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Modifiable pathways for colorectal cancer: A Mendelian randomisation analysis 

 

SUPPLEMENTARY METHODS 

 

Identification of potentially modifiable risk factors 

To identify epidemiological meta-analyses of colorectal cancer (CRC) risk factors we 

searched PubMed with the terms: ‘((((colorectal cancer) OR colon cancer) OR rectal 

cancer) AND risk factor) AND meta analysis’, restricting our search to reviews from 

the previous five years (search conducted 30 November 2018). Mendelian 

randomisation (MR) analyses of CRC risk factors were identified by further searching 

PubMed with the terms: ‘(((colorectal cancer) OR colon cancer) OR rectal cancer) 

AND ((Mendelian randomization) OR Mendelian randomisation)’ (search conducted 

1 March 2019). 

 

Genetic instruments for putative risk factors 

We obtained instruments for two developmental and growth factor1,2, three sex 

hormones and reproduction3,4, three fatty acid (FA)5,6, three inflammatory2,7,8, five 

lipid6,9,10, ten obesity1,3,11-16, and 13 other diet and lifestyle-related traits5,17-27.  

 

The genetic architectures of smoking initiation and number of cigarettes smoked per 

day differ28, and these traits therefore need to be considered separately in MR 

analyses. Smoking initiation is a binary trait and was therefore not included, as 

analysis of binary exposures with binary outcomes using two-sample MR frameworks 

can result in inaccurate causal estimates29. Smoking status data were not available 

for all CRC genome-wide association study (GWAS) individuals, and we were 

therefore also unable to include number of cigarettes smoked per day in this 

analysis.  

 

For each SNP used as a genetic instrument, we obtained the per-allele effect 

estimate on the putative risk factor, the standard error (SE) of this estimate, and the 

effect and reference alleles from the corresponding GWA. We standardized effect 

estimates to represent the effect of each SNP on the trait in units of standard 
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deviation (SD). Association strengths of genetic instruments for each putative risk 

factor were quantified by the F-statistic, with F>10 considered indicative of a strong 

instrument30.  

 

A central assumption of MR is that SNPs used as instrumental variables (IVs) are 

associated with the outcome only through the exposure, and are not confounded by 

pleiotropy31. A number of genes, including FADS1, FADS2 and ELOVL2, control the 

metabolism of multiple FAs, and SNPs at these loci are therefore associated with 

circulating concentrations of more than one FA32,33. Assessing the effect of 

pleiotropy on MR causal estimates using approaches such as MR-Egger, weighted 

median estimator (WME) and mode-based estimates (MBE), requires multiple SNPs 

to be used as IVs. As many FAs have only been associated with a single or small 

number of SNPs33, it is not possible to use such methods, and we therefore 

restricted our analysis of FAs on CRC risk to limit potential bias introduced by 

pleiotropic SNPs.  

 

FA metabolism involves sequential enzymatic conversions, and SNPs influencing the 

metabolism of one FA can therefore be associated with circulating concentrations of 

multiple FAs of the same class (i.e. vertical pleiotropy). To limit the effect of vertical 

pleiotropy, we therefore considered classes of FA (i.e. omega-3 polyunsaturated 

fatty acids [PUFAs], omega-6 PUFAs and monounsaturated fatty acids [MUFAs]), 

rather than individual FAs, in our primary analysis.  

 

Many genes involved in FA desaturation and elongation, such as FADS1 and ELOVL2, 

form parts of multiple FA pathways, and therefore influence the circulating 

concentrations of FAs from more than one class (i.e. horizontal pleiotropy). To limit 

the effects of horizontal pleiotropy, we therefore excluded SNPs known to be 

associated with multiple classes of FA. Such potentially pleiotropic SNPs were 

identified using genome-wide significant SNPs from four GWAS6,32,34,35. SNPs were 

excluded if they themselves were associated with multiple FA classes, were in 

linkage disequilibrium with a SNP associated with another FA class (r2>0.01), or were 
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within 500kb of a SNP associated with another FA class. In our primary analysis we 

consider only SNPs not known to be associated with another class of FA.  
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Supplementary Figure 1: Study design flowchart. CRC: colorectal cancer; MR: 

Mendelian randomization; SNP: single nucleotide polymorphism. 

  

Identify potentially modifiable CRC risk 

factors through review of available 

evidence

- WCRF/AICR report 

- Reviews indexed in PubMed

- Previous CRC MR analyses

 

Identify those risk factors associated 

with genetic variants suitable for use 

as instrumental variables  

Potentially modifiable risk factors 

with suitable instrumental variables

- 2 developmental and growth factors

- 13 diet and lifestyle

- 3 fatty acid profile and metabolism

- 3 inflammatory factors

- 5 lipids and lipid transport

- 10 obesity

- 4 sex hormones and reproduction

CRC genotyping data

- 26,397 cases

- 41,481 controls

Remove instrumental variables with 

missing data, harmonize SNPs, 

remove SNPs in linkage disequilibri -

um and standardise effect sizes

Estimate causal effects using MR 

frameworks

- Wald ratio

- Maximum likelihood estimation

random-effects (MLE-RE)

- Weighted median estimate (WME)

- Weighted mode-based estimate (MBE)

- MR-Egger regression

Test for directional pleiotropy

- MR-Egger regression

Conduct sensitivity analyses

- Leave-one-out

- Single SNP  
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Supplementary Figure 2 (Page 4/4): Funnel plots of causal estimates (βIV) and 

instrument strength (1/SEIV) for each genetic variant used as an instrumental 

variable. Causal estimates computed as the log of the Wald ratio per genetically 

predicted standard deviation unit increase in the risk factor. Red lines represent 

causal effect estimated using a maximum likelihood estimate random-effects (MLE-

RE) model. Dotted lines represent the null. SNP: single nucleotide polymorphism; 

HDL: high-density lipoprotein; LDL: low-density lipoprotein. *Causal effects 

estimated using colorectal cancer data from females only.    
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Supplementary Figure 3: Fatty acid pathways. Shown are the fatty acids considered 

in this MR analysis (coloured) and the genes encoding the enzymes catalyzing each 

pathway step.  
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