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1 Theoretical aspects

We define a sequence of targets (ϕt→T )
T
t=0 on the same measurable space (ET , ET ) as follows. Consider ϑt ∼ ϕt (·)

and define

ϕt→T (·) := L (Gt→T (ϑt)) ,

where L (X) denotes the law of a random variable X, and where Gt→T is defined recursively for 0 ≤ t < T as
follows

Gt→T := Gt+1→T ◦Gt→t+1,

with GT→T as the identity function. As before, the distributions ϕt→T , ϕt and πt all share the same normalising
constant Zt. Hence, the TSMC algorithm described in the main paper can be seen as an SMC sampler for the targets
{ϕt→T }t, propagating particles

{
ϑ

(p)
t→T

}
t,p

using a sequence of MCMC kernels {Kt→T : ET × ET → [0, 1]}t, where
Kt→T admits ϕt→T as invariant. This will also be the case for the modified TSMC algorithm with intermediate
distributions, however the details are omitted for simplicity.

Therefore, after the (t+ 1)th iteration the target ϕt+1→T can be approximated using

ϕ̂Pt+1→T =

P∑
p=1

w
(p)
t+1→T δϑ(p)

t+1→T

,

where, for every p ∈ {1, . . . , P},

w
(p)
t+1→T ∝ w

(p)
t→T

ϕ̃t+1→T

(
ϑ

(p)
t→T

)
ϕ̃t→T

(
ϑ

(p)
t→T

)
and w(p)

0→T = 1/P . Furthermore, notice that w(p)
t→T = w

(p)
t for all 0 ≤ t < T and any p ∈ {1, . . . , P}, consequently

expectations of the form ϕt+1 (h) (for a function h : Et → R) can be approximated using

ϕ̂Pt+1→T (h ◦GT→t+1) =

P∑
p=1

w
(p)
t+1→Th ◦GT→t+1

(
ϑ

(p)
t+1→T

)

=

P∑
p=1

w
(p)
t+1h

(
ϑ

(p)
t+1

)
= ϕ̂Pt+1 (h) .

The following theorem, the proof of which may be found in Del Moral et al. (2006, Proposition 2), follows from
well-known standard SMC convergence results.

Theorem 1.1. Under weak integrability conditions (see Chopin, 2004, Theorem 1 or Del Moral, 2004, p300-306)
and for any bounded h : Et → R , as P →∞

1. P 1/2
{
ϕ̂Pt (h)− ϕ̄t (h)

}
⇒ N

(
·
∣∣0, σ2

IS,t (h)
)
, if no resampling is performed;

2. P 1/2
{
ϕ̂Pt (h)− ϕ̄t (h)

}
⇒ N

(
·
∣∣0, σ2

SMC,t (h)
)
, when multinomial resampling is performed at every iteration;
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where σ2
IS,t (h) and σ2

SMC,t (h) follow similar expressions to those in Del Moral et al. (2006, Proposition 2).

Remark 1.1. As noted also in Del Moral et al. (2006), under strong mixing assumptions, the variance σ2
SMC,t (h)

can be uniformly bounded in t whereas σ2
IS,t (h) will typically diverge as t increases.

Respecting the normalising constants {Zt}Tt=1, they can be approximated using

ẐPt+1 =

t+1∏
s=1

P∑
p=1

w
(p)
s→T

ϕ̃s+1→T

(
ϑ

(p)
s→T

)
ϕ̃s→T

(
ϑ

(p)
s→T

) =

t+1∏
s=1

P∑
p=1

w(p)
s

ϕ̃s+1→s

(
ϑ

(p)
s

)
ϕ̃s

(
ϑ

(p)
s

) ,

and standard results show that these estimates are unbiased (see e.g. Del Moral, 2004, proposition 7.4.1), with
relative variance increasing at most linearly in t (Cérou et al., 2011, Theorem 5.1). Such results are summarised in
the following theorem.

Theorem 1.2. For fixed ET , and when resampling is not done adaptively, the estimates
{
ẐPt

}
t
satisfy

E
[
ẐPt

]
= Zt.

Furthermore, under strong mixing assumptions there exists a constant CT (t), which is linear in t, such that

V

[
ẐPt
Zt

]
≤ CT (t)

P
.

However, as T increases the dimension of ET (denoted hereafter by dT ) may increase and we will usually require
an exponential growth in the number of particles P in order to obtain meaningful results, see e.g. Bickel et al.
(2008). For instance, without the resampling step the ESS at time t+ 1 is closely related to the following quantity
(see e.g. Agapiou et al., 2017)

ρt+1 (dT ) := E

(t+1∏
s=1

ϕs→T (ϑs−1→T )

ϕs−1→T (ϑs−1→T )

)2
 ,

which serves as a measure of the dissimilarity between proposals and targets, and that quite often increases expo-
nentially in dT . This quantity provides information about the limiting proportion of effective number of particles
since

lim
P→∞

(
ESSPt+1

P

)−1

= lim
P→∞

P

P∑
p=1

(
w

(p)
t+1→T

)2

= lim
P→∞

1
P

∑P
p=1

(
w

(p)
0

∏t+1
s=1

ϕ̃s→T

(
ϑ
(p)
s−1→T

)
ϕ̃s−1→T

(
ϑ
(p)
s−1→T

))2

(
1
P

∑P
p=1 w

(p)
0

∏t+1
s=1

ϕ̃s→T

(
ϑ
(p)
s−1→T

)
ϕ̃s−1→T

(
ϑ
(p)
s−1→T

))2

=

E
[(∏t+1

s=1
ϕ̃s→T (ϑs−1→T )
ϕ̃s−1→T (ϑs−1→T )

)2
]

(
E
[∏t+1

s=1
ϕ̃s→T (ϑs−1→T )
ϕ̃s−1→T (ϑs−1→T )

])2 = ρt+1.

The above equation implies that P = O (ρt+1 (dT )) if we want to maintain an acceptable level for the ESS. In
our context, even though the targets (ϕ̄s→T )s are dT -dimensional the ratios of densities (ϕs→T /ϕs−1→T )s will
involve cancellations of “fill in” variables as discussed in the paper. This potentially leads to a much lower effective
dimension of the problem than dT .

For the SMC method presented in Dinh et al. (2018) in the context of phylogenetic trees, the authors have
shown that ρT grows at most linearly in T under some strong conditions, somewhat comparable to the strong
mixing conditions required in Theorem 1.2. Imposing an extra condition on the average branch length of the tree,
ρT can be bounded uniformly in T . However, their method performs MH moves after resampling for improving
the diversity of the particles, which could result in a sub-optimal algorithm. In contrast, TSMC uses MH moves
for bridging ϕt and ϕt+1 via the sequence of intermediate distributions (ϕt,k)

K
k=1. Heuristically, the introduction of

these intermediate distributions together with sensible transformations {Gt→t+1} should alleviate problems due to
the dissimilarity of targets, thus providing control over ρT .

2



In this respect, the authors in Beskos et al. (2014) have analysed the stability of SMC samplers as the dimension
of the state-space increases when the number of particles P is fixed. Their work provides justification, to some
extent, for the use of intermediate distributions (ϕt,k)

K
k=1. Under some assumptions, it has been shown that when

the number of intermediate distributions K = O (dT ), and as dT →∞, the effective sample size ESSPt+1 is stable in
the sense that it converges to a non-trivial random variable taking values in (1, P ). The total computational cost
for bridging ϕt and ϕt+1, assuming a product form of dT components, is O

(
Pd2

T

)
. Using this reasoning, we suspect

TSMC will work well in similar and more complex scenarios, e.g. when the targets do not follow a product form or
when strong mixing assumptions do not hold. This idea is supported by the results described in the paper.

2 Bayesian model comparison for mixtures of Gaussians

2.1 Split move
Suppose that at time t the transformation Gt→t+1 : Θt×Ut → Θt+1×Ut+1 is selected from Mt possible candidates{
G

(m)
t→t+1

}Mt

m=1
. The label of such transformation, denoted by lt, is jointly drawn with ut from the distribution

ψt (· |θt ). Therefore, after sampling (ut, lt) ∼ ψt (· |θt ), the incremental weight at t in the TSMC algorithm is given
by

ϕ̃t+1

ϕ̃t→t+1
(ϑt→t+1) =

π̃t+1 (θt→t+1 (ϑt))ψt+1 (ut→t+1 (ϑt)| θt→t+1 (ϑt))

π̃t (θt)ψt (ut, lt |θt )
∣∣∣J (lt)
t+1→t

∣∣∣Mt

, (1)

where J (m)
t+1→t denotes the Jacobian of G(m)

t+1→t. Notice that the denominator contains the term Mt since we have
introduced the the extra variable Lt in the proposal; thus, in order to obtain the correct ratio of normalising
constants we need to extend the target using a “dummy” distribution for Lt, in this case such distribution is
uniform on the set {1, . . . ,Mt}.

The split move from Richardson and Green (1997) clearly falls into this category since the selected component
to be split is chosen uniformly, i.e. Mt = t and

ψt (u, l |θt ) =
1

t
ψ

(s)
t (u |θt ) ,

for u ∈ Ut and l ∈ {1, . . . , t}; in this case ψ(s)
t is the distribution on the auxiliary variables Ut required for

implementing the split move. An improvement on this idea would be to use a mixture representation of the
proposal as done in Population Monte Carlo (Douc et al., 2007), i.e. the denominator of (1) would become

ϕt→t+1(ϑt→t+1) = πt (θt)

Mt∑
l=1

ψt (ut, l |θt )
∣∣∣J (l)
t+1→t

∣∣∣ ; (2)

however, we do not follow such approach. Instead, we try to alleviate a possible complication when implementing
the split move. After selecting and splitting the k-th component (wk, µk, τk), two new weights (say wk− and wk+),
two new means (say µk− and µk+) and two new precisions (say τk− and τk+) are obtained. However, if either

µk− /∈ [µk−1, µk+1] or µk+ /∈ [µk−1, µk+1] ,

then the incremental weight will be zero since the support of the target πt+1 has been restricted to ordered means.
We solve this by reordering all the components with respect to their means and correcting the incremental weight
with an extra factor. The correct incremental weight can be expressed as follows

ϕ̃t+1

ϕ̃t→t+1
(ϑt→t+1) =

π̃t+1 (ot+1 (θt→t+1 (ϑt)))ψt+1 (ut→t+1 (ϑt)| θt→t+1 (ϑt))

π̃t (θt)ψt (ut, lt |θt )
∣∣∣J (lt)
t+1→t

∣∣∣ ( t+ 1
2

) , (3)

where the function ot+1 : Θt+1 → Θt+1 simply combines the two newly created components, (wk− , µk− , τk−) and
(wk+ , µk+ , τk+), with the set of already ordered t− 1 components (those that were not split).

To see why (3) is correct we follow a similar reasoning for deriving (1). In order to obtain the correct ratio of
normalising constants, we need to introduce a “dummy” distribution in the target. When inverting the split move
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with rearrangement, two artificial variables are created denoting the labels of the newly created components. Since
µk− < µk+ , a simple choice for the “dummy” distribution is a uniform over the set

St+1 = { (h, k)|h, k ∈ {1, . . . , t+ 1} and h < k} ,

for which |S| =
(
t+ 1

2

)
, as included in (3).

2.2 Birth move
The birth move can benefit also from a reordering of components. The correct incremental weight is much simpler
than in the split case since the auxiliary variable Ut ∼ ψ(b)

t (· |θt ) already represents the new component (w∗, µ∗, τ∗).
Using the same logic as before, when inverting the birth move with rearrangement an artificial variable is created
which denotes the place of the most recent generated component. Since this label can take values in St+1 =
{1, . . . , t+ 1}, the simplest choice for the “dummy” distribution is a uniform over St+1; therefore, the expression for
the incremental weight in this case is given by

ϕ̃t+1

ϕ̃t→t+1
(ϑt→t+1) =

π̃t+1 (ot+1 (θt→t+1 (ϑt)))ψt+1 (ut→t+1 (ϑt)| θt→t+1 (ϑt))

π̃t (θt)ψ
(b)
t (ut |θt ) |Jt+1→t| (t+ 1)

. (4)

2.3 Marginalisation of moves
The previous descriptions of the birth and split moves are based on the idea of extending the target using an
auxiliary distribution for the labels created due to the reordering process. We saw that a simple choice for this
auxiliary distributions is a discrete uniform over the set of possible values for the labels, reason why the weights

in (3) and (4) contain the denominator terms
(
t+ 1

2

)
and t + 1, respectively. However, as discussed later in

the examples of Section 2.5, the corresponding estimators of the normalising constant may suffer from a very high
variance making them useless from a practical point of view. A way around this problem is to marginalise the
proposal over the artificial label created by the reordering process; such marginalisation is similar to (2) and is now
described.

The ordering function ot+1 : Θt+1 → Θt+1, introduced previously, simply reorders the newly generated com-
ponent (or components) from the birth (split) move. In order to be able to compute the inverse transformation of
this reordering, an artificial variable l̄t+1 ∈ S̄t+1 is created which simply denotes the place (or places) of the new
component(s). To be more precise, there are two transformations applied to ϑt that allow us to obtain the final
ϑt→t+1 together with the label l̄t+1. Let

Ḡt→t+1(ϑt) := ōt+1◦Gt→t+1(ϑt) = ōt+1 (θt→t+1 (ϑt) , ut→t+1 (ϑt)) =
(
ot+1 (θt→t+1 (ϑt)) , ut→t+1 (ϑt) , l̄t+1

)
=
(
ϑt→t+1, l̄t+1

)
,

where ōt+1 : Θt+1×Ut+1 → Θt+1×Ut+1× S̄t+1 is an extension of ot+1 that reorders θt→t+1 (ϑt), leaves ut→t+1 (ϑt)
unchanged, and creates l̄t+1. In the previous sections there was no need to introduce l̄t+1 since the denominator in
(3) and (4) is obtained simply by transforming back ϑ̄t→t+1 into ϑt; observe that for such cases

ϕt→t+1(ϑt→t+1) =ϕt
(
Ḡt+1→t

(
ϑt→t+1, l̄t+1

))
|Jt+1→t| = ϕt (ϑt) |Jt+1→t| .

The marginalisation step becomes clear by integrating out the variable l̄t+1; in this case the denominators in (3)
and (4) respectively become

ϕt→t+1(ϑt→t+1) =
∑

l̄t+1∈S̄t+1

ϕt
(
Ḡt+1→t

(
ϑt→t+1, l̄t+1

)) ∣∣∣J (lt)
t+1→t

∣∣∣ =
∑

l̄t+1∈S̄t+1

πt (θt) ψ̄t (ut, lt |θt )
∣∣∣J (lt)
t+1→t

∣∣∣
and ϕt→t+1(ϑt→t+1) =

∑
l̄t+1∈S̄t+1

ϕt
(
Ḡt+1→t

(
ϑt→t+1, l̄t+1

))
|Jt+1→t| =

∑
l̄t+1∈S̄t+1

πt (θt)ψ
(b)
t (ut |θt ) |Jt+1→t| ,

recalling that the variables θt, ut and lt depend on
(
ϑt→t+1, l̄t+1

)
via the inverse transformation Ḡt+1→t.

In Section 2.5, we look at the performance of the marginalised versions of the birth and split moves against
those described in Sections 2.1 and 2.2, which we term the conditional versions. It is clear that marginalising should
be a sensible approach for reducing the variance of the estimated of the normalising constants, however in certain
cases obtaining such marginal could become expensive or impractical if the required sum contains a large number
of elements.
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Figure 1: Density plots of the enzyme, acidity and galaxy data.

2.4 Details on the MCMC moves
The MCMC moves are performed in the transformed space of logit-weights, means and log-precisions. Given a set
of t components {(wk, µk, τk)}tk=1 at time t, the transformed components {(lwk, µk, lτk)}tk=1 are given by

lwk := log

(
wk
wt

)
= log

(
wk

1−
∑t−1
j=1 wj

)
,

lτk := log (τk) .

We consider two scenarios. For the first one we implement an adaptive Gaussian random-walk Metropolis al-
gorithm on the transformed space, taking into account the Jacobian of the previous transformation. The adaptation
is done in the proposal variance-covariance matrix in such way that the estimated acceptance probability from the
particles stays near 0.20. More precisely, an initial diagonal variance-covariance matrix for the logit-weights, means
and log-precisions is selected (say Σ

(0)
prop); then, after propagating the N particles, an estimated acceptance probab-

ility is obtained (say α̂(0)
P ). If such estimation lies outside a neighbourhood of 0.20, then a new matrix is obtained

as follows

Σ(1)
prop =

α̂
(0)
P

0.20
Σ(0)
prop.

The process starts again (and is repeated until the desired acceptance probability is achieved) by propagating
particles using Σ

(1)
prop and computing the estimated acceptance α̂(1)

P . One should be careful not to take a small
number of particles or a small neighbourhood around 0.20 since the number of adaptations needed may be large.
As seen in the following section, the previous choice of proposal could be quite inefficient since the particles may
not move far from their current value. Nevertheless, using such an inefficient proposal will allow us to empirically
quantify the effects of good and bad transformations Gt→t+1: we present the results using this proposal in the
following section.

For the second scenario (the one used in the results in the main body of the paper), using the set of particles
approximately distributed according to ϕt→t+1,k we compute the empirical variance-covariance matrix Σ̂t+1,k. The
proposal variance-covariance matrix for targeting ϕt→t+1,k+1 is then chosen as follows Σprop = Σ̂t+1,k/(t + 1) .
This choice will certainly be a more sensible proposal provided a Gaussian proposal is able to capture the shape of
the target and the consecutive intermediate distributions are similar; as seen in the following section, a carefully
designed MCMC kernel (together with a good transformation Gt→t+1) can dramatically improve the quality of the
particles.

2.5 Results
This section shows results from SMC2 and the TSMC algorithms on the enzyme, acidity and galaxy data from
Richardson and Green (1997) (see figure xxx). We ran the algorithms 50 times, up to a maximum of 8 components,
with 500 particles. We used an adaptive sequence of intermediate distributions, choosing the next intermediate
distribution to be the one the yields a CESS of βP , where β = 0.99. We resampled using stratified resampling when
the ESS falls below αP , where α = 0.5. The first adaptive MCMC scheme was used.

Figures 2, 3 and 4 show log marginal likelihood estimates from the different approaches, and the cumulative
number of intermediate distributions used in estimating all of the marginal likelihoods up to model k for each k.
The key observations from these results are:
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(a) Box plots of the log marginal likelihood estimates from each algorithm.
Black dots represent the “truth” computed using a long SMC2 run.

(b) The cumulative number of intermediate distributions up to model t.

Figure 2: The relative performance of the different SMC schemes on the enzyme data.

• The less effective adaptive MCMC scheme has a negative impact on the results (comparing figure 2 with those
the in the main paper). Despite this, the marginal split TSMC still exhibits good performance on the enzyme
and acidity data sets (in contrast to SMC2).

• TSMC appears to be less effective, compared to SMC2, on the galaxy data. When using the birth move,
the reason is the same as stated in the main body of the paper: that the posterior on the parameters of
existing components in model t does not provide a good proposal for these parameters in model t+ 1. For the
split move, the results can be explained by the distribution of the data. This data set contains a few points
located at a relatively large distance from the rest of the points in the dataset. The higher order models
place components on these small clusters of points, whilst maintaining the most important components in the
centre. In this case the split move is not an effective way to move between distributions (as also observed in
Richardson and Green (1997)), thus the performance of TSMC with a split move is not as effective as SMC2,
which uses the prior as the proposal for the parameters of all components.

3 Sequential Bayesian inference under the coalescent

3.1 Transformation and weight update

Let gt ∼ χ
(g)
t (· | θt, Tt, y1:t+1) and h

(new)
t ∼ χ

(h)
t (· | gt, θt, Tt, , y1:t+1). The transformation Gt→t+1 leaves θ, and

gs, h
(new)
s for s > t, unchanged. It makes a new tree from

(
Tt, gt, h(new)

t

)
as follows. Firstly, gt chooses a lineage

to add the new branch to, where each possible lineage is indexed by the leaf on that lineage. Next we examine the
coalescent heights. If ι is such that h(ι+1)

t < h
(new)
t < h

(ι)
t then the effect of the transformation on the coalescence

heights is ((
h

(t)
t , ..., h

(2)
t

)
, h

(new)
t

)
7→
(
h

(t)
t , ..., h

(ι+1)
t , h

(new)
t , h

(ι)
t , ..., h

(2)
t

)
(or adding the new height to the beginning or the end of the vector if it is the first or last coalescence event), giving
a Jacobian of 1. Then the new branching order is given by the original branching order, with a split in the branch
that is uniquely determined by (ι, gt), where the new branching order variable is denoted b(new)

t . We note that this
transformation is not bijective: since branches higher up the tree are shared by multiple lineages there are multiple
possible lineages that could have led to each tree.

Without loss of generality we examine the case of no intermediate distributions. As noted in the paper, gs, h
(new)
s

for s > t are not involved in the weight update. The variables involved are Tt+1, θ, which have resulted from the
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(a) Box plots of the log marginal likelihood estimates from each algorithm.
Black dots represent the “truth” computed using a long SMC2 run.

(b) The cumulative number of intermediate distributions up to model t.

Figure 3: The relative performance of the different SMC schemes on the acidity data.

(a) Box plots of the log marginal likelihood estimates from each algorithm.
Black dots represent the “truth” computed using a long SMC2 run.

(b) The cumulative number of intermediate distributions up to model t.

Figure 4: The relative performance of the different SMC schemes on the galaxy data.
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application of Gt→t+1. To find ϕt→t+1 we must find the distribution under ϕt of the inverse image of Tt+1, θ. The
resultant weight update is

w̃t+1 = wt
πt+1 (Tt+1, θ | y1:t+1)

πt (Tt, θ | y1:t)
[∑

s∈Λ χ
(g)
t (gt = s | θt, Tt, y1:t+1)χ

(h)
t

(
h

(new)
t | gt = s, θt, Tt, y1:t+1

)] , (5)

where Λ is the set that contains the leaves of the lineages that could have resulted in b(new)
t . Note the relationship

with the Rao-Blackwellised weight update described in the paper: we achieve a lower variance through summing
over the possible lineages rather than using an SMC over the joint space that includes the lineage variable.

3.2 Design of auxiliary distributions

For our SMC sampler to be efficient, we must design χ(g)
t and χ(h)

t such that the distributions in the numerator and
denominator of (5) are close, i.e. resulting in many trees that have high probability under the posterior with t+ 1
sequences, but with the denominator having heavier tails than the numerator.

To choose the lineage, we make use of an approximation to the probability that the new sequence isMs mutations
from each of the existing leaves. Following Stephens and Donnelly (2000) (also see Li and Stephens, 2003) we choose
the probability of choosing the lineage with leaf s using

χ
(g)
t (s | θt, y1:t+1) ∝

(
Nθt

t+Nθt

)Ms

. (6)

This probability results from using a geometric distribution on the number of SNP differences between the new
sequence and sequence s for each s, which is a generalisation of Ewens’ sampling formula (Ewens, 1972) to the finite
allele case. The geometric distribution results from integrating over possible coalescence times of the new sequence
(where distribution on the time is modelled as exponentially distributed with the correct mean), yielding a choice
for χ(g)

t that is likely to give our importance sampling proposal a larger variance than our target.
For χ(h)

t we propose to approximate the pairwise likelihood ft+1,s

(
ys, yt+1 | θ, h(new)

t , gt = s
)
, where ys is the

sequence at the leaf of the chosen lineage. Since only two sequences are involved in this likelihood, it is likely to
have heavier tails than the posterior. Our pairwise likelihood is

L
(
h

(new)
t | ys, yt+1, θt

)
=

[
3

4
− 3

4
exp

(
−4θth

(new)
t /3

)]Ms
[

1

4
+

3

4
exp

(
−4θth

(new)
t /3

)]N−Ms

,

where Ms is the number of pairwise SNP differences between the new sequence and sequence s, both of length N .

This likelihood may be approximated by a distribution using the Laplace approximationN
(
µ = ĥ, σ2 =

(
−Ĥ

)−1
)
,

where ĥ(new)
t denotes the maximum likelihood estimate of h(new)

t and Ĥ an estimate of the Hessian of the log
likelihood at this estimate (Bishop, 2006). Reis and Yang (2011) proposes an accurate approximation of the
two sequence likelihood by using a Laplace approximation in a transformed space, in particular they propose to

use the transformation 2 arcsin

√
3
4 −

3
4 exp

(
−2θth

(new)
t /3

)
. In this case the mean and variance of the Gaussian

approximation are respectively µ = ĥ and σ2 =
(
−Ĥ

)−1

where ĥ = 2 arcsin
√

Ms

N and Ĥ = −N . Thus in order to

simulate a new height h(new) we first simulate β ∼ N
(

2 arcsin
√

Ms

N , 1/N

)
and then compute

h
(new)
t = − 3

4θt
log

(
1− 4

3
sin2 (β/2)

)
. (7)
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The density of this distribution is given by

χ
(h)
t

(
h

(new)
t

)
=

∣∣∣∣∣∣∣∣∣
2θ exp

{
− 4

3θh
(new)
t

}
√

3

√
1−

3
(

1−exp
{
− 4

3 θh
(new)
t

})
4

√
1− exp

{
− 4

3θh
(new)
t

}
∣∣∣∣∣∣∣∣∣

× 1

σ
√

2π
exp

−
(

2 arcsin

√
3
4

(
1− exp

{
− 4

3θh
(new)
t

})
− µ

)2

2σ2

 .

3.3 SMC and MCMC details
Our MCMC moves when moving from target t to t + 1 are technically made on the space Et+1, and in practice
made on the space Θt+1 (recalling that the variables ut+1→t will be updated by direct simulation from ψt+1). The
default configuration of our method was as follows. We use the following moves on each parameter in Θt+1: for θ
we use a multiplicative random walk, i.e. an additive normal random walk in log-space, with proposal variance σ2

θ

in log-space; for each height h(a) (2 < a < T + 1) we use a truncated normal proposal with mean the current value
of h(a) and variance σ2

h(a) . For the branching order we use 20 subtree pruning and regrafting (SPR) moves in each
sweep of the MCMC: pilot runs suggested that this many proposed moves result in approximately 0.5 moves being
accepted at each sweep of the MCMC; adaptive methods may also be used to make such a choice automatically
(South et al., 2019).

The SMC uses P = 250 particles, with an adaptive sequence of intermediate distributions, choosing the next
intermediate distribution to be the one the yields a CESS of βP , where β = 0.95. We used stratified resampling
when the ESS falls below αP , where α = 0.5. At each iteration we used the current population of particles to tune
the proposal variances σ2

θ and σ2
h(a) for each a. Each variance was decomposed into two terms as follows σ2 = sσ̂2,

with σ̂2 being an empirical variance and s being a scaling factor (different for each proposal variance). σ̂2
θ was taken

to be the empirical variance of the weighted particles for θ. ˆσ2
h(a) was taken to be the empirical variance of the

residuals after using a linear regression of h(a) on θ (used due to the strong dependence of h(a) on θ). Each scaling
s was initialised to 1, and: doubled at each iteration where the acceptance rate was estimated as greater than 0.6;
halved where the rate was estimated at less than 0.15.
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