SUPPLEMENTARY INFORMATION

template 2

cEC(A)	AAUAA
RNA15(A)	UCGAGAGGGA
template DNA	TGAATGTAGGTAGCTCTCCCTGTGCCGCTTATCGGT
non-template DNA	ACTTACAGCCATCGAGAGGGACACGGCGAATAGCCA
mEC(A)	*AAUAA A
RNA15(A)	UCGAGAGGG
template DNA	TGAATGTAGGTAGCTCTCCCCGTGCCGCTTATCGGT
non-template DNA	ACTTACAGCCATCGAGAGGGGGCACGGCGAATAGCCA
mEC(U)	*AAUAA
RNA15(U)	UCGAGAGGG ^U
template DNA	TGAATGTAGGTAGCTCTCCCGGTGCCGCTTATCGGT
non-template DNA	ACTTACAGCCATCGAGAGGGCCACGGCGAATAGCCA
mEC(C)	*AAUAA
RNA15(C)	UCGAGAGGGC
template DNA	TGAATGTAGGTAGCTCTCCCAGTGCCGCTTATCGGT
non-template DNA	ACTTACAGCCATCGAGAGGGTCACGGCGAATAGCCA

Fig. S.1. Structure of elongation complexes based on template 2, and sequences of nucleic acid oligonucleotides used for their assembly. Asterisk indicates that RNA is labelled at the 5' - end by kinasing oligonucleotide using polynucleotide kinase A and $[\gamma - P^{32}]$ ATP.

Fig. S. 2. Kinetics of misincorporation of CTP instead of UTP dictated by template with concomitant proofreading reaction - cleavage of the GC 3' dinucleotide portion of the transcript by EcRNAp and SspRNAP. Above the gel is the scheme of reaction; asterisk indicates that RNA is labelled at the 3' end by incorporation of radiolabelled GTP into the transcript. *Ssp*RNAP).

Synechococcus elongatus 7942 RNAP cEC15

cRNA15 (correct)

Fig. S.3. Kinetics of transcript hydrolysis in the correct elongation complex cEC(A) (Fig. S1) by purified RNAP of different cyanobacterium, Synechococcus elongatus, *Sel*RNAP. Above the gel is the scheme of reaction; asterisk indicates that RNA is labelled at the 5' - end by kinasing 13 nt RNA oligo using polynucleotide kinase A and $[\gamma - P^{32}]$ ATP. After assembly into elongation complex, initial RNA13 was extended to RNA15 with addition of ATP and GTP. The graph fits of data to the exponential equation are shown as solid lines, *Ec*RNAP (blue) and *Sel*RNAP (green).

Fig. S.4. Temperature –dependence of rate of hydrolysis reaction in mEC(U) by *Ec*RNAP and *Ssp*RNAP.

Fig. S.5. Activation energy for RNA hydrolysis in mEC(A) elongation complex by *EcRNAP* and *SspRNAP*. Arrhenius plots for *EcRNAP* and *SspRNAP*, graph fit of lnK to 1/T data to linear equation are shown as straight line, apparent activation energy calculated from equation $lnK=lnA-E_a/R(1/T)$ is shown on the plot. The data points are averages of two

independent experiments.

Table S1. Rates of transcript hydrolysis in $mEC(A)$ and $mEC(U)$ by WT and mutant
<i>Ec</i> RNAPs with indicated amino acid changes in β ' subunit at 30 ⁰ C and 10 MgCl ₂ .

RNAP	mEC(U) hydrolysis rate, s-1	Standart deviation	mEC(A) hydrolysis rate, s-1	Standart deviation	mEC(C) hydrolysis rate, s-1	Standart deviation	Ratio mutant/wt mEC(U)	Ratio mutant/wt mEC(A)
Ec WT	0.0010	0.00021	0.0035	0.00064	0.0005	0.00006	1	1
<i>Ec</i> Q771E	0.0014	0.00107	0.0042	0.00074			1.5	1.2
<i>Ec</i> F773V	0.0082	0.00165	0.0290	0.00232	0.0043	0.00030	8.6	8.1
<i>Ec</i> N792D	0.0063	0.00056	0.0125	0.00195			6.6	3.5
<i>Ec</i> 1937T	0.0007	0.00031	0.0039	0.00071			0.8	1.1
<i>Ec</i> A940V	0.0105	0.0010	0.0260	0.00532			11.1	7.3
<i>Ec</i> A941F	0.0003	0.00004	0.0011	0.00013			0.3	0.3
<i>Ec</i> K1134G	0.0011	0.0002	0.0029	0.0004			1.2	0.8
<i>Ec</i> G1136Q	0.0056	0.00103	0.0111	0.00272	0.0023	0.00030	5.8	3.1
<i>Ec</i> V1141I	0.0001	0.00002	0.0056	0.00072			1.1	1.5
<i>Ec</i> A1142E	0.0007	0.0001	0.0082	0.00122			0.7	2.3
<i>Ec</i> D1143E	0.0012	0.0002	0.0051	0.00073			1.2	1.4
<i>Ec</i> F1145L	0.0028	0.00074	0.0033	0.00121			2.9	0.9
SspRNAP	0.0612	0.00814	0.1401	0.02423			63.1	39.3
SelRNAP	0.0502	0.00782	0.1212	0.00735			52.6	33.7