2

)
+ kp

2K2ρ0

(K2 + ρ2
0)2
− kdµ0 − s

]
·
[(

µ0ζ

ξR2
k2 + koff +

Dµ

R2
k2 + s

)(
Dc

R2
k2 + konρ0 + s

)
− konkoffρ0

]
+

(
ρ0ζ

ξR2
k2 + kdρ0

)
·
[(

µ0

ξR2

(
β

R2
k4 + αk2

)
− konc0

)(
Dc

R2
k2 + konρ0 + s

)
+ (kon)2 c0ρ0

]
= 0 (S26)

The wave number can again be expressed as k = l/R with l = 0, 1, 2, ...., where l = 1 is the

first non-homogeneous mode we are interested in. When is the real part of s(l = 1) positive

and hence the homogeneous steady state unstable? For this purpose, we again consider

the unitless Péclet number, now given by Pé= −ζµ0/(D̃ξ) with the effective time-averaged

diffusion constant D̃ = (Dck
off + Dµρ0k

on)/(ρ0k
on). For a sufficiently high Pé number, the
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FIG. S3: Growth rate of deviations from the homogeneous steady state as a function of the

spatial wavenumber, k. Positive growth rates indicate pattern formation, and the first

non-zero spatial mode, l = 1, is located at k = l/R = 0.1.

real part is indeed positive, plotted in Fig. S3.

We solve the model numerically as a system of differential algebraic equations, as for

the basic model, but now for T = 300s and with a MaxStepFraction of 1/200. We

further reduced the AccuracyGoal and PrecisionGoal to allow Mathematica’s solver to

compute the pattern formation instability at the given discretization without error (the so-

lution errors can otherwise appear to be large as the initial condition is, by design, unstable).

To investigate the robustness to perturbations, we again apply a perturbation in ρ

(S14), add this to the steady state values of the variables ρ, v, µ, c, to obtain a new initial

condition from which we solve numerically until a new steady state is reached.

Parameters are given in Table II, with ζ = −Pe · ξ · (Dck
off + Dµk

onρ0)/(konρ0µ0).

Note that with respect to the basic model kon was replaced by konρ0, where

ρ0 = kp/(2kdµ0) +
√
k2
p/(2kdµ0)2 −K2.
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TABLE II: Parameters used for extended model

Description Value Units

ξ friction with substrate 0.1 kg/(µm3 s)

kon myosin binding rate 10−4 µm/s

koff myosin unbinding rate 0.1 s−1

Dµ cortical myosin diffusivity 1 µm2/s

Dc cytosol myosin diffusivity 10 µm2/s

β correlation length
√
β/α 10−2 kg/(µm s2)

α inverse compressibility 10−2 kg/(µm s2)

kd actin depolymerisation rate 10−5 µm/s

kp actin polymerisation rate 103 (µm s)−1

R cell radius 10 µm

µ0 steady-state myosin concentration 104 µm−1

Pe Péclet number 5 –

K Actin polymerisation theshold 0.2Kc =
0.1kp
kdµ0

µm−1
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