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Supplementary Note: 1D analytical results

In this section, we provide the analytical solution for the scaling of the average delay ∆τav
with the number of individuals I in the event for 1D regular lattices. First of all, and
independently of the dimension, our system is mainly characterized by two speeds: v1
for the vehicles and v2 for the walking layer. The travel time between two nodes in each
layer is then calculated by dividing the distance ` of a link by the corresponding speeds.
Additionally, the transportation lines have two parameters: the capacity c, which is the
total number of individuals that fit in a vehicle, and the period of the line f, which is the
time elapsed between two consecutive vehicles. The variables of the system are thus:

v1 vehicle speed;

v2 walking speed;

c capacity of the vehicles;

f period of the line;

t1 =
`

v1
;

t2 =
`

v2
;

.

(S1)

Additionally, if there is background present in the system, ρ individuals will enter the
system each second.

We start by calculating the amount of individuals that fit in the queue of a node until
walking to the next node becomes preferable. Recall that individuals use optimal paths
to estimate travel times and to take routing decisions. In this case, the estimated time to
empty a queue qi observed by individual i is

twait,i =

(
1

2
+
[qi
c

])
f. (S2)

The critical number of individuals that makes walking a better option q? is obtained by
matching the effective travel time considering congestion t1+twait,i and the walking time
between two consecutive stops t2:

t2 = t1 + twait,i =

(
1

2
+

[
q?

c

])
f. (S3)

The expression for q? is then given by

q? =

[
t2 − t1
f

+
1

2

]
c. (S4)
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The value q? captures the number of individuals that will wait at each node, and will be
used to calculate the total number of nodes congested.

The individuals in the event are divided between left and right, with a rate that de-
pends on the position of the origin in the lattice. For instance, if the event is located in
an extreme, all individuals go towards one side, while if it is located in the middle, the
flow splits in two. The number of individuals that go towards each side Iright and Ileft in
a lattice of size L and with an event position x, counting locations from 0 to L − 1, can be
calculated as

I ′ =

{
Iright =

I (L−1−x)
L ,

Ileft =
I x
L ,

(S5)

which is a consequence of the uniform distribution of destinations along the space. Con-
sidering that each direction can be treated independently, from now on, L ′ and I ′ corre-
spond to the length of the segment and the rate of individuals in the chosen direction
(L ′ = x or L − 1 − x, respectively). When the flow of individuals arrive at a node, q? of
them will stay and the rest of them will walk to the next lattice location. Assuming the
conservation of individuals, we can write I ′ in terms of the people who remain at a node
waiting for a vehicle and those that walk all along to their destination. Defining the radius
of congestion r ′c as the number of congested nodes in each direction, this expression takes
the form

I ′ =

node 0︷︸︸︷
q? +

node 1︷ ︸︸ ︷
q? +

I ′ − q?

L ′ +

node 2︷ ︸︸ ︷
q? +

I ′ − 2 q?

L ′ −
I ′ − q?

L ′2 (S6)

+

node 3︷ ︸︸ ︷
q? +

I ′ − 3 q?

L ′ −
2 I ′ − 3 q?

L ′2 +
I ′ − q?

L ′3 + . . .

≈
r ′c−1∑
β=0

[
q? +

β∑
α=1

(−1)α+1
(
β−1
α−1

)
I ′ −

(
β
α

)
q?

L ′α

]
,

where the first q? is the contribution of the queue of the origin node x, the second q? is the
queue of the first node in the chosen direction and the third term with 1/L ′ corresponds
to the number of individuals who arrive by walking and have as destination node x ± 1.
The ensuing terms are the contributions of node x± 2 and x± 3, etc. The series expansion
continues until r ′c−1, after which only q? or less individuals remain to allocate. Grouping
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terms of the same order in 1/L ′, one can get the following expression for I ′:

I ′ = r ′c q
? +

(r ′c − 1) I
′ − (r ′c (r

′
c − 1)/2) q

?

L ′ (S7)

−
((r ′c − 1) (r

′
c − 2)/2) I

′ − (r ′c (r
′
c − 1) (r

′
c − 2)/6) q

?

L ′2

+ . . .

The coefficients of each term in I ′ and q? become more complicated as the order in 1/L ′

increases. Still, it is possible to find a closed form for the expansion:

I ′ ≈ r ′c q? +
r ′c−1∑
α=1

(−1)α−1
(
r ′c−1
α

)
I ′ −

(
r ′c
α+1

)
q?

L ′α , (S8)

where the symbols (.) are binomial coefficients. Note that we have written the expres-
sion as an approximate formula, because after node r ′c, there is a number of individuals
(less than q?) who continue traveling and are not counted in this expression. Using the
polynomial expansion and recalling that

(1− 1/L ′)r
′
c−1 =

r ′c−1∑
i=0

(−1)i
(
r ′c − 1

i

)
1

L ′i , (S9)

we can rewrite the sum on the right as

I ′ ≈

[
1−

(
1−

1

L ′

)r ′c−1]
I ′ +

[
1−

(
1−

1

L ′

)r ′c]
q? L ′. (S10)

This equation can be solved for r ′c as a function of L ′ and I ′ yielding

r ′c ≈ 1+
ln
(

q? L ′

I ′+q? (L ′−1)

)
ln
(
1− 1

L ′

) . (S11)

The total number of congested nodes will be then given by the sum of the radius of con-
gestion towards both directions QT = rc(Left) + rc(Right). In the limit of L ′ → ∞, the
scaling of QT with I yields

QT ∼
I

q?
, (S12)

This linear dependency is maintained as long as QT � L ′. Otherwise, when QT → L ′, the
whole network is congested,QT and the delay saturate with most agents walking to their
destination.
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From the expression of r ′c, we can estimate the average delay per individual ∆τav.
First of all, we define the delay as the difference between the real and the expected travel
time determined by the optimal path ∆τ = τreal − τop. In our framework, individuals
can suffer the delay in two different ways: either they walk all along until their final
destination, or they stay in the queues and wait for their turn to enter into the vehicles. If
they walk all the way, the total delay is calculated as the speed difference between walking
and using a vehicle multiplied by the number of individuals. For each of the directions,
the individuals walking are approximated by the terms displaying powers of 1/L ′ in the
expansion of Eq. (S7). By walking i locations at speed v2, the individuals incur in a delay
of i `/∆v (where ∆v = v1 − v2). We can write the total delay of walkers as

∆τtot,w ≈ `

∆v

{ node 1︷ ︸︸ ︷
I ′ − q?

L ′ +

node 2︷ ︸︸ ︷
2
I ′ − 2 q?

L ′ − 2
I ′ − q?

L ′2 (S13)

+

node 3︷ ︸︸ ︷
3
I ′ − 3 q?

L ′ − 3
2 I ′ − 3 q?

L ′2 + 3
I ′ − q?

L ′3

+ . . .

}
.

Each term appears multiplied by the position of the node generating it. This expression
can be compacted by grouping the terms of the same order in 1/L ′ to obtain

∆τtot,w ≈ `

∆v

r ′c−1∑
α=1

(−1)α+1

L ′α

[
(r ′c − α) r

′
c

(1+ α)

(
r ′c − 1

α− 1

)
I ′ −

(r ′c − α) ((α+ 1) r ′c − 1)

(1+ α) (2+ α)

(
r ′c
α

)
q?
]
.

(S14)

Suming the terms before I ′ and q? yields

∆τtot,w ≈ `

∆v

{[
L ′ − (L ′ + r ′c − 1)

(
1−

1

L ′

)r ′c−1]
I ′ +

[
r ′c (1− r

′
c)

2
+ L ′ (L ′ − 1)

− L ′ (L ′ + r ′c − 1)

(
1−

1

L ′

)r ′c]
q?

}
. (S15)

This equation is valid for each of the directions and the total delay is, thus, the sum of
∆τtot,w = ∆τtot,w(Right) +∆τtot,w(Left). While it is important to have an accurate knowl-
edge of the functional form of the delay, the expression for ∆τtot,w in Eq. (S15) tends to
zero when L ′ →∞ and, therefore, it does not contribute to the scaling of the delay.
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The second contribution to the delay corresponds to individuals waiting at queues.
The delay suffered by an individual depends on his/her position in the queue. Dividing
the q? individuals in packs of c, the total delay cumulated in a single node ∆τsn is given
by

∆τsn = c f

p−1∑
i=1

i+ (q? − p c)p f, (S16)

where p = [q?/c] is the integer part of the ratio. The sum runs over all the packs except
the first, which has no delay, and the last, which does not necessarily have c individuals.
Solving the sum, we get

∆τsn = f p

(
c (p− 1)

2
+ (q? − p c)

)
. (S17)

For the q? individuals remaining at each of the queues, we have to add a delay of f q?/c
per link walked. This gives us the total delay of

∆τtot,v ≈

node 0︷ ︸︸ ︷
f p

(
c (p− 1)

2
+ (q? − p c)

)
+

node 1︷ ︸︸ ︷
q?2

c
f+ f p

(
c (p− 1)

2
+ (q? − p c)

)

+

node 2︷ ︸︸ ︷
2
q?2

c
f+ f p

(
c (p− 1)

2
+ (q? − p c)

)
+ . . . , (S18)

The previous expression can be reordered to obtain

∆τtot,v ≈ r ′c f p
(
c (p− 1)

2
+ (q? − p c)

)
+
q?2 f r ′c (r

′
c − 1)

2 c
. (S19)

As before, this is the delay in one direction. Therefore, to calculate the average delay per
individual ∆τav we need to sum ∆τtot,v in both directions, add it to the one of the walkers
∆τtot,w and divide by the total number of individuals in the event I, yielding

∆τav = {∆τtot,v(Right) + ∆τtot,v(Left) + ∆τtot,w(Right) + ∆τtot,w(Left)} /I.

Considering that in the limit L → ∞, r ′c ∼ I ′, ∆τtot,w → 0 and, according to Eq. (S19),
∆τtot,v ∼ I

2, the scaling of ∆τav with I yields

∆τav ∼
f I

2 c
. (S20)

In finite networks, we can also obtain the number of congested nodes and average
delay for any event location. In Fig. S1, we show ∆τav as a function of the position x. Due
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Supplementary Fig. S1: Average delay per individual and its analytical prediction in an
1D lattice with the same event I placed in different lattice locations.

to the split of the stream of individuals, the lowest delay appears for an event in the center
of the lattice. Conversely, the highest congestion occurs when the event is introduced in
the lattice extremes.

These previous results can be extended to take into account the effect of background
individuals. If the background is active, a number ρ of trips will be generated at each time
step with an origin and destination selected at random. While conserving the scaling, the
background increases the average delay because the new passengers reduce the effective
vehicle capacity. We need now to separate the contributions of the individual flows to
the left and to the right. The effective capacity for locations to the left of the event can be
approximated as

cleff(x) = c− ρ f
x (L− x)

L (L− 1)
, (S21)

while for those to the right ceff is

creff(x) = c− ρ f
(x+ 1) (L− 1− x)

L (L− 1)
. (S22)

Here x refers to the node location, the factors x (L − x)/L (L − 1) and (x + 1) (L − 1 −

x)/L (L − 1) are the ratio of shortest paths that go from x to the left and to the right,
respectively. They related to the betweenness of x. Eqs. (S21) and (S22) show that the
impact of the background is maximum in the central node, while it decreases for the
nodes at the extremes. The location of the special event is, therefore, of great relevance
since nodes no longer have equal capacity.
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To obtain the new expression for the total delay with background, we need to repeat
the calculations of Eq. (S18) using c ′eff(x) (the one corresponding to the given direction)
instead of c. To be more specific, if x is the event location, the i− th congested node to the
right and to the left will have an effective capacity creff(x+ i) and cleff(x− i), respectively.
The sum of the terms of Eq. (S18) in each direction can then be written as

∆τtot,v =

r ′c∑
i=0

f p(i)

(
c (p(i) − 1)

2
+ (q? − p(i) c)

)
+

r ′c−1∑
i=1

i
f q?2

c ′eff(i)
, (S23)

where p(i) is the integer part of [q?/c ′eff(x ± i)] with the sign and the expression for ceff
depending on the direction over the lattice. The integer division in the first summation
makes obtaining an analytical expression very difficult. There is, however, an extra ap-
proximation that we can take to get an analytical solution for ∆τav. This passes through
substituting c ′eff(x± i) by an average value c ′eff(x± r ′c/2). If we introduce this approxima-
tion of c ′eff into Eq. (S23), we obtain for each direction

∆τtot,v = r
′
c f p

[
(p− 1) c ′eff(x±

r ′c
2 )

2
+ q? − p c ′eff(x±

r ′c
2
)

]
+
q? f r ′c (r

′
c − 1)

2 c ′eff(x±
r ′c
2 )
, (S24)

where p = [q?/c ′eff(x± r ′c/2)]. As before, the average delay ∆τav is obtained summing the
total delay in both directions and dividing by I.

Supplementary Note: 2D analytical results

In this section, we provide the analytical solution for the scaling in 2D lattices. As detailed
in the main manuscript, in two dimensions there are three types of nodes according to the
number of suitable directions, and the number of queues at distance r is given by

Nq(r) = 4 δr,0 + 12Hr,1 + 8 (r− 1)Hr,2. (S25)

where δr,0 is the Kronecker delta and Hr,1 is the discrete step function. By dividing the
space in four equivalent quadrants and considering only the individuals I ′ whose desti-
nation is within each quadrant, we can write I ′ as a function of the individuals that stay at
a queue, walk all along to their destination and the distance to the closest non congested

S-8



location r ′c as

I ′ ≈
distance 0︷︸︸︷

q? +

distance 1︷ ︸︸ ︷
3 q? +

I ′ − q?

L ′
x L

′
y

+

distance 2︷ ︸︸ ︷
5 q? +

I ′ − 4 q?

L ′
x L

′
y

−
I ′ − q?

(L ′
x L

′
y)
2

(S26)

+

distance 3︷ ︸︸ ︷
7 q? +

I ′ − 9 q?

L ′
x L

′
y

−
2 I ′ − 5 q?

(L ′
x L

′
y)
2

+
I ′ − q?

(L ′
x L

′
y)
3
+ . . .

=

rc−1∑
β=0

{
(2β+ 1)q? +

β∑
α=1

(−1)α+1

(
β−1
α−1

)
I ′ − 2 β−(α−1)

(α+1)

(
β
α

)
q?

(L ′
x L

′
y)
α

}
,

where the lateral size of the lattice is L and (x, y) is the position of the event in the network
(allegedly, (L/2, L/2)). L ′

x (L ′
y) is defined depending on the quadrant and the direction of

the individuals that are leaving the location of the event. If the movement is towards the
right (up), then it is defined as L ′

x = L − x − 1 (L ′
y = L − y − 1), otherwise, if it is to the

left (down) it is defined as L ′
x = x (L ′

y = y). Likewise 1D lattices, we sum the coefficients
appearing in terms of equal power in (L ′

x L
′
y) in Eq. (S26) to obtain

I ′ ≈ r ′c
2
q? +

r ′c−1∑
α=1

(−1)α+1

(
r ′c−1
α

)
I ′ − 2 r ′c−α

(α+2)

(
r ′c
α+1

)
q?

(L ′
x L

′
y)
α

. (S27)

Using the expansion of the binomial (1 − 1/(L ′
x L

′
y))

β, this expression can be transformed
into

I ′ ≈

[
1−

(
1−

1

(L ′
x L

′
y)

)r ′c−1]
I ′ (S28)

+ q?

[
(L ′
x L

′
y)

(
2 r ′c + 1−

(
1−

1

(L ′
x L

′
y)

)r ′c)

−2 (L ′
x L

′
y)
2

(
1−

(
1−

1

(L ′
x L

′
y)

)r ′c)]
.

Solving the equation in r ′c, we obtain

r ′c = −
1

2
+ L ′ −

Plog
(
(1− 1

L ′ )
L ′− 3

2 ( q
?−I ′

2 L ′ q? + L ′ − 3
2) log(1− 1

L ′ )
)

log(1− 1
L ′ )

, (S29)
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where Plog() is the product log function and L ′ = L ′
x L

′
y. Asymptotically, in the limit of

large lattices L ′ →∞, this expression goes with I ′ (and with I) as

r ′c ≈

√
I ′

q?
∼

(
I

4 q?

)1/2
. (S30)

From r ′c, we can calculate the average delay suffered by the individuals participating
in the event. The most straightforward expression is the one concerning the delay of
people who arrive at the final destination by walking. These are individuals whose trip
destination fall within the congested area, and given the long queues, find more profitable
to walk all the way. Their numbers correspond to the terms with the powers in 1/(L ′

x L
′
y)

in Eq. (S26) and their delay depends on the difference in speed between the vehicles and
walking. Recovering the Eq. (S14) for 1D and adapting it to 2D, we get

∆τtot,w =
4 `

∆v
{

distance 1︷ ︸︸ ︷
I ′ − q?

L ′
x L

′
y

+

distance 2︷ ︸︸ ︷
2 (
I ′ − 4 q?

L ′
x L

′
y

−
I ′ − q?

(L ′
x L

′
y)
2
)+

distance 3︷ ︸︸ ︷
3 (
I ′ − 9 q?

L ′
x L

′
y

−
2 I ′ − 5 q?

(L ′
x L

′
y)
2

+
I ′ − q?

(L ′
x L

′
y)
3
)+ . . .

=
4 `

∆v

rc−1∑
α=1

(−1)α+1

(L ′
x L

′
y)
α

{
(rc − α) rc
1+ α

(
rc − 1

α− 1

)
I ′ (S31)

−
(rc − α) ((2α+ 4) r2c − (α2 + 2α+ 3) rc + α− 1)

(α+ 1) (α+ 2) (α+ 3)

(
rc

α

)
q?
}
.

Summing each term of I and q?, the result is

∆τtot,w =
4 `

∆v

{[
L ′ − (L ′ + rc − 1) x

rc−1
]
I ′ +

[
(4 L ′(6 (−1+ xrc)L ′3 (12− 5 rc + 12 r

2
c + 2 r

3
c)

(S32)

+ 6 L ′2 (18− 18 xrc + 3 (3+ xrc) rc − 5 (−2+ 3 x
rc) r2c + (3+ 9 xrc) r3c + 2 x

rcr4)

− 3 L ′ (12− 12xrc − 4 (−7+ xrc) rc + (17− 6 xrc) r2c + (−9+ 22 xrc) r3c + 2(−5+ x
rc) r4c − 2 r

5
c)

− rc(−6− 29 rc − 15 r
2
c + (25+ 6 xrc) r3c + 21 r

4
c + 4 r

5
c))

− r2c (6+ 11 rc + 6 r
2
c + r

3
c) pFq({2, 2, 2, 1− rc}; {1, 1, 5}; 1/L

′]) /(24 L ′ (1+ rc) (2+ rc) (3+ rc))
]
q?
}
,
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where x = (1 − 1/L ′), pFq() is the generalized hypergeometric function and L ′ = L ′
x L

′
y.

Since this expression is a result of summing a series in terms of 1/L ′, and given that rc <<
L its contribution tends to zero in the infinite size limit.

As in any dimension, the most important contribution to the delay comes from the
individuals using the vehicles. The calculations are similar to those of 1D, with the ad-
ditional consideration that the locations have a different number of queues. Given that
the delay accumulated while emptying is independent of the dimension (Eq. (S17)), and
taking as basis Eq. (S18), the total delay of the individuals using a vehicle in a 2D lattice
can be written as

∆τtot,v =

distance 0︷ ︸︸ ︷
4 f p

(
c (p− 1)

2
+ (q? − p c)

)
+

distance 1︷ ︸︸ ︷
12
q?2

c
f+ 12 f p

(
c (p− 1)

2
+ (q? − p c)

)

+

distance 2︷ ︸︸ ︷
40
q?2

c
f+ 20 f p

(
c (p− 1)

2
+ (q? − p c)

)
+ . . . , (S33)

where to find the pre-factors for each term one must recall the expression forNq(r) in Eq.
(S25). Again, p is the integer part of q?/c. Grouping together the different terms of Eq.
(S33), one can obtain the expression

∆τtot,v =
q?2

c
f

rc−1∑
r=1

r (8 r+ 4) + f p

(
c (p− 1)

2
+ (q? − p c)

) rc−1∑
r=0

(8 r+ 4). (S34)

Finally, summing up the series with the number of queues yields

∆τtot,v =
q?2

c
f
2 (rc − 1) rc (1+ 4 rc)

3
+ f p

(
c (p− 1)

2
+ (q? − p c)

)
4 r2c. (S35)

The asymptotic behavior of ∆τtot,v is obtained by plugging rc ∼ I1/2 in Eq. (S35), and
yields

∆τtot,v ∼
q?2 f

c
I3/2. (S36)

This means, dividing by I, that the average delay per delayed individual scales as

∆τav ∼ (q?2 f/c) I1/2. (S37)

The analytical solution outlined above, as well as the results shown in the main text,
hold only when there are no individuals in the background. As in 1D lattices, the intro-
duction of individuals in the background, modifies effectively the capacity of the lines
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and we need to find an expression for ceff(x, y). Luckily, the penalty for changing line
included in our model simplifies the calculation of the betweenness centrality since there
is a maximum of two path alternatives between any pair of nodes. In our framework,
the edge betweenness centrality will depend on its location and direction. Therefore, as
a function of the lattice side L and the coordinates of the source node (x0, y0) and target
node (x1, y1) of a given edge, can be written as:

b((x0, y0), (x1, y1)) =
δ(y1−y0),−1

L2 (L2 − 1)
[(L− y0)y0 + (L− y0) y0 x0 + (L− y0)y0 (L− (x0 + 1))]

(S38)

+
δ(y1−y0),1

L2 (L2 − 1)
[(y0 + 1) (L− (y0 + 1)) + (y0 + 1) (L− (y0 + 1)) (L− (x0 + 1))+

(y0 + 1) (L− (y0 + 1)) x0] +
δ(x1−x0),−1

L2 (L2 − 1)
[(L− x0) x0 + (L− x0) x0 y0+

+(L− x0) x0 (L− (y0 + 1))] +
δ(x1−x0),1

L2 (L2 − 1)
[(x0 + 1) (L− (x0 + 1))+

+(x0 + 1) (L− (x0 + 1)) (L− (y0 + 1)) + (x0 + 1) (L− (x0 + 1))y0] .

The average number of individuals of the background going through a link can then be
calculated as ρb((x0, y0), (x1, y1)) f. As an approximation, we will use c−ρb((L+rc(I)2 ,

L+rc(I)
2 )

, (L+rc(I)2 + 1, L+rc(I)2 + 1)) f as the effective capacity ceff(L/2, L/2).
With the effective capacity, we can obtain an analytical approximation for the average

delay with background, yet it requires an extra consideration. In contrast to 1D lattices, it
is not enough to replace c by ceff. Before entering a vehicle individuals walking through
a link accumulate a delay of q?

ceff
, which corresponds to the time that the previous nodes

take to recover. In 2D lattices, it only holds for individuals following the main axes along
their route since they need to wait until the previous nodes have emptied. If, instead, they
change direction after moving along the main axis, their delay will be different. Effectively
they will accumulate q?

c in the first walking direction, in which they do not take any
vehicle, and q?

ceff
in the final direction, in which they take a vehicle. In other words, if an

individual takes a vehicle upwards in a node at a distance 3 to the right and 1 up of the
origin, his delay induced by waiting the vehicle will be given by f( q

?

ceff
+ 3q

?

c ). Taking this
fact into account the total delay of the individuals that wait for a vehicle when there is
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background yields

∆τtot,v = (
q2

2ceff
+
q2

2c
)f
8

3
(rc − 2)(rc − 1)rc (S39)

+ 6(−1+ rc)rcfq
2(

1

3ceff
+
2

3c
) + f p

(
c (p− 1)

2
+ (q? − p c)

)
4 r2c.

The first term accounts for the delay of the individuals out of the main axes, whose de-
lay is the mean between q?

ceff
and q?

c . The second term obeys to the delay of the individuals
in the main axes, whose delay per link is given by q?( 1

3ceff
+ 2
3c) which is a consequence of

one parallel direction of emptying, which gives q?

ceff
and two perpendicular not influenced

by the effective capacity, and give q?

c .
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Supplementary Fig. S2: Cumulative probability distribution of scaling exponents in Paris
with the real and homogeneous speeds, capacities and periods.

Supplementary Note: Scaling with inhomogeneous capacity dis-
tribution

In the main manuscript, we discuss that the broad exponent distribution in cities is a
consequence of the different speeds of each transportation modality, the inhomogeneous
capacities and frequencies. We performed simulations in Paris keeping all the lines as they
are in the map, but all mode speeds to 30km/h, a period of 10 minutes and a capacity of
200 persons. In Fig. S2, we compare the cumulative distribution of exponents for both the
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real network and the homogenized one. As can be seen, the distribution of exponents is
much more peaked around 0.5when the characteristics of all lines are homogeneous.

Supplementary Note: Dataset description

The transportation networks studied here were obtained from https://transitfeeds.
com. They contain the information on the transportation lines in all eight cities, which in-
cludes the location of the stops, the departure times and the lapse of times between stops.
Table S1 summarizes the transportation network in each city.

City Transportation nodes Walking nodes Modes of transport
Amsterdam 2386 811 3

Berlin 14086 3207 3
Boston 7285 2445 3
Madrid 7815 1634 2
Milan 6886 1919 3

New York City 20289 4207 2
Paris 16503 4921 4

San Francisco 3613 839 3

Supplementary Table S1: Transportation networks dataset description.

The capacities of the vehicles considered are 125 persons for the buses, 250 for tramways,
800 for the subway and 1000 for rail. In the case of San Francisco, the mini metro has a
capacity of 125 persons and the cable cars of 70 persons.

To obtain OD matrices we extracted geolocated data from Twitter. A sample of the
code used to query Twitter is

CONSUMER_KEY = ’ ’
CONSUMER_SECRET = ’ ’
ACCESS_KEY = ’ ’
ACCESS_SECRET = ’ ’
BOX = [ x0 , y0 , x1 , y1 ]
c l a s s MyStreamListener ( StreamListener ) :

def on_sta tus ( s e l f , s t a t u s ) :
p r i n t ( s t a t u s )

i f __name__ == ’ __main__ ’ :
auth = OAuthHandler (CONSUMER_KEY, CONSUMER_SECRET)
auth . s e t _ a c c e s s _ t o k e n (ACCESS_KEY, ACCESS_SECRET)
l i s t e n = MyStreamListener ( )
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stream = Stream ( auth , l i s t e n , gzip=True )
stream . f i l t e r ( l o c a t i o n s =BOX)

The details of the data extracted, with the number of users and tweets after the filtering
procedure, can be found in Table S2. The temporal window is between 2014 and 2017.

City Users Tweets
Amsterdam 20495 1022257

Boston 41799 3471767
Berlin 11209 1371876

Madrid 68794 3643358
Milan 22896 1060747
Paris 49149 6006542

NewYork 227594 19160913
SanFrancisco 44041 1993190

Supplementary Table S2: Twitter dataset description. Number of users and tweets ana-
lyzed in each city.

Supplementary Note: Robustness of the results

Here we test the robustness of the results shown in the main manuscript. More concretely
we investigate if the background has an effect on the scaling exponents. In Figure S3
(a) we compare the scaling exponents obtained in Paris with and without background.
As can be seen, there is a high agreement between them, as the lie near to the diagonal.
This results reinforce our analytical solution in lattices, where we have shown that that
the background affects the averagedelay but not the scaling. In the case of cities, the
background only adds a bit of noise.

In the simulations shown in the main manuscript the penalty for changing line is of 30
seconds. We have performed the same simulations in Paris imposing, instead, a penalty
of 120 seconds. As shown in Supplementary Fig.S3(b), the average delay obtained for a
penalty of 120 seconds are closely related to those obtained for a penalty 30 seconds, yet,
as expected, they are higher.

In Figure 4 of the main manuscript we provide a correlation between the total capacity
within a radius of 3 km. The radius which provides a better correlation varies with the
individuals in the perturbation. However, these correlations are stable for other values of
the radius. In Figure S4 we show how the correlation is still high for different values of
the radius.
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Supplementary Fig. S3: Robustness of the delay and scaling exponents.a Comparison of
the scaling exponents with (ρ = 8) and without background. b Comparison between the
average delay for a penalty of 30 seconds and of 120seconds for changing line. Each point
corresponds to one simulation in one location and one value of I.
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Supplementary Fig. S4: Robustness of the correlation between the average delay and the
total capacity within a radius. The values for the radius are a 1 km,b 1.5 km,c 2 km,d 2.5
km.
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Supplementary Note: Results in other cities

In this section, we provide the scaling results obtained in the other seven cities. Figures S5-
S8 depict the results of the scaling for the event individuals in Amsterdam, Berlin, Boston,
Madrid, Milan, New York City and San Francisco. Figure S9 provides the correlation
between ∆τav(I) for I = 50, 000 and the total capacity in a radius of 3km for a set of 100
locations in the cities of study. Finally, we examine the effect of the event location on the
background, Figures S10-S16 display the results of the scaling for the individuals in the
background.

Supplementary Fig. S5: Scaling for the event individuals in Amsterdam and Berlin. a Scal-
ing of congested nodes with I. b Distribution of the exponents of the scaling of congested
nodes. c Scaling of the average delay with I. d Distribution of the exponents of the scaling
of the average delay. e Map of the scaling exponents of the average delay. f Map of the
average delay for an event of 50, 000 individuals. The empty circles in the maps mark the
locations of the scaling. Simulations were performed with ρ = 1 (Amsterdam) and ρ = 10

(Berlin).
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Supplementary Fig. S6: Scaling for the event individuals in Boston and Madrid. a Scaling
of congested nodes with I. b Distribution of the exponents of the scaling of congested
nodes. c Scaling of the average delay with I. d Distribution of the exponents of the scaling
of the average delay. e Map of the scaling exponents of the average delay. f Map of the
average delay for an event of 50, 000 individuals. The empty circles in the maps mark
the locations of the scaling. Simulations were performed with ρ = 1 (Boston) and ρ = 10

(Madrid).

Supplementary Fig. S7: Scaling for the event individuals in Milan and New York City.
a Scaling of congested nodes with I. b Distribution of the exponents of the scaling of
congested nodes. c Scaling of the average delay with I. d Distribution of the exponents
of the scaling of the average delay. e Map of the scaling exponents of the average delay.
f Map of the average delay for an event of 50, 000 individuals. The empty circles in the
maps mark the locations of the scaling. Simulations were performed with ρ = 8 (Milan)
and ρ = 8 (New York City).
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Supplementary Fig. S8: Scaling for the event individuals in San Francisco. a Scaling of
congested nodes with I. b Distribution of the exponents of the scaling of congested nodes.
c Scaling of the average delay with I. d Distribution of the exponents of the scaling of the
average delay. e Map of the scaling exponents of the average delay. f Map of the average
delay for an event of 50, 000 individuals. The deviation in the exponent distribution from
0.5 is due to the finite size of the area considered. Even the scaling of the variables of the
panels (a) and (b) are not of so high quality in this case, with the curves near a plateau for
large I. The empty circles in the maps mark the locations of the scaling. Simulations were
performed with ρ = 2.
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Supplementary Fig. S9: Comparing the total capacity C(r) within a radius of 3 km and the
average delay ∆τav. ∆τav for an event with 50, 000 individuals as a function of the total
capacity within a radius of 3 km for the eight cities of study: a Paris, b Madrid, c Milan, d
Berlin, e New York City, f Boston, g San Francisco, h Amsterdam.S-19



Supplementary Fig. S10: Scaling for the background individuals in Amsterdam. Scaling
of the a delayed individuals, b origins affected and c average delay with the number event
individuals. Map of the d delayed individuals, e origins affected and f average delay for
an event of 50, 000 individuals. The empty circles in the maps mark the locations of the
scaling shown in a, b and c. The empty circles in the maps mark the locations of the
scaling.

Supplementary Fig. S11: Scaling for the background individuals in Berlin. Scaling of
the a delayed individuals, b origins affected and c average delay with the number event
individuals. Map of the d delayed individuals, e origins affected and f average delay
for an event of 50, 000 individuals. The empty circles in the maps mark the locations of
the scaling shown in a, b and c. The empty circles in the maps mark the locations of the
scaling.
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Supplementary Fig. S12: Scaling for the background individuals in Boston. Scaling of
the a delayed individuals, b origins affected and c average delay with the number event
individuals. Map of the d delayed individuals, e origins affected and f average delay
for an event of 50, 000 individuals. The empty circles in the maps mark the locations of
the scaling shown in a, b and c. The empty circles in the maps mark the locations of the
scaling.

Supplementary Fig. S13: Scaling for the background individuals in Madrid. Scaling of
the a delayed individuals, b origins affected and c average delay with the number event
individuals. Map of the d delayed individuals, e origins affected and f average delay
for an event of 50, 000 individuals. The empty circles in the maps mark the locations of
the scaling shown in a, b and c. The empty circles in the maps mark the locations of the
scaling.
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Supplementary Fig. S14: Scaling for the background individuals in Milan. Scaling of the
a delayed individuals, b origins affected and c average delay with the number event in-
dividuals. Map of the d delayed individuals, e origins affected and f average delay for an
event of 50, 000 individuals. The empty circles in the maps mark the locations of the scal-
ing shown in a, b and c. The empty circles in the maps mark the locations of the scaling.

Supplementary Fig. S15: Scaling for the background individuals in New York City.Scaling
of the a delayed individuals, b origins affected and c average delay with the number event
individuals. Map of the d delayed individuals, e origins affected and f average delay for
an event of 50, 000 individuals. The empty circles in the maps mark the locations of the
scaling shown in a, b and c. The empty circles in the maps mark the locations of the
scaling.
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Supplementary Fig. S16: Scaling for the background individuals in San Francisco. Scaling
of the a delayed individuals, b origins affected and c average delay with the number event
individuals. Map of the d delayed individuals, e origins affected and f average delay for
an event of 50, 000 individuals. The empty circles in the maps mark the locations of the
scaling shown in a, b and c. The empty circles in the maps mark the locations of the
scaling.
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