SUPPLEMENTARY DATA

Human BCDIN3D	265	KQTIETHPIPESLIEKGKEKNRLSFQKQ	292
Chicken BCDIN3D	254	NGSNHEGREPSEQQQ	268
Frog BCDIN3D	251	QRHPC	255
Zebrafish BCDIN3D	254	8	254
Fly BCDIN3D	238		238
Human MePCE	684	ARSPSH	689
Chicken MePCE	532	GQGDAP	537
Frog MePCE	546	SAPCADAEKPPASCSGAAPACGRGNMD	572
Zebrafish MePCE	640	RPSSLK	645
Fly_MePCE	1114	GDYTPNHVRWSDAYYPQTPYEAYRGIYATLFVHRMGGGGSSAGGSNSGHAQMLHLSSSSRSQNYDTPHYAGSASGSASCRQTPMYQPTYNPLETDSYQPS	1213

Table S1: Nucleotide sequences of the synthetic BCDIN3D genes

human BCDIN3D	ATGGCGGTTCCGACGGAACTGGATGGCGGCTCCGTCAAGGAAACCGCTGC
gene	GGAAGAAGAATCGCGCGTATTGGCCCCTGGTGCAGCACCATTTGGCAACTT
-	TCCGCACTATTCGCGCTTCCATCCACCTGAACAGCGATTGCGCCTGTTACCG
	CCGGAATTGCTGCGTCAGTTGTTTCCGGAGAGTCCGGAGAATGGTCCGATT
	CTGGGGCTCGATGTGGGGTGTAACAGTGGAGACTTATCGGTGGCTCTGTAC
	AAACACTTTCTGTCACTGCCCGATGGTGAGACATGCAGTGACGCCTCTCGG
	GAATTTCGTCTGTTATGTTGCGATATCGATCCGGTTCTTGTTAAACGCGCGG
	AAAAAGAGTGTCCGTTCCCAGACGCGCTGACCTTTATCACTCTTGACTTCA
	TGAACCAACGCACCCGGAAAGTGCTGCTCTCCTCCTTTCTGTCTCAGTTCG
	GTCGTTCTGTGTTCGATATCGGTTTCTGTATGAGCATTACGATGTGGATTCAT
	CTGAATCATGGCGATCATGGTCTGTGGGAGTTTCTGGCCCATCTCAGCTCAC
	TTTGCCACTACCTGTTAGTCGAGCCACAACCGTGGAAATGCTATCGTGCTGC
	AGCGAGACGTCTACGCAAACTAGGCCTGCATGACTTTGACCACTTTCACTC
	ACTGGCGATTCGCGGAGATATGCCGAACCAGATCGTACAGATTCTGACCCA
	AGATCACGGCATGGAACTGATCTGCTGCTTTGGGAATACTAGCTGGGATCGT
	AGCTTATTGCTTTTCCGTGCCAAACAGACCATTGAAACGCATCCCATTCCTG
	AAAGCCTGATAGAAAAAGGCAAAGAAAGAATCGCCTCAGCTTCCAAAAG
	CAGTAA
chicken BCDIN3D	ATGGCAGCCCCGACCAACGAAGAAGATGCAGCACTGGAACCGGGTGCCGC
gene*	ACCGTATGGCAACTTCCCGAACTATAGTCGTTTTCATCCGCCGGAGGGTCGC
8	TTACGTTTACTGCCTGGCGGTCTGCTGCGCCGTTTATTCCCGAGCGATGCCC
	GCCCGTTACTGGGTCTGGATGTGGGTTGCAATAGCGGTGAGCTGAGCGTGG
	CCCTGTATCGTCACCTGTTAGGCCTGCAAGAAGGTAAAGGCAGTCCGGAAC
	AACCGGCCGACGGCAAAGATCTGCACCTGCTGTGCTGCGACATTGATCCGG
	TTCTGATTGAACGCGCCCAGAAAAGCAGCCCGTTTCCGAATAGCATTAGCT
	TCGCCAACCTGGACATCATGGATAGCAGCAGCCGCGAACCGTTCCTGAGCA
	GCTACTTAAGCCGTTTTGGCCGCAGCACCTTCGACATTAGCTTCTGCATGAG
	CGTGACCATGTGGATTCACCTGAATCATGGTGATCGCGGTCTGGTGGAATTT
	CTGGCCTTCCTGAGCAGTCTGTGTCGTTATCTGCTGATCGAGCCTCAACCGT
	GGAAGTGCTATCGCGCCGCAGCACGTCGTCTGCGTAAACTGGGCCGCAATG
	ATTTCGATCATTTCCGCAGCCTGGCCATCAATGGCGATATGGCAGAGCGCAT
	TACCCAGATTCTGACCCGTGACTGCGCTATGGAACTGGTGTGCTGCTTTGGT
	ACCACCAGTTGGGATCGCAGCCTGCTGCTGTTTAAGAGCAATGGCAGCAAT
	CATGAGGGCCGCGAACCGAGCGAACAGCAATAA
frog BCDIN3D	ATGGAAGCACATGACGCCCATGTGAACAGCGAAGAAAGCGAAAACCCGGG
gene	TGCCGCCCGTATGGTAATTTTATCAACTACTATACTTTCAACCCGCCGGAA
-	AATCGTCTGAGTCTGATCCCGGAAGCCCTGTTACAAAATATTGGCTTTACCA
	GCGGCGATGGCGAACGCGTGCTGATGCTGGACGTTGGCTGCAACAGCGGC
	GATCTGAGCGTTGCCCTGTATAAACACCTGCTGAACAAAGAGGCCTGCACC
	AGCGATAGTCCGCGCCAGGAACTGTATATGCTGGGCTTCGACCTGGATCAG
	GATTTAATCCTGCGTGCCCAGACCAGCAACCCGTTTCCGCAGAACATCCAG
	TTCATTCCGCTGGACATCACCGATGATACAGAGAGCCGCGCCGTTTTACAA
	GCCTTTCTGGGCAAATTCGGTTGTTCTCGCTTTCATCTGAGCACCTGCTTTG
	CCGTGACCATGTGGGTGCATCTGAATCATGGTGATGCCGCATTTCTGAGTCT
	GCTGAGCCGCCTGGCCAGCCATAGCGAATATCTGCTGCTGGAAGCACAGCC
	GTGGAAATGCTATCGCAGTGCAGCCCGTCGCTTACGTAAACTGGGCCGCAG
	CGACTTTGACCATTTCAAAGCACTGAAGATCCGCGGCGATATGGCCGCACA
	TGCACGCGAGCATCTGGAGAAGCAGTGTAGCATGGAACTGGTGCAGTGCT
	TTGGCAACACCAGTTGGGACCGCAGCCTGCTGCTGTTTCGCCGCCAGTAA

zebrafish	ATGAGCAATAGCGAAAGCGTGCCGCACGTTGATCCTGGTGCAGCCCCGTAC
BCDIN3D gene	GGCAACTTCCCGAACTACTATAGCTTCAACCCGCCGGAAAACCGCATTAGC
_	CTGCTGCCGGCCGAACTGCTGCACAAGCTGTTCCGCAAACCGGCCGAGAG
	CGATAGTAGCACCCAGCCGCTGCTGGGTTTAGATGTGGGCTGCAATACCGG
	TGACCTGAGCGTTGCCCTGTACAACCATCTGACCGAACCTCACAGCAAGAG
	CAGCGATGTTCCGGTGCACTTTCTGTGCTGCGACATTGATCCGGACCTGATT
	ACCCGTGCACGTGCCAGCAACCCTTTTCCGGACTTCATCAGCTACGCAACC
	CTGGACATCATGGATAGCAGCGCCGTGCGTGGCCCGGTGAATGACTTCTTA
	CAACAGTTTGCCCGCAGCACCTTTGACATCGCCTTCTGCATGAGCGTGACC
	ATGTGGATTCATCTGAACTACGGCGATCAGGGCCTGGTGACCTTCCTGGGT
	CATCTGGCCAACCTGTGCGACTATCTGCTGGTGGAACCGCAACCGTGGAAA
	TGCTATCGTAGCGCAGCCCGTCGTCTGCGTAAACTGGGCCGTCAGGATTTC
	GATCACTTCCACAGCCTGAGCATTCGCGGCGACATGGCCGAGAACATCACC
	CAGATCTTAACAGCCGAAGGCGCCGCCAAACTGATCCACATCTTTGGCAAC
	ACCAGCTGGGACCGCAGCCTGCTGCTGTTTAAAATCCAGCGCCATCCGTGC
	ТАА
fly BCDIN3D gene	ATGGATATTCGTAATAATGATCCGGGCGCCGTGCAATATGGCAATTTTTCAA
	CTATTACCAGTTTAGCAGCGCAGCCGAGCGCGTGAAGTTACTGCCGGATGC
	CGATATTTGGCTGCCTGCCCTGGAGGACGGTGAGACCCAGAAAGATAAACC
	GTATTTTATTCTGGATGTGGGTTGCAACTGCGGCGTTCTGACCCAGCTGATG
	CACAAGTACCTGGAAGAACGTCTGCATCGCAGCGTGAAAGTGCTGGGCGT
	TGACATTGATCCGCGCCTGATCCAACGCGCCAGCGAGGAAAACGAGAGCC
	CGAAAGACGTGAGCTATGCCTGCGTGGACGTGCTGGATGATGAGGCCTTTG
	AAAGCGTGAAAACCTATATGGAAGTGAACAACCTGGAGAAGTTCGACGCC
	ATCTGCTGCTATAGCATCACCATGTGGATTCATCTGAATCATGATCAGGG
	CCTGCGCTTCTTCTTACAAAAACTGAGCAACCTGGCCGAACTGCTGGTGGT
	GGAACCGCAGCCGTGGAAATGCTATCAGAAAGCCGAGCGCCGCCTGAAAA
	AAGCCGGCGAAATCTTCCCGCTGTTTCTGGAACTGAAATGGCGCAGCGATG
	TGGACTTACAAATCCAGAAATACCTGGAGGAGAGCCTGGACCGCCGCAAA
	ATCTTTAAGAGCGCCCCGACCAAGTGGCAGCGTAAAATCTGCTTTTATCGCT
	AA

* The C-terminal residue of Chicken BCDIN3D (Q268) was omitted.

Table S2: List of synthetic oligonucleotides

hBCDIN3D_fromE14_Fw_NdeI	AGCTAGCTCATATGGAAACCGCTGCGGAAGAAG
hBCDIN3D_toK284_Rv_XhoI_nostop	AGCTCTCGAGCTTTTCTTTGCCTTTTTCTATC
bcdin3d-R118A-FW	GCCGCGGAAAAAGAGTGTCCGTTCCCAGAC
bcdin3d-R118A-RV	TTTAACAAGAACCGGATCGATATCGCAAC
bcdin3d-K201A-FW	GCATGCTATCGTGCTGCAGCGAGACGTC
bcdin3d-K201A-RV	CCACGGTTGTGGCTCGACTAACAGGTAG
bcdin3d-R204A-FW	GCACCTGCAGCGAGACGTCTACGCAAAC
bcdin3d-R204A-RV	ATAGCATTTCCACGGTTGTGGCTCGAC
Double201-204-RV	ATAGCATGCCCACGGTTGTGGCTCGAC
bcdin3d-R208A-FW	GCACGTCTACGCAAACTAGGCCTGCATGAC
bcdin3d-R208A-RV	CGCTGCAGCACGATAGCATTTCCACGG
bcdin3d-R209A-FW	GCACTACGCAAACTAGGCCTGCATGAC
bcdin3d-R209A-RV	TCTCGCTGCAGCACGATAGCATTTCCA
Double208-209-RV	TGCCGCTGCAGCACGATAGCATTTCCAC
bcdin3d-R211A-FW	GCCAAACTAGGCCTGCATGACTTTGACCAC
bcdin3d-R211A-RV	TAGACGTCTCGCTGCAGCACGATAGC
bcdin3d-K212A-FW	GCACTAGGCCTGCATGACTTTGACCAC
bcdin3d-K212A-RV	GCGTAGACGTCTCGCTGCAGCACGATAG
Double211-212-RV	GGCTAGACGTCTCGCTGCAGCACGATAG
bcdin3d-R257A-FW	GCAAGCTTATTGCTTTTCCGTGCCACC
bcdin3d-R257A-RV	ATCCCAGCTAGTATTCCCAAAGCAGCAG
46_Rev	CTGTTCAGGTGGATGGAAGCGCGAATAGTG
R46A_For	GCATTGCGCCTGTTACCGCCGGAATTGCTG
72-76 Rev	GAGCCCCAGAATCGGACCATTCTCCGG
D72A For	GCTGTGGGGTGTAACAGTGGAGACTTATCG
G74A_For	GATGTGGCGTGTAACAGTGGAGACTTATCG
72AG74A_For	GCTGTGGCGTGTAACAGTGGAGACTTATCG
N76A_For	GATGTGGGGTGTGCCAGTGGAGACTTATCGGTG
110-111_Rev	GCAACATAACAGACGAAATTCCCG
D110A For	GCTATCGATCCGGTTCTTGTTAAACGCGCG
I111G_For	GATGGCGATCCGGTTCTTGTTAAACGCGCG

135-136_Rev	AAGAGTGATAAAGGTCAGCGCGTC
D135A_For	GCCTTCATGAACCAACGCACCCGGAAAGTG
F136G_For	GACGGCATGAACCAACGCACCCGGAAAGTGCTG
165-166_Rev	CATACAGAAACCGATATCGAACAC
S165A_For	GCCATTACGATGTGGATTCATCTGAATCATGGC
I166G_For	AGCGGTACGATGTGGATTCATCTGAATCATGGC
hBCDIN3D_Y37A_m_Fw	GCGTCGCGCTTCCATCCACCTGAACAGCGATTGC
hBCDIN3D_Y37F_m_Fw	TTTTCGCGCTTCCATCCACCTGAACAGCGATTGC
hBCDIN3D_Y37F_Rv	GTGCGGAAAGTTGCCAAATGGTGCTGCACCAGGG
hBCDIN3D_R39F40A_m_Fw	CGCGCGCATCCACCTGAACAGCGATTGCGCCTG
hBCDIN3D_R39F40A_Rv	CGAATAGTGCGGAAAGTTGCCAAATGGTGCTGCAC
hBCDIN3D_W169F_m_Fw	TTTATTCATCTGAATCATGGCGATCATGGTCTG
hBCDIN3D_W169F_Rv	CATCGTAATGCTCATACAGAAACCGATATCGAAC
hBCDIN3D_Q198A_m_Fw	GCGCCGTGGAAATGCTATCGTGCTGCAGCGAGACG
hBCDIN3D_Q198A_Rv	TGGCTCGACTAACAGGTAGTGGCAAAGTGAGCTG

Supplementary Figure Legends

Supplementary Figure S1: Sequence alignments of BCDIN3Ds and MePCEs from various organisms.

Amino acid sequences of human BCDIN3D (HsBCDIN3D) and MePCE (HsMePCE) are aligned with those of BCDIN3D or MePCE from other organisms: *Gallus gallus, Xenopus laevis, Danio rerio*, and *Drosophila melanogaster*. Secondary structural elements of the human BCDIN3D (present study) and human MePCE (PDB ID: 6DCC) are depicted above and below the sequences, respectively. The α -helices and β -sheets are shown as bars. tRNA^{His}-interacting residues and SAM-interacting residues mutated in the biochemical assays are indicated.

Supplementary Fig. 2: tRNA^{His} methylation by the BCDIN3Ds.

(A) *In vitro* methylations of the human tRNA^{His} transcript by BCDIN3D proteins from various organisms. tRNAs were separated by gel electrophoresis under denaturing conditions, and stained with toluidine blue (upper). ¹⁴C-methyated tRNAs were detected with a BAS-5000 imager (lower), and the relative ¹⁴C-band intensities were calculated. The intensity of ¹⁴C-methyated tRNA by human BCDIN3D was designated as 100. (C) *In vitro* methylation assay of the human tRNA^{His} transcript with 5'-triphosphate (ppp-tRNA^{His}). ppp-tRNA^{His} cannot be methylated by BCDIN3D.

Supplementary Fig. 3: Representative images of electron densities.

2Fo-Fc electron density contoured at 1.0 σ around (A) the SAH molecule and (B) residues corresponding to the β 1-strand and α 2-helix (residues I68-F88).

Supplementary Fig. 4: Sequence alignments of the Rossmann fold family methyltransferases.

The amino acid sequences of human BCDIN3D (hBCDIN3D) and human MePCE (hMePCE, PDB ID: 6DCC), human METTL16 (hMETTL16, PDB ID: 6DU4), human TRAM61A (hTRAM61A, PDB ID: 5CCB), human NSUN6 (hNSUN6, PDB ID: 5WWS), and mouse DNMT1 (mDNMT1,

PDB ID: 4DA4) are aligned. Secondary structural elements of hBCDIN3D are depicted above the sequences. The α -helices and β -strands are shown as bars. tRNA^{His}-interacting residues and SAM-interacting residues mutated in the biochemical assays are indicated by blue circles and green triangles, respectively.

Supplementary Fig. 5: Structures of Rossmann fold family methyltransferases.

(A) - (F) Structures of (A) human BCDIN3D, (B) human MePCE (PDB ID: 6DCC), (C) human METTL16 (PDB ID: 6DU4), (D) human TRAM61A (PDB ID: 5CCB), (E) human NSUN6 (PDB ID: 5EES), and (F) mouse DNMT1 (PDB ID: 4DA4).

Supplementary Table S1: Nucleotide sequences of synthetic BCDIN3D genes.

Supplementary Table S2: List of synthetic oligonucleotides.