### **Supplementary Data**

## Secondary nucleotide messenger c-di-GMP exerts a global control on natural product biosynthesis in streptomycetes

# Roman Makitrynskyy<sup>1</sup>, Olga Tsypik<sup>1</sup>, Desirèe Nuzzo<sup>1</sup>, Thomas Paululat<sup>2</sup>, David L. Zechel<sup>3</sup> and Andreas Bechthold<sup>1\*</sup>

<sup>1</sup>Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg, Germany

<sup>2</sup>Organic Chemistry, University of Siegen, Siegen, Germany

<sup>3</sup>Department of Chemistry, Queen's University, Kingston, Ontario, Canada

\*Correspondence to Andreas Bechthold

## SUPPLEMENTARY TABLES

| Supplementary | Table S1. | Strains an | d plasmids | used in | this study |
|---------------|-----------|------------|------------|---------|------------|
|---------------|-----------|------------|------------|---------|------------|

| Strain / Plasmid                                                             | Characteristics                                                                                                                   | Source /<br>Reference       |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Strains                                                                      |                                                                                                                                   |                             |
| XL1Blue                                                                      | General cloning host                                                                                                              | Agilent                     |
| ET12567 (pUZ8002)                                                            | Host used for <i>E. coli-Streptomyces</i> intergeneric                                                                            | 1                           |
|                                                                              | conjugation, methylation deficient                                                                                                |                             |
| BL21 (DE3) Star <sup>TM</sup>                                                | Host for protein production                                                                                                       | Thermo Fisher<br>Scientific |
| BW25113 (pIJ790)                                                             | Host for recombineering experiments                                                                                               | 1                           |
| S. ghanaensis ATCC14672                                                      | Wild type (WT) moenomycin producer                                                                                                | ATCC                        |
| S. ghanaensis $\Delta bldA_{gh}$                                             | WT derivative, $bldA_{gh}$ deletion                                                                                               | 2                           |
| S. ghanaensis $\Delta cdgB_{gh}$                                             | WT derivative, $cdgB_{gh}$ deletion                                                                                               | This work                   |
| S. ghanaensis $\Delta rmdB_{gh}$                                             | WT derivative, $rmdB_{gh}$ deletion                                                                                               | This work                   |
| S. ghanaensis $\Delta bldD_{gh}$                                             | WT derivative, <i>bldD</i> <sub>gh</sub> deletion                                                                                 | This work                   |
| S. ghanaensis $\Delta wblA_{gh}$                                             | WT derivative, <i>wblA</i> <sub>gh</sub> deletion                                                                                 | This work                   |
| S. ghanaensis $\Delta bldD_{gh}$<br>$\Delta wblA_{gh}$                       | $\Delta bldD_{gh}$ derivative, $wblA_{gh}$ deletion                                                                               | This work                   |
| <i>S. ghanaensis</i> ∆ <i>rmdB</i> <sub>gh</sub><br><i>pks3</i> :: pKCpks-vn | $\Delta rmdB_{gh}$ derivative, <i>pks3</i> inactivation                                                                           | This work                   |
| S. ghanaensis ∆rmdB <sub>gh</sub><br>fkbH:: pKCfkbH-vn                       | $\Delta rmdB_{gh}$ derivative, <i>fkbH</i> inactivation                                                                           | This work                   |
| S. albus J1074                                                               | Commonly used heterologous host                                                                                                   | 3                           |
| <i>S. albus rmdB<sub>al</sub>::pKC1132</i>                                   | J1074 derivative, <i>rmdB<sub>al</sub></i> inactivation                                                                           | This work                   |
| Bacillus cereus                                                              | Moenomycin-sensitive test-culture                                                                                                 | ATCC                        |
| Plasmids                                                                     |                                                                                                                                   |                             |
| pET28a(+)                                                                    | Cloning vector for His-tagged protein                                                                                             | Novagen                     |
|                                                                              | production in <i>E. coli</i> , kanamycin resistance                                                                               |                             |
| pET24b                                                                       | Cloning vector for His-tagged protein                                                                                             | Novagen                     |
| -                                                                            | production in <i>E. coli</i> , kanamycin resistance                                                                               | C C                         |
| pET28a-pde                                                                   | pET28a derived plasmid for production of N-<br>His-tagged PDE-domain of RmdB <sub>gh</sub> (cytosolic<br>part without DGC-domain) | This work                   |
| pET28a-pde-dgc                                                               | pET28a derived plasmid for production of N-<br>His-tagged DGC-PDE-domains of RmdB <sub>gh</sub><br>(without transmembrane part)   | This work                   |
| pET28a-dgc                                                                   | pET28a derived plasmid for production of N-<br>His-tagged DGC-domain of RmdB <sub>gh</sub> (cytosolic<br>part without PDE-domain) | This work                   |
| pET24b-dgc-274                                                               | pET24b derived plasmid for production of C-<br>His-tagged DGC-domain of RmdB <sub>gh</sub> (cytosolic part without PDE-domain)    |                             |
| pET24b-dgc-302                                                               | pET24b derived plasmid for production of C-<br>His-tagged DGC-domain of RmdB <sub>gh</sub> (cytosolic<br>part without PDE-domain) | This work                   |

| pBluescript SK(-)    | Vector for routine cloning                                      | Addgene     |
|----------------------|-----------------------------------------------------------------|-------------|
| pBlcdgB              | pBlueScript carrying <i>cdgB<sub>gh</sub></i> with 2-kb flanks  | This work   |
| pBlrmdB              | pBlueScript carrying <i>rmdB</i> <sub>gh</sub> with 3-kb flanks | This work   |
| pBlbldD              | pBlueScript carrying <i>bldD<sub>gh</sub></i> with 3-kb flanks  | This work   |
| pBlwblA              | pBlueScript carrying <i>wblA<sub>gh</sub></i> with 3-kb flanks  | This work   |
| pBlcdgB::Am          | pBlcdgB carrying <i>cdgB<sub>gh</sub></i> replaced by           | This work   |
|                      | apramycin cassette                                              |             |
| pBlrmdB::Am          | pBlrmdB carrying <i>rmdB</i> <sub>gh</sub> replaced by          | This work   |
|                      | apramycin cassette                                              |             |
| pBlbldD::Am          | pBlbldD carrying $bldD_{gh}$ replaced by                        | This work   |
| a Dhaibh 1 A an A an | apramycin cassette                                              | This ment   |
| pBIwbIA::Am          | pBIwbIA carrying <i>wbIA<sub>gh</sub></i> replaced by           | I his work  |
| nI FRECI             | Carrying anramycin cassette with lovP-sites for                 | Prof        |
| period               | gene replacement                                                | Luzhetskyv. |
|                      | Serie repriseinen                                               | Saarland    |
|                      |                                                                 | University  |
| pKGLP2               | Suicide vector for gene replacement                             | 4           |
| pKGLP2cdgB::Am       | $cdgB_{gh}$ knockout construct                                  | This work   |
| pKGLP2rmdB::Am       | <i>rmdB</i> <sub>gh</sub> knockout construct                    | This work   |
| pKGLP2bldD::Am       | <i>bldD</i> <sub>gh</sub> knockout construct                    | This work   |
| pKGLP2wblA::Am       | wblA <sub>gh</sub> knockout construct                           | This work   |
| pUWLCre              | Carrying <i>cre</i> under <i>ermEp</i>                          | 5           |
| pKC1132              | Suicide vector for gene replacement                             | 6           |
| pKCrmdBal-vn         | <i>rmdB</i> <sub>al</sub> inactivation construct                | This work   |
| pKCpks-vn            | <i>pks3</i> inactivation construct                              | This work   |
| pKCfkbH-vn           | <i>fkbH</i> inactivation construct                              | This work   |
| pSET152              | φC31-based integrative vector                                   | 6           |
| pSETcdgB             | pSET152 carrying $cdgB_{gh}$                                    | This work   |
| pSETrmdB             | pSET152 carrying $rmdB_{gh}$                                    | This work   |
| pSETbldD             | pSET152 carrying <i>bldD</i> <sub>gh</sub>                      | This work   |
| pKC1139              | Streptomyces oligocopy vector                                   | 7           |
| pKCrmdB              | pKC1139 carrying <i>rmdB</i> <sub>gh</sub>                      | This work   |
| pTES                 | pSET152 carrying <i>ermEp</i>                                   | 8           |
| pTESacdgB            | pTES carrying $cdgB_{gh}$                                       | This work   |
| pTESabldD-expI       | pTES carrying <i>bldD</i> <sub>gh</sub>                         | This work   |
| pGUS                 | Promoter probe vector                                           | 4           |
| padpAscript          | pGUS, <i>adpAghp-gusA</i> fusion                                | 2           |
| pmoeE5script         | pGUS, moeE5p-gusA fusion                                        | 2           |
| pbldAscript          | pGUS, <i>bldA<sub>gh</sub>p-gusA</i> fusion                     | 2           |
| prmdBscript          | pGUS, <i>rmdA<sub>gh</sub>p-gusA</i> fusion                     | This work   |
| pGUSHL4aadA          | pTES-derivative for translational fusion 4                      |             |
|                      | experiments                                                     |             |
| prmdBtransl          | pGUSHL4aadA, <i>rmdB<sub>gh</sub>-gusA</i> fusion               | This work   |
| pSETrmdB-CTG         | pSETrmdB, TTA $\rightarrow$ CTG substitution                    | This work   |
| prmdB-CTGtransl      | pGUSHL4aadA, $rmdB_{gh}$ (TTA $\rightarrow$ CTG) -gusA          | This work   |

|                  | fusion                                                                 |           |
|------------------|------------------------------------------------------------------------|-----------|
| prmdBcontr       | pGUSHL4aadA, promoterless <i>rmdB</i> <sub>gh</sub> -gusA              | This work |
|                  | fusion                                                                 |           |
| prmdB-CTGcontrol | pGUSHL4aadA, promoterless <i>rmdB</i> <sub>gh</sub>                    | This work |
|                  | $(TTA \rightarrow CTG)$ -gusA fusion                                   |           |
| pIJ10257         | φBT1-based integrative vector                                          | 9         |
| pIJ10350         | pIJ10257 carrying <i>cdgB<sub>sco</sub></i> under <i>ermEp</i> control | 10        |

| Primer name           | Sequence                         | Purpose                                |
|-----------------------|----------------------------------|----------------------------------------|
| cdgB for              | GTGGTCACCCCAGCTCCAG              | $cdgB_{gh}$ gene deletion              |
| cdgB rev              | CTCCCACGAGCCGCTG                 |                                        |
| rmdB_for              | aaatctagaGACAACACCTTCAACGACGAC   | $rmdB_{gh}$ gene deletion              |
| rmdB_rev              | aaagaattcCGGTGAAACTTCCCTCTCAG    |                                        |
| bldD-hz-f             | AGAAGAGGTTGACCACGGTC             | <i>bldD<sub>gh</sub></i> gene deletion |
| bldD-hz-r             | GTCGAGCTGACCGTCCAG               |                                        |
| wblA_for              | aaatctagaCGTTGCCCTGGACCACG       | <i>wblA<sub>gh</sub></i> gene deletion |
| wblA_rev              | aaagatatcCCGAGGAGTACGCCGAGC      |                                        |
| cdgB_kn_for           | CTTGATTCACTCCGAGGTCTCGGGGGGGAGG  | Apramycin cassette for                 |
|                       | GCGAGGATGGATATCTCTAGATACCG       | <i>cdgB<sub>gh</sub></i> replacement   |
| cdgB_kn_rev           | CTTGACCTGCGGTTCACCCCGCATGCGACCC  |                                        |
|                       | GCCGTTCAAACAAAAGCTGGAGCTC        |                                        |
| rmdB_kn_for           | CGCGTGGCGTGGGCACCGCCGGCTGTGAGA   | Apramycin cassette for                 |
|                       | GGGACGGGAATGGATATCTCTAGATACCG    | <i>rmdB</i> <sub>gh</sub> replacement  |
| rmdB_kn_rev           | CGCCGACGGCGGACCCCACGGTGTCCGCCT   |                                        |
|                       | CCGGGGCGTCAAACAAAAGCTGGAGCTC     |                                        |
| bldD_kn_for           | AACCCAACCAGCCGCGTCGACACAGTGCCG   | Apramycin cassette for                 |
|                       | GGGAGCCATATGGATATCTCTAGATACCG    | <i>bldD</i> <sub>gh</sub> replacement  |
| bldD_kn_rev           | GCGGTACGTTTCTGCTCGACCCGCGGAAGG   |                                        |
|                       | CCGTGCGCTCAAACAAAAGCTGGAGCTC     |                                        |
| wblA_kn_for           | TTCGTTCAGGGAGCAGCGCAGAACAGGGCC   | Apramycin cassette for                 |
|                       | AAGGCGGTGGGATATCTCTAGATACCG      | <i>wblA<sub>gh</sub></i> replacement   |
| wblA_kn_rev           | GACCCCCGCGGGTGACCGAGGACCCCTGAG   |                                        |
|                       | GAACCCTCAAACAAAAGCTGGAGCTC       |                                        |
| <u>xnr_1338_vn1_f</u> | aaatctagaCCTCGACGAGGCCGAACAG     | XNR_1338 disruption                    |
| <u>xnr_1338_vn1_r</u> | aaagatatcTCCAGCCCGGCGACGTG       |                                        |
| xnr1338_check         | CGACTCCACTCTCTGGATCG             | Confirmation of                        |
| rmdB_EAL_for          | GCCGGCACCGGCTACTCCTCC            | XNR_1338 disruption                    |
| pks_vn_for            | aaatctagaCTGGTCGCCATCCACCTG      | pks3 disruption                        |
| pks_vn_rev            | aaagatatcGGAAAGACGAACACCGTCCTG   | A 1 ** 1                               |
| fkbH_RT_for           | aaatctagaCCGAACGGCTCAACTTCG      | <i>fkbH</i> disruption                 |
| fkbH_RT_rev           | aaagatatcGTCGCCAGCAACTTGAGGTG    |                                        |
| cdgB_compl_for        | aaatctagaTCCAGGGAGACCGACAG       | $\Delta cdgB_{gh}$                     |
| cdgB_compl_rev        | aaagaattcTAGGTGCGGATCGAATG       | complementation /                      |
| 1D 1.0                |                                  | mutant confirmation                    |
| rmdB_compl_for        | aaatctaga1CGAAGAAGACG1CG11CG     | $\Delta rmaB_{gh}$                     |
| rmdB_exp_for          |                                  | complementation /                      |
| rmdB_exp_rev          | aaagaattcGGGIGAGIGIGIGAGIGGIIIGG | /mub <sub>gh</sub> overexpression      |
| hldD commt for        |                                  |                                        |
| bldD_compl_rov        |                                  | $\Delta O(uD_{gh})$                    |
|                       | aaagaaluooTACOTTTCTOCTCOACC      | mutant confirmation                    |
| cdgB evn for          | aaaggtaccATTCACTCCGAGGTCTCG      | cdgRah overexpression                  |
| cdgB evn rev          | aaaaatatcATCCTTCCCTTGACCTGC      |                                        |
| hldD exp_for1         | aaaggtaccGCGTCGACACAGTGCC        | hldD_h overexpression                  |
| hldD exp_rev          | aaaaatatcGGTACGTTTCTGCTCGACC     |                                        |
| rmdB script rev       | aaaggtaccGCCACGCGGCCCGATG        | rmdR <sub>ak</sub> promoter            |
| inde_outpi_iov        |                                  |                                        |

## Supplementary Table S2. Oligonucleotides used in this study

| rmdB_compl_for  | aaatctagaTCGAAGAAGACGTCGTTCG   | amplification /                          |
|-----------------|--------------------------------|------------------------------------------|
| rmdB transl rev | aaagatatcGCCGACCCGCCCGTG       | stopcodon-free <i>rmdB</i> <sub>gh</sub> |
|                 |                                | amplification                            |
| rmdB_contr_for  | aaatctagaTGGGCACCGCCGGCTG      | Promoterless <i>rmdB</i> <sub>gh</sub>   |
|                 |                                | amplification                            |
| rmdB_CTG_for    | CTGCTGCCGGTCGCCGACTC           | $rmdB_{gh}$ TTA $\rightarrow$ CTG        |
| rmdB_CTG_rev    | GACGGCGAACTCGTCG               | direct mutagenesis                       |
| wblA check rev  | aaagaattcCACACGTGACCGCTTCAC    | $\Delta w b l A_{gh}$ mutant             |
| wblA RT for     | CCTCGATTCGGGAGAGGAC            | confirmation/ RT-PCR                     |
|                 |                                | primers                                  |
| wblA RT rev     | CGGTCTCCAGCAGCCTG              | wblA <sub>gh</sub> RT-PCR                |
|                 |                                | primers                                  |
| desaA vn for    | CACCCAGTCCAACCTCCAG            | desaA RT-PCR                             |
| desA vn rev     | AGCGTCATCCACAGCTTGAG           | primers                                  |
| desE vn for     | CGAGTCCTCGAAGGACAAG            | <i>desaE</i> RT-PCR                      |
| desE vn rev     | GTGCCAGAGACGTAGAAGATC          | primers                                  |
| moeE5 RT for    | CATCTCGACGGTCTTCCAC            | moeE5 RT-PCR                             |
| moeE5 RT rev    | ATGGAGACCACTTCGTTGAC           | primers                                  |
| moeO5 RT for    | GGAAGAGCTTCCTCGAGAC            | moeO5 RT-PCR                             |
| moeO5 RT rev    | CTGTCGAGGTACTCGGTGA            | primers                                  |
| moeGT5 RT for   | CTGGACGGACGACGACATC            | moeGT5 RT-PCR                            |
| moeGT5 RT rev   | CAGAACCAGGTGAAGTGCAG           | primers                                  |
| adpA RT for     | GCTCGATCACCTCACCAC             | adpAgh RT-PCR                            |
| adpA RT rev     | AGCGTCTCCACGTCGAAC             | primers                                  |
| hrdB gh for     | CGACTACACCAAGGGCTACAA          | hrdB <sub>gh</sub> RT-PCR                |
| hrdB gh rev     | TGGTCTTGGACTCGATCTGG           | primers                                  |
| cdgB EMSA for   | TCCAGGGAGACCGACAG              | <i>cdgB<sub>gh</sub>p</i> EMSA           |
| cdgB_EMSA_rev   | CGAGACCTCGGAGTGAATC            | primers                                  |
| rmdB_EMSA_for   | TCGAAGAAGACGTCGTTCG            | $rmdB_{gh}p$ EMSA                        |
| rmdB_EMSA_rev   | GCCACGCGGCCCGATG               | primers                                  |
| wblA_EMSA_f1    | GGGCCACGTATCAATACGTCC          | wblAgh p EMSA                            |
| wblA_EMSA_rev   | TTCATCCGGATCGGTAGTGC           | primers                                  |
| BldD-NdeI       | AATTAACATATGTCCAGCGAATACGCCAAA | Production of His-                       |
|                 | С                              | tagged BldD                              |
| BldD-XhoI       | AAACTCGAGTCAGCTCTCCTCGTGGGAGG  |                                          |
| YdeH-NcoI       | AAACCATGGCTATCAAGAAGACAACGGAA  | Production of His-                       |
| YdeH-XhoI       | TATCTCGAGAACTCGGTTAATCACGTTTT  | tagged YdeH                              |
| EAL_for         | AAAAAACATATGGGCCTCACCCTCGTCCTG | Production of His-                       |
| EAL rev         | AAACTCGAGTCAGCCGACCCGCCCCG     | tagged PDE                               |
| GGDEF for       | AAAAAACATATGCAGCTGCGCGACCCGCTG | Production of His-                       |
| DGC-274         | AATTAACATATGGCCCTGCTCGGCATAGC  | tagged DCG                               |
| DGC-302         | AATTAACATATGGCCCTGGACTCCACCCTG |                                          |
| GGDEF_rev       | AAACTCGAGTCAGTTGGAGTCGCGCTTGGA |                                          |
| _               | CTC                            |                                          |
| GGDEF_for /     | See above                      | Production of His-                       |
| EAL rev         |                                | tagged DGC-PDE                           |

| Gene                      | Protein domain architecture | Orthologues       |
|---------------------------|-----------------------------|-------------------|
| ssfg_00725                | PAS-PAC-GGDEF-EAL           | rmdA, sven6830    |
| ssfg_02181                | 9 TM-PAS-GGDEF-EAL          | sco5511, sven5187 |
| $ssfg_02196 (rmdB_{gh})$  | 6 TM-GGDEF-EAL              | rmdB, sven5165    |
| ssfg_02343                | GGDEF                       | sco5345, sven3999 |
| ssfg_02459                | 5 TM-HD-GYP                 | sven4873          |
| ssfg_02460                | 2 TM-HD-GYP *               | sven4872          |
| ssfg_02707                | GAF-GGDEF                   | sco4931, sven4602 |
| $ssfg_{03956}(cdgB_{gh})$ | GAF-PAS-PAC-GGDEF           | cdgB, sven4034    |
| ssfg_04551                | PAS-GGDEF-EAL               | cdgA, sven2604    |

Supplementary Table S3. C-di-GMP turnover proteins encoded by S. ghanaensis

PAS/PAC/GAF-signal domains, GGDEF-cyclic diguanylate cyclase domain, TMtransmembrane domain, EAL/GYP- diguanylate phosphodiesterase domains.

\* The entire domain architecture cannot be predicted due to the incomplete genome sequence; partial in the middle of a contig; missing start

| №   | Туре                                                | From, bp  | To, bp    | Most similar known                | Similarity |  |
|-----|-----------------------------------------------------|-----------|-----------|-----------------------------------|------------|--|
| The | The following regions are from record NZ_DS909641_1 |           |           |                                   |            |  |
| 1   | TIPKS                                               | 63 385    | 149 131   | Bafilomycin t1pks                 | 88%        |  |
| 2   | T3PKS                                               | 177 249   | 217 834   | Alkylresorcinol t3pks             | 100%       |  |
| 3   | NRPS                                                | 262 340   | 319 857   | Stenothricin NRPS                 | 13%        |  |
| 4   | bacteriocin                                         | 582,746   | 590,945   | Informatipeptin,<br>lanthipeptide | 28%        |  |
| 5   | NRPS                                                | 803,107   | 868,453   | Laspartomycin, NRPS               | 20%        |  |
| 6   | terpene                                             | 987,917   | 1,012,309 | Hopene, terpene                   | 84%        |  |
| 7   | phosphoglycolipid                                   | 1,397,592 | 1,425,782 | Teichomycin, other                | 77%        |  |
| 8   | siderophore                                         | 1,522,750 | 1,532,083 |                                   |            |  |
| 9   | terpene                                             | 1,534,488 | 1,554,917 |                                   |            |  |
| 10  | ladderane,<br>arylpolyene,<br>NRPS                  | 1,555,405 | 1,674,468 | Skyllamycin, NRPS                 | 48%        |  |
| 11  | terpene                                             | 1,772,312 | 1,791,540 | Geosmin, terpene                  | 100%       |  |
| 12  | bacteriocin                                         | 1,811,766 | 1,822,674 |                                   |            |  |
| 13  | T1PKS                                               | 1,827,870 | 1,875,244 | Enduracidin, NRPS                 | 29%        |  |
| 14  | siderophore                                         | 2,146,205 | 2,157,801 |                                   |            |  |
| 15  | terpene                                             | 2,717,248 | 2,736,624 | Albaflavenone, terpene            | 100%       |  |
| 16  | siderophore                                         | 4,982,725 | 4,994,497 | Desferrioxamine, other            | 66%        |  |
| 17  | melanin                                             | 5,060,112 | 5,070,567 | Melanin, other                    | 100%       |  |
| 18  | lassopeptide                                        | 5,557,477 | 5,579,934 |                                   |            |  |
| 19  | ectoine                                             | 6,039,673 | 6,050,071 | Ectoine, other                    | 100%       |  |
| 20  | NRPS,T2PKS                                          | 6,867,521 | 6,981,858 | Spore pigment, t2pks              | 66%        |  |
| 21  | terpene                                             | 7,189,411 | 7,214,649 | Carotenoid, terpene               | 54%        |  |
| 22  | lanthipeptide                                       | 7,266,431 | 7,289,088 | SapB, lanthipeptide               | 75%        |  |
| 23  | NRPS, amglyccycl                                    | 7,483,579 | 7,534,897 | Guadinomine, nrps-t1pks           | 7%         |  |
| 24  | T3PKS,fused                                         | 7,647,895 | 7,688,893 | Pheganomycin, nrps-ripp           | 47%        |  |
| 25  | NRPS-like,furan                                     | 7,745,399 | 7,788,860 | Elaiophylin, t1pks                | 20%        |  |
| 26  | bacteriocin                                         | 7,882,687 | 7,894,588 |                                   |            |  |
| 27  | hglE-KS                                             | 7,916,828 | 7,965,229 | Esmeraldin, other                 | 8%         |  |
| The | The following regions are from record NZ_DS999642.1 |           |           |                                   |            |  |
| 28  | other, NRPS,<br>T1PKS,<br>butyrolactone             | 3,189     | 102,884   | C-1027, polyketide                | 62%        |  |
| 29  | other, T1PKS,<br>NRPS                               | 168,304   | 231,283   | Merochlorin, t3pks-<br>terpene    | 19%        |  |

**Supplementary Table S4.** Putative biosynthetic gene clusters encoded by the *S. ghanaensis* genome identified with antiSMASH (ver. 5.0.0beta1-d4ff879)

### SUPPLEMENTARY FIGURES



**Supplementary figure S1.** S. ghanaensis  $\Delta cdgB_{gh}$  (2) displays precocious onset into sporogenesis compared to the wild type strain (1). Overexpression of  $cdgB_{gh}$  (4) blocked development at aerial mycelium level compared to a strain bearing an empty vector (3). Strains were grown for 4 days on the oatmeal agar medium.



**Supplementary figure S2.** *In vitro* enzymatic assays with differently truncated versions of RmdB<sub>gh</sub> revealed only PDE activity. (A) General scheme of the differently truncated RmdB<sub>gh</sub> production. (B) HPLC chromatograms of *in vitro* reactions to test DGC activity. (C) HPLC chromatograms of *in vitro* reactions to test PDE activity. MS spectra of peaks (negative mode) corresponding to c-di-GMP (D), GTP (E) and pGpG (F).



Supplementary figure S3. RmdB<sub>gh</sub> activity is crucial for normal morphogenesis. Sporulation is impaired in the *S. ghanaensis*  $\Delta rmdB_{gh}$  mutant. (A) Colonies of *S. ghanaensis* strains were grown on the SFM medium for 5 days. (B) Surfaces of the colonies from **a** were used to obtain SEM images. Scale bars are 5 µm. (C) Extra copies of  $rmdB_{gh}$  enhances sporulation in *S. ghanaensis* grown on SFM for 43 hours.



Supplementary figure S4. BldD<sub>gh</sub> controls the timing of morphological development. (A) Lawns of *S. ghanaensis* strains grown over the time course. Strains were cultivated on SFM for 5 days. Pictures were captured each 24 hours. Surfaces of the lawns from A were used to obtain SEM images. (B) SEM pictures taken on the second day. (C) SEM pictures taken on the fifth day. Scale bars are 5  $\mu$ m (B and C).



**Supplementary figure S5.** Growth curves of *S. ghanaensis* strains with gene deletions (A) and overexpressions (B) studied in this work. The experiment was essentially performed as described before<sup>11</sup>. The experiment was done twice in three replicates each time. Error bars,  $\pm 2$  SD.



**Supplementary figure S6.** (A) *S. ghanaensis*  $\Delta wblA_{gh}$  mutant displayed "white" phenotype due to inability to form mature spores. Strains were grown on SFM medium for 3 days. (B) Deletion of  $wblA_{gh}$  from the *S. ghanaensis*  $\Delta bldD_{gh}$  chromosome strongly impaired morphological development. Strains were grown on SFM medium for 5 days.



Supplementary figure S7. Levels of moenomycin production by various *S. ghanaensis* strains as determined by HPLC-MS. The mean value of moenomycin mass peak area in *S. ghanaensis* ATCC14672 was taken as 100%. Amounts of moenomycin were normalized to equal amounts of biomass (dry weight) and are the mean value from at least three independent biological replicates. Error bars,  $\pm 2$  SD.



**Supplementary figure S8.** Deletion of  $wblA_{gh}$  does not influence expression of  $adpA_{gh}$ . Comparison of  $\Delta wblA_{gh}$  and *S. ghanaensis* ATCC14672 transcriptional profiles. The expression of tested genes was analyzed in 48 h cultures grown in TSB; 200 ng of RNA sample were used per reaction; C<sup>+</sup>, positive control (genomic DNA of ATCC14672 strain). Attempts to synthesize *hrdB* from RNA without pretreatment with RT served as negative controls (marked as C<sup>-</sup>). Total RNA samples were isolated from three independent biological replicates. The images represent the typical result of three independent RT-PCR experiments.



**Supplementary figure S9**. EMSA competition assay of BldD<sub>gh</sub> with *wblA<sub>gh</sub>p*. The reaction was carried out with 0.75  $\mu$ M of purified BldD<sub>gh</sub>, 1.5  $\mu$ M c-di-GMP, 20 fmol of <sup>33</sup>P-labeled *wblA<sub>gh</sub>p* and increasing concentrations of unlabelled probe (10-, 50-, 100- and 200-fold molar excess to labelled probe).



**Supplementary figure S10. (A)** HRMS spectrum of desferrioxamine B. (B) ESI-MS/MS fragmentation pattern of desferrioxamine B. (C) Proposed ESI-MS/MS fragmentation of desferrioxamine B.



Normalized antibiotic production, %

Supplementary figure S11. Inactivation of  $rmdB_{al}$  in the *S. albus* chromosome strongly affected morphological development and SM production. (A) Morphology of strains grown on SFM medium for 4 days. (B) Comparison of antibiotic production titers by the *S. albus* strains as determined by HPLC-MS. The mean value of antibiotic mass peak area in *S. albus* J1074 was taken as 100%. Amounts of compounds were normalized to equal amounts of biomass (dry weight) and are mean values from at least three independent biological replicates. Error bars,  $\pm 2$  SD.

| (sq)RT-PCR         | semiquantitative reverse transcription polymerase chain reaction             |  |  |  |
|--------------------|------------------------------------------------------------------------------|--|--|--|
| aac(3)IV           | apramycin resistance gene                                                    |  |  |  |
| antiSMASH          | "annotation and analysis of secondary metabolite biosynthesis gene clusters" |  |  |  |
|                    | tool                                                                         |  |  |  |
| BGC                | biosynthetic gene cluster                                                    |  |  |  |
| bld                | "bald" genes responsible for aerial mycelium formation                       |  |  |  |
| BldDbs             | conservative BldD-binding site                                               |  |  |  |
| cdg                | <u>cyclic dimeric GMP genes</u>                                              |  |  |  |
| cfu                | colony-forming unit                                                          |  |  |  |
| Cre                | Cre recombinase                                                              |  |  |  |
| CSR                | cluster situated regulator                                                   |  |  |  |
| DGC                | diguanylate cyclases                                                         |  |  |  |
| EMSA               | electrophoretic mobility shift assay                                         |  |  |  |
| ermEp              | strong constitutive promoter of <i>ermE</i> gene from the erythromycin BGC   |  |  |  |
| ESI                | electrospray ionization                                                      |  |  |  |
| FIMO               | "Find Individual Motif Occurences" software                                  |  |  |  |
| GusA               | reporter system based on $\beta$ -glucuronidase activity                     |  |  |  |
| HPLC               | High Performance Liquid Chromatography                                       |  |  |  |
| HRMS               | High Resolution Mass Spectrometry                                            |  |  |  |
| hyg                | hygromycin resistance gene                                                   |  |  |  |
| LC-MS              | liquid chromatography-mass spectrometry                                      |  |  |  |
| loxP               | recognition site for Cre recombinase                                         |  |  |  |
| MEME               | "Multiple Em for Motif Elicitation" software                                 |  |  |  |
| MmA                | moenomycin A                                                                 |  |  |  |
| <i>moe</i> cluster | moenomycin A biosynthetic gene cluster                                       |  |  |  |
| MS/MS              | tandem mass spectrometry                                                     |  |  |  |
| NMR                | nuclear magnetic resonance                                                   |  |  |  |
| PDE                | phosphodiesterase                                                            |  |  |  |
| pGpG               | 5'-phosphoguanylyl- $(3' \rightarrow 5')$ -guanosine                         |  |  |  |
| PKS                | polyketide synthase                                                          |  |  |  |
| PVDF               | polyvinylidene difluoride                                                    |  |  |  |
| REDIRECT           | gene replacement system, based on $\lambda$ RED (gam, bet, exo) function     |  |  |  |
| rmd                | regulator of morphology and development genes                                |  |  |  |
| SEM                | scanning electron microscopy                                                 |  |  |  |
| SM                 | secondary metabolite                                                         |  |  |  |
| UHPLC              | Ultra-High Performance Liquid Chromatography                                 |  |  |  |
| whi                | "white" genes responsible for sporogenesis                                   |  |  |  |

**Supplementary Note 1.** List of abbreviations and acronyms used in the work.

Supplementary Note 2. Chemical characterization data for oxohygrolidin.

| Pos | δ <sub>C</sub> | $\delta_{\rm H} (J  {\rm Hz})$ | COSY <sup>a</sup>                     | HMBC <sup>a</sup>                                                              |
|-----|----------------|--------------------------------|---------------------------------------|--------------------------------------------------------------------------------|
| 1   | 172.4          |                                |                                       | 3-H, 15-H, 26-H <sub>3</sub>                                                   |
| 2   | 123.1          |                                |                                       | 3-H, 26-H <sub>3</sub> , (27-H <sub>3</sub> )                                  |
| 3   | 147.8          | 7.25 s                         | 5-H, 26-H <sub>3</sub>                | 5-H, 26-H <sub>3</sub> , 27-H <sub>3</sub>                                     |
| 4   | 134.5          |                                |                                       | 3-H, (5-H), (7-H), 6-H, 26-H <sub>3</sub> , 27-H <sub>3</sub>                  |
| 5   | 146.7          | 5.95 d (8.8)                   | 3-H, 6-H, 27-H <sub>3</sub>           | 3-H, 7-H, 6-H, (26-H <sub>3</sub> ), 27-H <sub>3</sub> , 28-H <sub>3</sub>     |
| 6   | 38.7           | 2.54 ddq (8.8, 1.8, 7.2)       | 5-H, 7-H, 28-H <sub>3</sub>           | 7-H, 8-H, 28-H <sub>3</sub>                                                    |
| 7   | 81.3           | 3.26 dd (6.4, 2.0)             | 6-H, 8-H                              | 5-H, 8-H, 9-H <sub>2</sub> , 28-H <sub>3</sub> , 29-H <sub>3</sub>             |
| 8   | 41.1           | 1.87 m                         | 7-H, 9-H <sub>2</sub> , 29-           | 7-H, 9-H <sub>2</sub> , 29-H <sub>3</sub>                                      |
|     |                |                                | H <sub>3</sub>                        |                                                                                |
| 9   | 42.6           | 2.02                           | 11-H, 30-H <sub>3</sub>               | 11-H, 29-H <sub>3</sub> , 30-H <sub>3</sub>                                    |
| 10  | 144.3          |                                |                                       | 9-H <sub>2</sub> , (11-H), 12-H, (13-H), 29-H <sub>3</sub> , 30-H <sub>3</sub> |
| 11  | 125.4          | 5.76 d (10.8)                  | 12-H, 30-H <sub>3</sub>               | 9-H <sub>2</sub> , 12-H, 13-H, 30-H <sub>3</sub>                               |
| 12  | 134.1          | 6.55 dd (15.2, 10.8)           | 11-Н, 13-Н                            | 11-H, 14-H, 30-H <sub>3</sub>                                                  |
| 13  | 126.8          | 5.13 dd (14.8, 8.4)            | 12-H                                  | 11-Н, (12-Н), 13-Н, 14-Н, 30-Н <sub>3</sub>                                    |
| 14  | 85.4           | 3.93 dd (8.4, 7.2)             | 15-Н                                  | 9-H <sub>2</sub> , 12-H, 13-H, 34-H <sub>3</sub>                               |
| 15  | 76.86          | 5.11 dd (6.8, 2.0)             | 14-H, (16-H)                          | 13-H, 14-H, 17-H, 31-H <sub>3</sub>                                            |
| 16  | 40.6           | 2.00                           | (15-H), 17-H,                         | 14-H, 15-H, (17-H), 31-H <sub>3</sub>                                          |
|     |                |                                | 31-H <sub>3</sub>                     |                                                                                |
| 17  | 73.8           | 3.75 dd (8.8, 4.0)             | 16-Н, 18-Н                            | 15-H, 16-H, 18-H, 31-H <sub>3</sub> , 32-H <sub>3</sub>                        |
| 18  | 47.6           | 3.06 dq (4.0, 6.8)             | 17-H, 32-H <sub>3</sub>               | 16-H, (17-H), 32-H <sub>3</sub>                                                |
| 19  | 205.0          |                                |                                       | 17-H, 18-H, 20-H, 21-H, 32-H <sub>3</sub>                                      |
| 20  | 129.5          | 6.24 dd (14.9, 0.8)            | 21-H, (22-H)                          | (21-Н), 22-Н                                                                   |
| 21  | 151.3          | 6.82 dd (15.7, 8.0)            | 20-Н, 22-Н                            | 20-H, 23-H, 22-H, 33-H <sub>3</sub>                                            |
| 22  | 44.2           | 2.38 m                         | 21-Н, (23-Н),                         | 20-H, 21-H, 24-H <sub>b</sub> , 33-H <sub>3</sub>                              |
|     |                |                                | 33-H <sub>3</sub>                     |                                                                                |
| 23  | 76.89          | 3.37 ddd (9.2, 6.0, 3.6)       | 22-H, 24-H <sub>b</sub>               | (20-H), 21-H, 22-H, 24-H <sub>b</sub> , 25-H <sub>3</sub> , 33-H <sub>3</sub>  |
| 24  | 28.6           | H <sub>a</sub> : 1.50 m        | 22-H, 14-H <sub>b</sub> ,             | 22-H, 25-H <sub>3</sub>                                                        |
|     |                | H <sub>b</sub> : 1.32 m        | 25-H <sub>3</sub> ,                   |                                                                                |
|     |                |                                | 22-H, 14-H <sub>a</sub> ,             |                                                                                |
|     |                |                                | 25-H <sub>3</sub>                     |                                                                                |
| 25  | 10.7           | 0.93 t (7.2)                   | 24-H <sub>a</sub> , 24-H <sub>b</sub> | (23-H), 24-H <sub>b</sub>                                                      |
| 26  | 14.1           | 2.03 s                         | 3-Н                                   | 3-H, <sup>1</sup> J                                                            |
| 27  | 15.4           | 1.96 d (0.8)                   | 5-H                                   | 3-H, 5-H, <sup>1</sup> J                                                       |
| 28  | 18.3           | 1.06 d (7.2)                   | 6-Н                                   | 6-H, 7-H, 27-H <sub>3</sub> , <sup>1</sup> J                                   |
| 29  | 22.5           | 0.92 d (6.4)                   | 8-H                                   | 7-H, 8-H, 9-H <sub>2</sub>                                                     |
| 30  | 19.8           | 1.85 s                         | 9-H <sub>2</sub> , 11-H               | 9-H <sub>2</sub> , 11-H                                                        |
| 31  | 11.3           | 0.97 d (6.8)                   | 16-Н                                  | 15-H, 16-H, <sup>1</sup> J                                                     |
| 32  | 9.8            | 1.10 d (6.8)                   | 18-H                                  | 17-H, 18-H, <sup>1</sup> J                                                     |
| 33  | 15.4           | 1.08 d (6.8)                   | 22-Н                                  | 21-H, 22-H, <sup>1</sup> J                                                     |
| 34  | 56.0           | 3.22 s                         |                                       | 14-H, <sup>1</sup> J                                                           |

NMR-Data for oxohygrolidin in CD<sub>3</sub>OD (600/150MHz, CD<sub>3</sub>OD, 25°C)

<sup>a</sup>Weak signals in brackets

![](_page_20_Figure_4.jpeg)

Calc [M+Na]<sup>+</sup>: 597.3762; found 597.3754

Oxohygrolidin was firstly identified by Kretschmer et al.<sup>12</sup>

![](_page_21_Figure_0.jpeg)

### HRMS analysis (positive mode) of oxohygrolidin.

<sup>1</sup>H NMR spectrum of oxohygrolidin (600 MHz, CD<sub>3</sub>OD, 25 °C).

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

## DEPT spectrum of oxohygrolidin (150 MHz, CD<sub>3</sub>OD, 25 °C).

![](_page_25_Figure_0.jpeg)

COSY spectrum of oxohygrolidin (600 MHz, CD<sub>3</sub>OD, 25 °C).

![](_page_26_Figure_0.jpeg)

HSQC spectrum of oxohygrolidin (600 MHz, CD<sub>3</sub>OD, 25 °C).

![](_page_27_Figure_0.jpeg)

HMBC spectrum of oxohygrolidin (600 MHz, CD<sub>3</sub>OD, 25 °C).

#### References

- 1. Gust, B. et al. λ Red-mediated genetic manipulation of antibiotic-producing *Streptomyces. Adv. Appl. Microbiol.* **54**, 107–128 (2004).
- 2. Makitrynskyy, R. et al. Pleiotropic regulatory genes *bldA*, *adpA* and *absB* are implicated in production of phosphoglycolipid antibiotic moenomycin. *Open Biol.* **3**, 130121 (2013).
- 3. Chater, K., F. & Wilde, L. C. *Streptomyces albus* G mutants defective in the *Sal*GI restriction-modification system. *J. Gen. Microbiol.* **116**, 323–334 (1980).
- Myronovskyi, M., Welle, E., Fedorenko, V. & Luzhetskyy, A. Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. *Appl. Environ. Microbiol.* 77, 5370– 5383 (2011).
- Fedoryshyn, M., Welle, E., Bechthold, A. & Luzhetskyy, A. Functional expression of the Cre recombinase in actinomycetes. *Appl. Microbiol. Biotechnol.* 78, 1065–1070 (2008).
- Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. & Schoner, B. E. Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene* 116, 43–49 (1992).
- 7. Muth, G., Nussbaumer, B., Wohlleben, W. & Pühler, A. A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. *Mol. Gen. Genet.* **6**, 1–8 (1989).
- 8. Herrmann, S. et al. Site-specific recombination strategies for engineering actinomycete genomes. *Appl. Environ. Microbiol.* **78**, 1804–1812 (2012).
- Hong, H. J., Hutchings, M. I., Hill, L. M. & Buttner, M. J. The role of the novel Fem protein VanK in vancomycin resistance in *Streptomyces coelicolor*. J. Biol. Chem. 280, 13055–13061 (2005).
- 10. Tran, N. T., Den Hengst, C. D., Gomez-Escribano, J. P. & Buttner, M. J. Identification and characterization of CdgB, a diguanylate cyclase involved in developmental processes in *Streptomyces coelicolor*. *J. Bacteriol.* **193**, 3100–3108 (2011).
- 11. Sehin, Y. et al. Gene *ssfg\_01967 (miaB)* for tRNA modification influences morphogenesis and moenomycin biosynthesis in *Streptomyces ghanaensis* ATCC14672. *Microbiology* **165**, 233–245 (2019).
- Kretschmer, A., Dorgerloh, M., Deeg, M. & Hagenmaier, H. The structures of novel insecticidal macrolides: bafilomycins D and E, and oxohygrolidin. *Agric. Biol. Chem.* 49, 2509–2511 (1985).