Supplementary Information

FOXM1 Regulates Leukemia Stem Cell Quiescence and Survival in MLL-Rearranged AML

Sheng et al.

Table of contents: Supplementary figures 1-11 Supplementary tables 1-2

Supplementary Fig. 1 Foxm1 deletion was incomplete in Tie2Cre-Foxm1 mice.

(a) qPCR analysis of Foxm1 expression in mouse HSPCs, which were isolated from 6-8 weeks mice treated 5-Fu, infected with control plasmid or MLL-AF9-YFP. The average expression level of Foxm1 in control group was set as 1 for qPCR, n=3 mice for each group.

- (b) Schematic diagram of selection of CFU-colonies with complete Foxm1 deletion.
- (c) PCR analysis of Foxm1 deletion in single colonies from Methylcellulose medium.
- *p < 0.05, mean ± s.d., t-test. Source data are provided as a Source Data file.

Supplementary Fig. 2 Homing ability of Leukemia cells.

MA9-Foxm1^{fl/fl} or MA9-Foxm1-CKO cells were transplanted into lethally irradiated mice. The YFP+/leukemia cells in BM were determined by flow cytometric analysis 24 hours after transplantation, n=5 mice for each group, mean \pm s.d., t-test. Source data are provided as a Source Data file.

Supplementary Fig. 3 Colony forming ability of AML1-ETO9a-transformed hematopoietic stem/progenitor cells with or without Foxm1 KO.

The Lin⁻ BM cells isolated from Foxm1^{fl/fl} and Foxm1-CKO BM cells mice were infected with retrovirus expressing MSCV-Puro-GFP-AML1-ETO9a. The infected cells were plated in MethoCultTM medium containing cytokines in triplicate. The colonies were counted one week after plating, * p<0.05; **p<0.01; ***p<0.001, mean \pm s.d., t-test.

Source data are provided as a Source Data file.

Supplementary Fig. 4 Leukemia burden of primary leukemia mice.

In vivo image system (IVIS) was used to determine the leukemia burden of primary MA9-Foxm1^{fl/fl} or MA9-Foxm1-CKO recipient mice. BM cells were labeled with Luciferase and relative counts were shown. Mice were administrated substrate Luciferin before images were taken, n=3 mice for each group, *p < 0.05, mean \pm s.d., t-test. Source data are provided as a Source Data file.

Supplementary Fig. 5 Foxm1 regulates quiescence and survival of c-Kit⁺Gr1⁻ cells.

(a) Flow cytometric analysis of cell cycle of c-Kit⁺Gr1⁻ cells in MA9-Foxm1^{fl/fl} (n=6 mice) or MA9-Foxm1-CKO primary mice (n=7 mice).

(b) Flow cytometric analysis of cell cycle of Lin⁻c-Kit⁻ and Lin⁺ cells in MA9-Foxm1^{fl/fl} or MA9-Foxm1-CKO primary mice, n=6 mice for each group.

(c) Flow cytometric analysis of cell quiescence of c-Kit⁺Gr1⁻ cells in MA9-Foxm1^{fl/fl} (n=8 mice) or MA9-Foxm1-CKO primary mice (n=10 mice).

(d) Flow cytometry analyzing the early and late apoptosis of c-Kit+Gr1- cells in MA9-Foxm1^{fl/fl} or MA9-Foxm1-CKO primary mice, n=9 mice for each group.

*p < 0.05, **p < 0.01, ***p < 0.001, mean ± s.d., t-test. Source data are provided as a Source Data file.

Supplementary Fig. 6 Foxm1 loss increases the sensitivity of MA9-transformed LSCs to chemotherapeutic drugs.

(a) Colony forming ability of MA9-Foxm1^{fl/fl} or MA9-Mx1-CreFoxm1^{fl/fl} BM cells from the primary recipient mice, n=3 mice for each group.

(b) PCR analysis of Foxm1 deletion in single colonies from Methylcellulose medium.

(c) Flow cytometric analysis of apoptosis rate in MA9-Foxm1^{fl/fl} or MA9-Foxm1-CKO BM cells from primary recipient mice treated with Saline or 0.5 µM Cytarabine/15nM Doxorubincin (Ara-C/Doxo), n=3 mice for each group.

(d) Flow cytometric analysis of leukemia cell (YFP+) ratio in PB collected from the recipient mice, which were reconstituted with MA9-Foxm1^{fl/fl} or MA9-Foxm1-CKO BM cells and treated with Saline or "5+3" regimen, Ara-C and DOXO (A/D), n=6 mice for of MA9-Foxm1^{fl/fl} +Saline group; n=10 mice for of MA9-Foxm1^{fl/fl} +A/D group; n=7 mice for of MA9-Foxm1-CKO +Saline group, n=12 mice for of MA9-Foxm1-CKO +A/D group.

(e) Total leukemic cell (YFP+) number in BM at one day after treatment with Saline or AraC/Doxo, n=4 mice for each group. (f) LSC frequency in BM at one day after treatment with Saline or AraC/Doxo, n=4 mice for each group.

(g) Total LSC number in BM at one day after treatment with Saline or AraC/Doxo, n=4 mice for each group, *p < 0.05, **p < 0.01, ***p < 0.001, mean \pm s.d., t-test. Source data are provided as a Source Data file.

Sample Name	Subset Name	Count
092018-Catenin+MYH10-GFP_HSC-IgG-FITC_007.fcs	HSC	263
092018-Catenin+MYH10-GFP_HSC-FoxM1-WT2_011.fd	HSC	300
092018-Catenin+MYH10-GFP_HSC-FoxM1-WT1_009.fd	HSC	315
092018-Catenin+MYH10-GFP_HSC-FoxM1-KO2_010.fd	HSC	276
092018-Catenin+MYH10-GFP_HSC-FoxM1-KO1_008.fd	HSC	225

Supplementary Fig. 7 FOXM1 interacts β -Catenin and regulates β -catenin expression in MLL-rearranged leukemia cells.

(a) Venn diagram of differentially expressed genes in MA9-LSCs with or without presence of Foxm1 and HSCs with or without presence of Foxm1 gene.

(b)Relative expression of Foxm1 in total leukemic cells from MA9-Foxm1^{fl/fl} and MA9-Foxm1-CKO, as determined by qRT-PCR. Results were normalized to those of Actb and are presented relative to those of Foxm1^{fl/fl} control leukemic cells, n=3 mice for each group.

(c) Western Blot analysis of FOXM1 and β-CATENIN expression in human leukemia cells with expression of MLL fusion genes. The cells were treated with FOXM1-specific peptide or mutant peptide.

(d) The endogenous polyubiquitination of β-catenin was detected by anti-ubiquitin antibody in BM cells from MA9-

Foxm1^{fl/fl} and MA9-Foxm1-CKO. The cells were treated with 20µM MG-132 for six hours.

(e) Real-Time qPCR analysis of Foxm1 and β -Catenin expression level in mouse c-kit+ cells expressed MSCV vector or MSCV-Foxm1, n=3 mice for each group.

(f) WB was used to determine β-Catenin protein level in mouse c-kit+ cells expressed MSCV vector or MSCV-Foxm1.

(g-h) Intracellular flow cytometric analysis of β-Catenin protein level in Lin-, HPC, LSK and HSC population in Foxm1^{fl/fl} or Foxm1^{fl/fl} Tie2Cre mice, n=2 mice for each group. Summary data was shown in (g) and representing data was shown in (h).

Mean \pm s.d., t-test. Source data are provided as a Source Data file.

а

Supplementary Fig. 8 Leukemogenic function of Foxm1 is largely dependent on interaction between Foxm1 and β-Catenin.

(a) WB analysis of full length Foxm1, Foxm1 mutants as well as endogenous β -Catenin protein expression in MV4.11 cells expressing empty vector (MSCV), full length Foxm1 (Flag-Foxm1), Foxm1 deleted catenin interaction domain (Flag-Foxm1 Δ Cat) and Foxm1 DNA binding site mutant (Flag-Foxm1DNAMut) plasmids.

(b-c) Colony forming assay. MA9-WT cells infected with virus carrying MSCV empty vector and MA9-Foxm1-CKO cells infected with virus expressing empty vector (MSCV), full length Foxm1 (Flag-Foxm1), Flag-Foxm1 Δ Cat or Flag-Foxm1DNAMut vectors. were plated in plates containing methoCultTM medium and cytokines. The colony forming units (b) and total cells (c) were determined on each plate one week after plating. **p<0.01; ***p < 0.001, mean ± s.d., t-test. Source data are provided as a Source Data file.

Supplementary Fig. 9 MLL-AF9 does not control Foxm1 expression directly or through β-CATENIN.

(a) Foxm1 promoter activity was evaluated in 293T cell by Dual-Luciferase reporter assay. Foxm1 promoter construct was co-transfected into 293T cells with either MSCV empty vector or MSCV-MLL-AF9, and phRL-SV40 vector as an internal control. After 48h, cells were lysed and promoter activity was determined by Dual-Luciferase assay.

(b) WB analysis of β -CATENIN and FOXM1 expression in MV4-11 expressing β -CATENIN-specific shRNAs or control vector. TUBULIN severed as an internal control, mean \pm s.d., t-test. Source data are provided as a Source Data file.

Day0 Day2 Day4 Day6 Day8

*

Supplementary Fig. 10 Inhibition of FOXM1 suppressed leukemogenic potential of MLL-rearranged leukemia cells in vitro and in vivo.

(a) Flow cytometric analysis of GFP percentage in PB cells collected from xenografted mice reconstituted with GFP labeled MV4-11 cells. The mice were treated with Thiostrepton (n=9 mice) or vehicle PBS (n=12 mice).

(b) Flow cytometric analysis of GFP percentage in PB cells collected from xenografted mice reconstituted with GFP labeled MV4-11 cells. The mice were treated with WT peptide (n=8 mice) or vehicle PBS (n=5 mice).

(c-d) Relative FOXM1 expression was determined by qRT-PCR (c) or West Blot analysis (d) in MV4-11 infected with inducible PLKO.1-Tet-on FOXM1-shRNA or control vector. 2 µg/ml doxycycline was added in the medium to induce shRNA expression for 2 days.

(e) Growth of MV4-11 cells infected with inducible PLKO.1-Tet-on FOXM1-shRNA or control vector. 2 µg/ml doxycycline was added in the medium to induce shRNA expression and cells were counted every two days. *p < 0.05, ***p < 0.001, mean ± s.d., t-test. Source data are provided as a Source Data file.

Supplementary Fig. 11 Inhibition of FOXM1 suppressed MA9-transformed CD34+ stem/progenitor cells and primary LSCs from patients in vitro and in vivo.

(a) Relative expression of FOXM1 was determined by qRT-PCR in MA9.3 cells infected with inducible PLKO.1-Tet-on FOXM1-shRNA or control vector. 2 µg/ml doxycycline was added in the medium to induce shRNA expression for 2 days. (b) Growth rate of MA9.3 cells infected with inducible PLKO.1-Tet-on FOXM1-shRNA or control vector. 2 µg/ml doxycycline was added in the medium to induce shRNA expression and cells were counted every two days. (c) Colony forming assay for MA9.3 cells infected with inducible PLKO.1-Tet-on FOXM1-shRNA or control vector. 2 µg/ml doxycycline was added in the methylcellulose medium to induce shRNA expression. (d) Flow cytometric analysis of apoptotic MA9.3 cells infected with inducible PLKO.1-Tet-on FOXM1-shRNA or control vector. 2 µg/ml doxycycline was added in the methylcellulose medium to induce shRNA expression. (e) Spleen weight for PDX mice. The mice were treated with WT peptide or vehicle PBS, n=4 mice for each group. *p < 0.05, ***p < 0.001, mean \pm s.d., t-test. Source data are provided as a Source Data file.

Supplementary Table 1 Patient karyotype informarion

	Resource	Barcode	Cell Type	Sex	karyotype
Human: MLL-r AML	Children's Oncology				
1#	Group	#20727	BM	Male	46,XY,t(9;11)(p22;q23)[17]/46,XX[3]
Human: MLL-r AML	Northwestern				
2#	University	#17-0047	BM	Female	46,XX,t(9;11)(p22;q23)[20]
Human: MLL-r AML	Northwestern				51,XX,+6,+8,t(9;11)(p22;q23),+der(9)t(9;11)(p22;q
3#	University	#15-1756	BM	Female	23),+14,+19[18]

Supplementary Table 2 Primer list

Primers for subclone		
Luciferase-Xhol-F	CCGCTCGAGATGGATTACAAGGATGACGACGATAAGATGGAA GATGCCAAAAACAT	
Luciferase-EcoR1-R	CCGGAATTCTTACACGGCGATCTTGCCGC	construct luciferase in to PIG vector
	CCGGGCCAATCGTTCTCTGACAGAACTCGAGTTCTGTCAGA	
hFoxM1-sh1-F	GAACGATTGGCTTTTTG	
	AATTCAAAAAGCCAATCGTTCTCTGACAGAACTCGAGTTCTG	construct human FOXM1 shRNA
hFoxM1-sh1-R	CAGAGAACGATTGGC	into PLKO.1-Tet on vector
	CCGGGCCCAACAGGAGTCTAATCAACTCGAGTTGATTAGACT	
hFoxM1-sh2-F	CCTGTTGGGCTTTTTG	
	AATTCAAAAAGCCCAACAGGAGTCTAATCAACTCGAGTTGATT	construct human FOXM1 shRNA
hFoxM1-sh2-R	AGACTCCTGTTGGGC	into PLKO.1-Tet on vector
	CCGGTTGCAGGGTGGTCCGTGTAAACTCGAGTTTACACGGA	
hFoxM1-sh3-F	CCACCCTGCAATTTTTG	
	AATTCAAAAATTGCAGGGTGGTCCGTGTAAACTCGAGTTTACA	construct human FOXM1 shRNA
hFoxM1-sh3-R	CGGACCACCCTGCAA	into PLKO 1-Tet on vector
Primers for real-time PCR		
m PT FoxM1 F		
		Dataat maysa EaxM1 mPNA layala
	GIUGITICIGUIGIGATI	Delect mouse Foxivi i mikina levels
m-RT-NurrT-F		
m-RI-Nurr1-R		Detect mouse Nurr1 mRNA levels
m-RI-P21-F	IGACCCACAGCAGAAGAG	
m-RT-P21-R	ACCAGCCTGACAGATTTCTA	Detect mouse P21 mRNA levels
m-RT-P27-F	TGGACCAAATGCCTGACTC	
m-RT-P27-R	GGGAACCGTCTGAAACATTTTC	Detect moues P27 mRNA levels
m-RT-Beta Actin-F	TGTGATGGTGGGAATGGGTCAG	
		Detect mouse Beta-actin mRNA
m-RT-Beta Actin-R	TTTGATGTCACGCACGATTTCC	levels
m-RT-Bcl2-F	TTGTGGCCTTCTTTGAGTTCGGTG	
m-RT-Bcl2-R	CTTCAGAGACAGCCAGGAGAAATC	Detect moues Bcl2 mRNA levels
m-RT-Caspase 6-F	CCAGACAGACAAGCTGGACA	
		Detect moues Caspase 6 mRNA
m-RT-Caspase 6-R	TGTACCAGGAGCCATTCACA	levels
m-RT-Caspase 7-F	CCGAGTGCCCACTTATCTGT	
		Detect moues Caspase 7 mRNA
m-RT-Caspase 7-R		
m PT c Myc F		
		Detect meuros o Mue mDNA levelo
m DT hata Catanin F		Detect modes c-wyc mRNA ieveis
m-RI-beta-Catenin-F		Detectory beta Octoria a DNA
m-RI-beta-Catenin-R	GGCAAGGTTTCGAATCAATCC	levels
h-RT-FOXM1-F	TTTAAGCACATTGCCAAGCCA	
		Detect human FOXM1 mRNA
h-RT-FOXM1-R	GGGGTGAATGGTCCAGAAGGA	levels
h-RT-Beta ACTIN-F	GCACAGAGCCTCGCCTT	
		Detect human Beta ACTIN mRNA
h-RT-Beta ACTIN-R	GTTGTCGACGACGAGCG	levels
Primers for Genotyping		
		TG1+TG2: Detect the FoxM1flox
		allele (280 bp) and FoxM1wildtype
FoxM1 GT1	TGGCTTCCCAGCAGTACAAATC	allele (226 bp)
FoxM1 GT2	TGCTTACAAAAGACACACTTGGACG	
		TG1+TG3: Detect deleted FoxM1
FoxM1 GT3		allele (100 hr)
		Detect Cro allala (201hp) both Tia?
Cro2		and My1 Cro