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DIFFEOMORPHIC REGISTRATION WITH INTENSITY TRANSFORMATION AND
MISSING DATA: APPLICATION TO 3D DIGITAL PATHOLOGY OF ALZHEIMER’S
DISEASE

APPENDICES

1 LDDMM CHAIN RULE AND AFFINE TRANSFORMATION PROOF

Equation (4a) is computed by application of the chain rule. First the derivative of E with respect to Fθ(I),
second Fθ[I(ϕ−1)] is with respect to I(ϕ−1), and third I with respect to the deformation field. The first
and second steps are combined as

∂E

∂[I(ϕ−1)]
=

1

σ2
(Fθ[I(ϕ−1)]− J) ·DFθ[I(ϕ−1)] (8)

The third step is discussed in (Beg et al., 2005). Equation (4a) can be solved using a standard gradient
descent approach.

The equation (4b) is the necessary condition with respect to the contrast. Since Fθ as a polynomial it is
linear in θ, and so (4b) is a linear system solved exactly at each iteration of gradient descent.

Minimizing over both θ and transformation parameters means the result of registration will be independent
of the family of transformations indexed by θ. An alternative approach is to minize over θ first, leading to
an invariant cost:

C(I) = min
θ

1

2σ2
‖Fθ(I)− J‖2L2

.

Here is the proof that the affine transformation problem reduces to normalized cross correlation, which is
invariant to affine transformations of the atlas image contrast.

COROLLARY (Unknown Affine Transformations Correspond to Normalized Cross Correlation Squared).
When F is an affine map from R→ R, our registration results will be invariant to affine transformations of
our atlas, and (4b) can be solved analytically. For N = M = 1 and a, b ∈ R, Fa,b(t) = at+ b, minimizing

1
2σ2
‖aI ◦ ϕ−1 + b− J‖2L2

is equivalent to maximizing the normalized cross correlation squared of I ◦ ϕ−1

with J .

PROOF. For any fixed ϕ, optimal values of a, b can be found via a standard linear least squares estimation
result, which gives a = Cov(I(ϕ−1), J)/Var(I(ϕ−1)) and b = J̄ − aI(ϕ−1) where ·̄ corresponds to the
expected value, and expectation, variance, and covariance are taken over all voxels in the images. Plugging
these into squared-error cost gives

1

2σ2

∫
X

∣∣∣∣Cov(I(ϕ−1), J)

Var(I(ϕ−1))
I(ϕ−1(x)) + J̄ − Cov(I(ϕ−1), J)

Var(I(ϕ−1))
I(ϕ−1)− J(x)

∣∣∣∣2 dx
= − 1

σ2
|X|Cov2(I(ϕ−1), J)

Var(I(ϕ−1))
+

1

2σ2
|X|Var(J)

= − 1

σ2
|X|Var(J) NCC2(I(ϕ−1), J) +

1

2σ2
|X|Var(J)

Frontiers 1



Tward et al. Diffeomorphic registration with intensity transformation and missing data

Up to constants that do not depend on the deformation, minimizing sum of square error with an unknown
affine intensity transformation is equivalent to maximizing normalized cross correlation (NCC) squared.

2 PROOF THE MISSING DATA ALGORITHM IS AN EM ALGORITHM AND
THEREFORE MONOTONIC IN INCOMPLETE DATA LOG-LIKELHOOD

We discretize the images via the lattice of sites forming a disjoint partition (voxels) X = ∪Si=1∆xi. Each
atlas type a ∈ A = {a1, a2, . . . , } includes a deformation given by ϕa =

∫ 1
0 v

a
t ◦ φat dt+ id, so the discrete

values can be written as Iai =
∫

∆xi
Ia ◦ ϕ−1

a (y)dy .

The observable random field Ji, i = 1, . . . , S, is conditionally Gaussian with constant variances σ2
a and

mean fields Iai determined by the atlas type a ∈ A. In practice, we choose Ia1 as our atlas image, and Iai
for i 6= 1 to be constant images. Since they are constant, we need not optimize over the deformations vait for
i > 0. Augment the measured incomplete-data Y = {Ji, i = 1, 2, . . . , S} with labels determining the atlas
types Ai ∈ A = {a1, a2, . . . , } generating the complete-data X = {(Ji, Ai), i = 1, . . . , S}. Model Ji as a
Gaussian random variable with mean IAi

i and variance σ2
Ai

. The complete-data penalized log-likelihood
becomes:

log f(X; v) =
∑
a∈A
− 1

2σ2

∫ 1

0

∫
X
Avat · vat dxdt−

1

2σ2
a

S∑
i=1

δa(Ai)|Ji − Iai |2 .

The Kronecker-delta δa(·) is 1 when the argument is a, and zero otherwise. The Expectation step (E-step)
replaces these functions with their expected value, a posterior probability πa(i) at each voxel ∆xi.

THEOREM 1. The Expectation Maximization algorithm is defined by the following at iteration (p):

Ia,(p) = Ia ◦ ϕ−1(p), a ∈ A,
E-step: E (log f(X; v)|Y, va,p)

π
a,(p+1)
i =

1√
2πσ2a

exp(− 1
2σ2a
|Ji − Fθa,(p)(I

a,(p)
i )|2)∑

a′∈A
1√

2πσ2
a′

exp(− 1
2σ2

a′
|Ji − Fθa′,(p)(I

a′,(p)
i )|2)

, a ∈ A ; (9)

M-Step: arg maxE
(

log f(X; v)|Y, v(p)
)

va,(p+1) = arg max
va
− 1

2σ2

∫ 1

0

∫
X
Avat · vat dxdt−

1

2σ2
a

∑
i

π
a,(p+1)
i |Ji − Fθa,(p)(I

a,(p)
i )|2

θa,(p+1) = arg max
θa
− 1

2σ2

∫ 1

0

∫
X
Av

a,(p)
t · va,(p)t dxdt− 1

2σ2
a

∑
i

π
a,(p+1)
i |Ji − Fθa(I

a,(p)
i )|2 .

Iterations va,(p+1), θa,(p+1) with ϕa,(p+1) =
∫ 1

0 v
a,(p+1) ◦ φa,(p+1)dt + id increase in incomplete-data

log-likelihood.
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