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HMSC specification in matrix notation 
The HMSC specification, provided in Materials & Methods section of the main text also could be elegantly and 

rigorously formally written in matrix form using following notation: 

Indices 
We index by # = 1…'( the sites, where the observations were made, by ) = 1…'* the species, by + = 1…',  the 

available covariates, by - = 1…'. the available traits, by ℎ = 1…'0 the latent factors at the level of sites, and by 1 =

1…'2  the dimensions of the space that describes sites’ locations. 

Data objects in the model 
• The '( × '* matrix Y of the recorded species abundances/occurrences 567	

• The '( × ',  matrix X of the covariates :6; 
• The '* × '. matrix T of the species traits =7>  
• The '* × '* symmetric positive definite matrix C of the species phylogenetic similarities 
• The '( × '2  matrix S of the sites’ coordinates A62  

Model parameters 
• The '( × '* matrix L of latent variables -67  standing for location parameters of the data distribution	
• The ', × '* matrix Β of the D;7  of the species responses to the covariates 
• The ', × '* matrix Μ of the F;7  of the trait-expected species responses to the covariates 
• The ', × '. matrix Γ of the H;>  the impacts of trait values on the expected species response to the covariates 
• The ', × ',  matrix V standing for the covariance of responses to covariates across species that could not be 
attributed to available traits. 
• Scalar J standing for the strength of the impact of phytogenic similarity to similarity in responses to covariates. 
• The '0 × '* matrix Λ is the matrix of latent factor loadings LM7  
• The '( × '0 matrix Η of the latent factors N6M 
• The '0 × 1 vector O of the spatial ranges of latent factors. 
• The '( × '* matrix Z of latent liabilities Q67 = -67 + S67  used for implementation of various types of observational 
data through data augmentation. For theoretical ground see e.g. Albert and Chib (1993) or Zhou et al. (2012), for 
HMSC-contexed usage see e.g. Ovaskainen et al (2016a) 
• The '* × '* diagonal matrix Σ of residual variances, with diagonal elements U7

V	

Matrix-vector notation 
We denote by vec(∙) the operator which stacks consecutive columns of a matrix on top of each other. We denote by 

small letters in bold font the vectors that are obtained by applying vec(∙) to corresponding matrices, so that e.g. ] =

vec(Γ), ^ = vec(Β), _ = vec(Λ), ` = vec(Η), a = vec(L), b = vec(Z). A star in the upperscript indicates that the 
transpose was applied first to the matrix, so e.g. b∗ = vec(Zd) and `∗ = vec(Ηd). We denote by 0f×g the ' × h matrix of 
ones, by If the ' × ' identity matrix, by tr(A) the trace of the matrix A, by ⨂ the Kronecker product, and by ∘ the 
Hadamard product (the entry-wise product). 

Distributions 
• We denote by o(p, Σ) the multivariate normal (Gaussain) distribution with mean p and covariance matrix Σ. 
• We denote by  W(V, s) the Wishart distribution with scale matrix V and degrees of freedom parameter s, and by 
Wtu(V, s) the inverse Wishart distribution with scale matrix V and degrees of freedom parameter s. Thus if 
V~Wtu(Vw, s), then Vtu~W(Vw

tu, s). 
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• We denote by Γ(x, y) the Gamma distribution with shape x and rate y, which parametrization is common to 
Bayesian statistics, so that the distribution’s mean is x/y. 

The Hierarchical Model of Species Communities 
We follow the generalized linear modelling paradigm and model that the observations for the )-th species with a statistical 
distribution {7  and link function |7  that are compatible with the type of observed data for this species. Then 

}~567� = |7
tu~-67�,					ÄxÅ~567� = ÄxÅÇÉ

~-67, U7�,					L = XB + ΗΛ,		 

^~o(p, Θ), p = vec(ΓTd) = ~T⨂IfÜ
�], Θ = áJC + (1 − J)Ifâ

ä ⊗ V 

We would like to mention, that while in this study we consider only one level of random factors in the model, which 
corresponds to level of single observational sites, the proposed model is trivially generalizable to more complex sampling 
designs with several hierarchical or crossed levels, see e.g. Ovaskainen et al. (2016a). 

Role of traits and phylogeny 
To improve the performance of the model with sparse data or rare species, as well as to exploit potentially available 
information on species-specific traits and phylogenetic relationships, we follow Ovaskainen et al. (2017) and impose a 

multivariate Gaussian conditional prior for the regression coefficients as ^ = áDu⋅, … , DfÜ⋅
ä
d
~o(vec(Μd), Θ). The matrix 

Μ ∈ ℝfÜ×fâ  consists of the elements F;7  that describe the expected response of species ) to covariate +. The expected 
response of species ) to covariate + is modeled based on this species’ traits as F;7 = ∑ H;>=7>

fê
>ëu , where =7>  is the value of 

trait - for species ) (with =7u = 1 modeling the intercept), and the parameter H;>  measures the effect of trait - on the 
expected response to covariate +. Matrix Θ models the variation of responses among individual species around the trait-
based expectation as Θ = áJC + (1 − J)Ifâ

ä ⊗ V, where ⊗ denotes Kronecker’s product, the positive-definite matrix V ∈

ℝfÜ×fÜ  models the dependency between responses to different covariates, the parameter 0 ≤ J ≤ 1 determines the 
impact of phylogenetic relationships on species responses to the covariates, and the matrix C ∈ ℝfâ×fâ  is a phylogenetic 
correlation matrix, which is assumed to be known prior to the analysis. The model can be applied without trait data by 
including the intercept as the only species trait, and it can be applied without phylogenetic data by fixing J = 0. 

Priors 
Here we list the families of the priors that we assign, and which are essential for our sampling algorithm. We also 

provide the “default” values for those, which correspond to weakly informative prior that is recommended for practical use 
in case when no or very few additional information is available a priori (applied with normalized input data). 

• The prior for V is the inverse-Wishart prior with parameters Vw and ìw, V~Wtu(Vw, ìw). The prior parameters are Vw 
(', × ',  covariance matrix) and ìw (scalar). Their default values are Vw = IfÜ

 and ìw = ', + 1. 
• The prior for H is H~o(hî, Uî). The prior’s hyperparameters are hî (vector of length ','.) and	Uî (covariance 
matrix of dimension ','. × ','.). Their default values hî = 0fÜfê×u and Uî = IfÜfê

. 
• If phylogeny is included, the prior for 0 ≤ J ≤ 1 is a discrete prior that approximates spike-and-slab, with values Jñ 
and weights óñ. The default values are Jñ = (| − 1)/100  and óu = 0.5, óñ = 1/200 for | = 2,… ,101. If phylogeny 
is not included, this parameter is fixed to J = 0. 
• The prior for those diagonal elements of Σ that are not fixed due to the selected data distribution {7  is 
U7

tV~Ga(x7, y7). The prior parameters are the scalars x7  and y7. Their default values are x7 = 1 and y7 = 0.3. 

• For Λ;Λ;
û , we assume the multiplicative gamma process shrinkage prior suggested by Bhattacharya and Dunson 

(2011), in which the degree of shrinkage increases with the factor number. Thus, 

L7M|†7M, °M	~o~0,1/(°M†7M)�, †7M~Ga ¢
£

2
,
£

2
§ , °M = • ¶>

M

>ëu

, 
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¶u~Ga(xu, yu), ¶>~Ga(xV, yV)	for	- ≥ 2. 

• The authors of this method proposed that the parameter s is fixed to £ = 3 and the parameters yu and yV are fixed 
to yu = yV = 1. The parameters xu and xV are selected by the user to define the level of shrinkage , with xu tuning the 
basic level and xV > 1 the increase in shrinkage with increasing number of the factor. The default values are xu = xV =

5. In case of many species with sparse data, it may be useful to increase these parameters to increase shrinkage (and 
thus decrease the estimated number of latent factors), although the original study claims that the method is quite 
robust to the choice of these hyperparameters. 

• If the latent factors are not spatially structured, the prior for Η is `~o ¢0, If´
⨂If¨

§. If the latent factors are 

spatially structured, the prior for Η is `~o(0, KÆ), where KÆ is the block-diagonal matrix KÆ = diag(Ku, … , Kf´), 
where K66≤

M = ìM~‖:6 − :6≤‖V, O
M�. Here ìM~1, OM� is some isotropic stationary covariance function with ìM~0, OM� =

1, and OM is its spatial range parameter. The prior for OM is a discrete prior that approximates spike-and-slab, with 
values Oñ and weights óñ, | = 1…'¥µ

. The default values are the exponential covariance function ìM~1, OM� =

exp~−1/OM�, Oñ = 1g∏π(| − 1)/100  and óu = 0.5, óñ = 1/200 for | = 2,… ,101, where 1g∏π is the largest 
distance between the sites. 

Selecting the number of latent factors 
Determining the appropriate number of latent factors is fundamental for the HMSC model specified above. While in certain 
cases, this number can be obtained based on an informed expert opinion guess, generally such information is unavailable 
before the analysis. Some previous works have suggested methods for a proper Bayesian treatment of '0, and estimating it 
during the MCMC sampling (Lopes and West 2004). However, such scheme requires changing the domain of the parameter 
space during sampling and the proposed reversible-jump MCMC does not scale well. Instead, Bhattacharya and Dunson 
(2011) devised a formulation of infinite factor model, where the number of latent factors is assumed to be infinite, but the 
latent loadings of higher factors are shrink by assigning multiplicative Gamma process prior. In practice, the authors 
proposed to use adaptive tuning of '0 during the warm-up phase of MCMC scheme, based on discarding the latent factors, 
which latent loadings do not exceed certain pre-defined threshold. This method was implemented in the HMSC 
implementation presented in Ovaskainen et al. (2017) and consequently is used in this work. 

However, our experience with HMSC model indicates that with insufficient adaptation period or too severe shrinkage the 
estimated number of latent factors can be suboptimal, while with too mild shrinkage, the estimated number of factors can 
be unnecessarily high. The later generally does not affect the quality of the model fit due to originally infinite number of 
factors assumed, but is undesirable in spatial models, since it dramatically increases the computational load. An even more 
robust, although numerically very costly scheme to estimate the proper number of latent factors is to iteratively run 
several instances of HMSC model in cross-validation manner, while varying the number of latent factors. Then, the model 
with best cross-validation predictive performance is likely to contain the number of latent factors that is close to the truly 
optimal (may depend on the of CV fold splitting strategy). 

Approximate Gaussian process priors for latent factors for big spatial data 

Gaussian predictive process 
The Gaussian predictive process (GPP) denoted by ó∫(A), is constructed from the values of the original GP ó(A) defined 

at h ‘knot’ locations ª∗ = {Au
∗, … , Ag

∗ }. Therefore, the value of the GPP at any site Aw is given by ó∫(Aw) = }(ó(Aw)|ó
∗) =

æ*ø¿
∗æ¿∗¿∗

tu ó∗, where ó∗ = [ó(Au
∗), … ,ó(Ag

∗ )	]d  denotes the vector of the original GP values at the knot locations ª∗, 

æ¿∗¿∗ = á+~A6√
∗ , A6ƒ

∗ �ä
6ƒëu…g

6√ëu…g
 and æ*ø¿

∗ = [+(Aw, Au
∗), … , +(Aw, Ag

∗ )]. With this definition, it follows that ó∫  is itself a GP: 

ó∫(A)~GP ¢0, +∆(Au, AV)§, where the covariance function +∆(Au, AV) = æ*√¿
∗æ¿∗¿∗

tu æ*ƒ¿
∗

d  is non-stationary but factorizable 
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(Banerjee et al. 2008). As mentioned in the main text, our interpretation of the covariance matrix Ω assumes that the 
marginal prior distributions of the latent factors is standard normal. However, the GPP fails to fulfill that the marginal 
distribution of latent factors is standard normal since its marginal variance generally decreases with increasing distance 
from the knot set ª∗. To circumvent this misbehavior, we followed Finley et al. (2009) and applied a correction to the 
marginal prior variance of the GPP, so that it always equals that of the original GP:  +»(Au, AV) = æ*√¿

∗æ¿∗¿∗
tu æ*ƒ¿

∗
d +

¶(Au = AV)~+(Au, AV) − æ*√¿
∗æ¿∗¿∗

tu æ*ƒ¿
∗

d �. 

Hence, the prior for Η is `~o~0, K…Æ�, where K…Æ is the block-diagonal matrix K…Æ = diag~K…u, … , K…f´�, and æ…66≤
M =

+»M(A6, A6≤). Alternatively, K…M = æ¿¿∗
M ~æ¿∗¿∗

M �
tu

~æ¿¿∗
M �

d
+ {M, where {M is diagonal matrix that corrects for the marginal 

variances with elements 166
M = 1 − æ* ¿

∗
M ~æ¿∗¿∗

M �
tu

~æ* ¿
∗

M �
d

. The elements 166
M  are guaranteed to be non-negative as they are 

variances in conditional Gaussian distributions of ó(A6), conditional on [ó(Au
∗), … ,ó(Ag

∗ )	], and therefore, K…M is a valid 
correlation matrix. 

As far as we are aware, the most similar model to GPP-augmented HMSC was proposed by Ren and Banerjee (2013), 
where the authors also coupled GPP with factor modelling for analysis of multivariate environmental data under the 
assumption of Gaussian noise. 

Nearest Neighbor Gaussian process 
Nearest Neighbor Gaussian Process (NNGP) builds upon a special sparse approximation of the GP precision matrix that 

is related to the conditional representation of the original GP (Datta et al. 2016b). Given a specified ordering over the set of 

sites ª = ÀAu, … , Af¨
Ã the process ó(A)~GP~0, +(Au, AV)� over this set corresponds to multivariate Gaussian distribution 

Õ = Àóu,… ,óf¨
Ã
d

= Àó(Au), … ,ó ¢Af¨
§Ã

d

~o(0, æ¿¿) that can be specified in conditional manner:  

óu~o(0, æuu), ~ó6|ó7, ) < #�~o(F6, 16)	∀# ∈ 2…'( 

F6 = –x67ó7

6tu

7ëu

, áx6,u, … , x6,6tuä
d

= ¢áæ7√7ƒ
ä
7ƒëu…6tu

7√ëu…6tu
§
tu

áæu6, … , æ6tu,6ä
d
,

16 = æ66 −	 áæu6, … , æ6tu,6äáx6,u, … , x6,6tuä
d

 

This leads to a factorization of the covariance matrix æ = ¢If¨
− A§

tu

D ¢If¨
− A§

td

, where A is the strictly lower 

triangular matrix with elements x67  and D is the diagonal matrix with elements 16. The Nearest Neighbor approach 
approximates the conditional distribution ~ó6|ó7, ) < #�~o(F6, 16) by conditioning only on the h preceding closest 

neighbors of A6: ~ó6|ó7, ) < #� ≈ ¢ó6|ó7, ) ∈ og(#)§, where og(#) = á'u
6 , … , 'g∫

6 ä is the subset of {1, … , # − 1	} of size h∫ =

min(h, # − 1) that contains the indices of at most h closest neighbors of A6. This results in the following adjusted 
formulas: 

óu~o(0, æuu), ¢ó6|ó7, ) ∈ o(#)§~o~F’6, 1÷6�	∀# ∈ 2…'( 

F’6 = – x67ó7

7∈◊ÿ(6)

, Àx
6,f√

 , … , x
6,fÿŸ

 Ã
d

= ⁄áæ7√7ƒ
ä
7ƒëf√

 ,…,fÿŸ
 

7√ëf√
 ,…,fÿŸ

 

¤

tu

Àæ
f√

 ,6
, … , æ

fÿŸ
 ,6

Ã
d

,

16 = æ66 −	Àæ
f√

 ,6
, … , æ

fÿŸ
 ,6

Ã Àx
6,f√

 , … , x
6,fÿŸ

 Ã
d

 

 

approximate factorization of covariance matrix K ≈ K… = ~I − A…�
tu

D…~I − A…�
td

 with sparse matrix A…, which non-zero 

elements are obtained via the expressions above. Hence the precision matrix K…tu = ~I − A…�
d
D…tu~I − A…� is also sparse 

with ‹~'(h
V� non-zero entries. Another crucial property of this matrix is that all its non-zero elements tend to be close to 

the diagonal (the exact measure of how far the non-zero elements could be away from the diagonal depends on the 
coordinates of the sites and selected ordering; the practical advice is that the ordering should be selected to minimize it in 
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order to enhance performance). This imposes that the Cholesky decomposition ››d = K…tu + {fi, where {fi is a diagonal 
matrix with non-negative elements is also sparse. The enhanced computational efficiency of the NNGP method is achieved 
due to the decreased cost of sparse matrix operations compared to their dense counterparts. A detailed review of how the 
sparsity of NNGP can be harnessed for numerical speed-up of Bayesian inference we is given in Finley et al. (2019). 

Therefore, the prior for Η is `~o~0, K…Æ�, where K…Æ is the block-diagonal matrix K…Æ = diag~K…u, … , K…f´�, and K…M =

~I − A…M�
tu

D…M~I − A…M�
td

 . Alternatively, K…Æ
tu = diag ¢~K…u�

tu
, … , ~K…f´�

tu
§, and ~K…M�

tu
= ~I − A…M�

tu
D…M~I − A…M�

td
. 

Recently, Taylor-Rodriguez et al. (2018) proposed a similar blend of NNGP and latent factors to build a 2-stage 
probabilistic model linking together areal LiDAR data and forest inventory observations. However, the sequential Gibbs 
updater for latent factors implemented in that work, is principally different from our block implementation that follows the 
original note on using sparse Cholesky by Datta et al. (2016a).  

One practical challenge related to NNGP is that the approximation is non-invariant w.r.t. the selected ordering of the set 
of locations. Vecchia (1992) and Stein et al. (2004) asserted that similar conditional approximations are non-sensitive to the 
ordering. (Datta et al. 2016b) conducted a numerical experiment that demonstrated that results are practically invariant to 
the ordering choice in terms of root mean square predictive errors this choice when the ordering is selected along any 
direction in the spatial coordinate space. However, the maximum-minimum distance ordering, recently proposed by 
Guinness (2018) resulted in substantially lower Kullback–Leibler (KL) divergence of approximation, compared to the 
geographical gradient ordering. Further, in multivariate case there is a possibility that the minimum posterior KL divergence 
between the original GP-based HMSC model and NNGP-based approximation could be achieved using different orderings 
for different latent factors. Therefore, to keep the focus on practical multivariate ecological spatial data analysis specifics of 
our study, we left the ordering choice comparisons to other studies and in the presented experiments always ordered the 
sites according to their longitude from West to East. 

Gibbs MCMC sampling algorithm 
We extended Gibbs posterior sampling algorithm for standard HMSC’s parameters for the case when latent factors N6M are 
assigned with Gaussian predictive process or Nearest Neighbor Gaussian process approximations of their original full 
Gaussian process prior. We implemented the extended sampling algorithm in the Matlab version of the HMSC package 
(Ovaskainen et al. 2017). Here we only present those steps from the overall sampling scheme that differ from previously 
published works (Bhattacharya and Dunson 2011, Ovaskainen et al. 2016a, Ovaskainen et al. 2016b, Ovaskainen et al. 2017, 
Tikhonov et al. 2017), namely the full-conditional updaters for Η and O. 

Gaussian predictive process 

Full-conditional updater for Η 
If the latent factors are assigned GPP prior, then the full-conditional distribution for ` follows: 

(`| −)~o~pfl, Ufl�, Ufl
tu = K…Æ

tu + ΛdΣtuΛ ⊗ ‡f¨
, pfl = Uflvec(·ΣtuΛ) 

However, the direct calculation does not bring any computational advantage compared to using latent factors assigned 
with GP prior. Instead, ` could be drawn from the following expressions (see Lemma 1 for details on computations) 

` = ‚tuvec(·ΣtuΛ) + (‚tu{tu„uV›‰Â√)~(‚tu{tu„uV›‰Â√)dvec(·ΣtuΛ)� + ›ÊÂ√bu + (‚tu{tu„uV›‰Â√)bV 

„uV = 1#x|~æ¿¿∗
u , … , æ

¿¿∗

f´
		�, „Vu = „uV

d , „VV = 1#x|~æ¿∗¿∗
u , … , æ

¿∗¿∗

f´
�, { = 1#x|({u,… , {f´) 

‚ = ΛdΣtuΛ ⊗ ‡f¨
+ {tu, Á = Ë − „Vu{

tu‚tu{tu„uV, ›ÊÂ√›ÊÂ√
d = ‚tu, ›‰Â√›‰Â√

d = Átu 

bu~o ¢0f¨f´×u, ‡f¨f´
§ , bV~o ¢0fÈf´×u, ‡fÈf´

§ 
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Full-conditional updater for O 
Conditioning on Η, spatial range parameters OM are independent for ℎ = 1…'0 and can be sampled one by one from the 
prior values Oñ proportional to their conditional posterior probabilities. We follow the sampling scheme presented in 
Ovaskainen et al. (2016b), but exploit the special structure of GPP-induced covariance matrices K…M. 

For each latent factor this scheme requires '¥µ
 calculations of the quadratic form N⋅M

d ~K…M�
tu

N⋅M, and additionally '¥µ
 

calculations of ÍK…MÍ that are shared among the latent factors.  

N⋅M
d ~K…M�

tu
N⋅M = N⋅M

d ¢æ¿¿∗
M ~æ¿∗¿∗

M �
tu

~æ¿¿∗
M �

d
+ {M§

tu

N⋅M

= N⋅M
d ⁄~{M�

tu
− ~{M�

tu
æ¿¿∗

M ¢æ¿∗¿∗
M + ~æ¿¿∗

M �
d
~{M�

tu
æ¿¿∗

M §
tu

~æ¿¿∗
M �

d
~{M�

tu
¤ N⋅M

= N⋅M
d ~{M�

tu
N⋅M − N⋅M

d ~{M�
tu

æ¿¿∗
M ¢æ¿∗¿∗

M + ~æ¿¿∗
M �

d
~{M�

tu
æ¿¿∗

M §
tu

~æ¿¿∗
M �

d
~{M�

tu
N⋅M

= ÎN⋅M
d ~{M�

tw.Ï
Î

V

V

+ ÎN⋅M
d ~{M�

tu
æ¿¿∗

M ›tdÎ
V

V

, ››d = ¢æ¿∗¿∗
M + ~æ¿¿∗

M �
d
~{M�

tu
æ¿¿∗

M § 

This expression is computed at ‹~'(h
V + hÌ� complexity, hence scaling linearly with number of sites '(. Similarly, the 

determinant 

ÍK…MÍ = Óæ¿¿∗
M ~æ¿∗¿∗

M �
tu

~æ¿¿∗
M �

d
+ {MÓ = Óæ¿∗¿∗

M + ~æ¿¿∗
M �

d
~{M�

tu
æ¿¿∗

M Ó Íæ¿∗¿∗
M Í

tu
Í{MÍ 

is also calculated at the cost of ‹~'(h
V + hÌ�, which brings the whole complexity of the full conditional sampler to 

‹ ⁄'¥µ
'0~'(h

V + hÌ�¤. 

Nearest Neighbor Gaussian process 

Full-conditional updater for Η 
If the latent factors were assigned NNGP prior, then the full-conditional distribution for ` follows: 

(`| −)~o~Ffl, Ufl�, Ufl
tu = K…Æ

tu + ΛdΣtuΛ ⊗ ‡f¨
, pfl = Uflvec(·ΣtuΛ) 

 

Despite of the precision matrix Ufl
∗tu being sparse, neither its inverse, nor Cholesky decomposition are necessarily sparse. 

This effective negates all potential computational benefits due to sparsity in the K…Æ
tu. So, instead of sampling ` directly, we 

obtain it as the permutation of `∗, which could be obtained through following formulas 

(`∗| −)~o~pfl∗, Ufl∗�, Ufl∗
tu = Ôfl∗flK…Æ

tuÔfl∗fl
d + ‡f¨

⊗ ΛdΣtuΛ, pfl∗ = Ufl∗vec((·ΣtuΛ)d) 

Where the Ôfl∗fl is the transposition matrix that transforms ` to `∗: `∗ = Ôfl∗fl`. Now, the Ufl∗
tu matrix has a special 

structure – if considering it as a block matrix with '( × '( blocks of size '0 × '0, all of its non-zero blocks are located at 
the same places as the non-zero elements of ~K…M�. So, the non-zero elements of Ufl∗

tu are in the proximity of the diagonal, 

which allows for a sparse Cholesky factorization Ufl∗
tu = ›fl∗›fl∗

d . Exact number of non-zero elements depends on 
configuration of sites and ordering, but it can be shown that for sites located at the vertices of a uniform square grid the 

number of non-zero elements would be of order ‹h'0
V'(

Ò

ƒ 	Ú. Then, the random draw from the desired distribution 

(`∗| −)~o~pfl∗, Ufl∗� can be obtained via following expressions: 

`∗ = ›fl∗
tû~›fl∗

tuvec((·ΣtuΛ)d) + b�, b~o ¢0f¨f´×u, ‡f¨f´
§ 
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The associated computational cost is mainly due to the sparse Cholesky decomposition and double left division of a '('0-
length vector to a '('0 × '('0 sparse triangular matrix. 

In our Matlab implementation of this updater we use the Matlab’s implementation of Cholesky factorization – function 
chol(). This function also provides an option to internally perform approximate minimum degree (AMD) permutation in 
order to get a sparser Cholesky factor. Unfortunately, we cannot report the exact algorithm that is used there, since is not 
publicly unclosed. We propose to keep this option on, since in our numerical experiments it allowed for an approximately 
10-15% additional speed-up for the updater, although it is likely that for certain site configurations it would only generate 
unnecessary minor overheat (e.g. when all sites are on a single straight line). As a side remark, we would like to mention 
that applying this function directly to Ufl

tu does not produce any reasonably sparse Cholesky factor due to heuristic nature 
of AMD algorithm, hence the block-ordered permutation to Ufl∗

tu is indeed essential. 

Full-conditional updater for O 

Conditioning on Η, spatial range parameters OM are independent for ℎ = 1…'0 and can be sampled one by one from the 
prior values Oñ proportional to their conditional posterior probabilities. We follow the sampling scheme presented in 
Ovaskainen et al. (2016b), but exploit the special structure of NNGP-induced covariance matrices K…M. 

For each latent factor this scheme requires '¥µ
 calculations of the quadratic form N⋅M

d ~K…M�
tu

N⋅M, and additionally '¥µ
 

calculations of ÍK…MÍ that are shared among the latent factors.  

N⋅M
d ~K…M�

tu
N⋅M = N⋅M

d ~I − A…M�
tu

D…M~I − A…M�
td

N⋅M = ÎN⋅M
d ~I − A…M�

tu
~{…M�

tw.Ï
Î

V

V

, ÍK…MÍ = ÍD…MÍ 

This first expression is computed at ‹~'(h� complexity, the second – just at ‹~'(� – hence the computation scales 
linearly with number of sites '(. The construction process of matrices A…M and D…M takes ‹~'(h

Ì�, but must be done only 
once for each Oñ at the beginning of MCMC sampling. Hence, the resulted complexity of the full-conditional updater is 

‹ ¢'¥µ
'0'(h§. 

Lemma 1: on full conditional updater of Η for latent factors with GPP prior 
Lemma: when each latent factor is assigned with Gaussian predictive process prior with marginal variance correction: 

N⋅M~o ¢0f¨×u, æ
M§ 

æM = æ¿¿∗
M ~æ¿∗¿∗

M �
tu

æ¿∗¿
M + {M, {67

M = ¶67 ¢1 − æ* ¿
∗

M ~æ¿∗¿∗
M �

tu
æ¿∗* 

M § , |ª∗| = h 

a random draw of the vector of all latent factors values N6M, ∀# = 1…'(, ∀ℎ = 1…'0 from its full conditional posterior 
distribution in HMSC can be obtained with computational cost of at most ‹Û~h'0

V'( + hÌ'0
Ì� flops. 

Proof: 

Then the joint prior for ` = £Ùı(Η) = ÀN⋅u
d , … , N⋅f´

d Ã
d

is 

`~o ¢0f¨f´×u,„§ 

„ = „uV„VV„Vu + { 

„uV = 1#x|~æ¿¿∗
u , … , æ

¿¿∗

f´
		�, „Vu = „uV

d , „VV = 1#x|~æ¿∗¿∗
u , … , æ

¿∗¿∗

f´
� 

{ = 1#x|({u,… , {f´) 

Then the conditional distribution of ` would be 
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`~o~pfl, Ufl� 

Ufl
tu = „tu + ΛdΣtuΛ ⊗ ‡f¨

 

pfl = Uflvec(S
ˆΣtuΛ) 

However, in case of large '( direct sampling from this distribution is problematic due to the need to invert and decompose 
the large dense matrix Ufl

tu. Instead the special form of „ can be exploited for enhanced performance. 

First using the Woodbury identity 

„tu = („uV„VV„Vu + {)tu = {tu − {tu„uV(„VV + „Vu{
tu„uV)

tu„Vu{
tu 

Then denoting by Ë = „VV + „Vu{
tu„uV, and by ‚ = ΛdΣtuΛ ⊗ ‡f¨

+ {tu, 

¢„tu + ΛdΣtuΛ ⊗ ‡f¨
§
tu

= (‚ − {tu„uVË
tu„Vu{

tu)tu 

Which can be further expanded with Woodbury identity 

(‚ − „uVË
tu„Vu{

tu)tu = ‚tu + ‚tu{tu„uV(Ë − „Vu{
tu‚tu{tu„uV)

tu„Vu{
tu‚tu 

Matrix Á = Ë − „Vu{
tu‚tu{tu„uV has the size ';'0 × ';'0, and its inverse Átu and its Cholesky decomposition ›‰Â√  

could be easily computed once the number of Gaussian predictive process knots is relatively small. 

The inverse matrix ‚tu can be also effectively calculated due to its special structure. Let’s denote by Ô the commutation 

matrix between ΛdΣtuΛ ⊗ ‡f¨
 and  ‡f¨

⊗ ΛdΣtuΛ, so that ΛdΣtuΛ ⊗ ‡f¨
= Ô ¢‡f¨

⊗ ΛdΣtuΛ§Ôd. This matrix always 

exists and ÔdÔ = ÔÔd = ‡f¨f´
. Further, Ôd˜Ô and Ôd˜Ô are diagonal matrices if ˜ is diagonal. Then 

‚ =	ΛdΣtuΛ ⊗ ‡f¨
+ {tu = Ô ¢‡f¨

⊗ ΛdΣtuΛ§Ôd + ÔÔd{tuÔÔd = 	Ô ¢‡f¨
⊗ ΛûΣtuΛ + Ôd{tuÔ§Ôd = 

= Ô ¢1#x|~ΛdΣtuΛ + {̄u, … , ΛdΣtuΛ + {̄f¨�§Ôd  

Where {̄6  are '0 × '0 diagonal matrices, such that Ôd{tuÔ = 1#x|~{̄u, … , {̄f¨�. Then 

‚tu = ¢Ô ¢1#x|~ΛdΣtuΛ + {̄u, … , ΛdΣtuΛ + {̄f¨�§ Ôd§
tu

= Ôd ⁄1#x| ¢~ΛdΣtuΛ + {̄u�
tu

, … , ~ΛdΣtuΛ + {̄f¨�
tu

§¤ Ô 

which requires only '( inversions of '0 × '0matrices that are typically small. Furthermore matrix ‚tu is sparse with at 
most '('0

V non-zeros elements. Finally  

›ÊÂ√ = ıℎ˘-(‚tu) = Ôd 1#x| ⁄ıℎ˘- ¢~ΛdΣtuΛ + {̄u�
tu

§ , … , ıℎ˘- ¢~ΛdΣtuΛ + {̄f¨�
tu

§¤ÚÔ 

also requires only computing the Cholesky decomposition of '( small '0 × '0 matrices and ›ÊÂ√  is sparse with at most 

'(
f´~f´tu�

V
 non-zeros elements. 

Finally, we get that  

`~o~pfl
∗ , Ufl

∗� 

Could be sampled as 

` = ‚tuvec(SΣtuΛ) + (‚tu{tu„uV›‰Â√)~(‚tu{tu„uV›‰Â√)dvec(SΣtuΛ)� + ›ÊÂ√bu + (‚tu{tu„uV›‰Â√)bV 
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bu~o ¢0f¨f´×u, ‡f¨f´
§ , bV~o ¢0gf´×u, ‡gf´

§ 

This has the numerical complexity of ‹Û~max~h'0
V'(,h

Ì'0
Ì�� flops, so scaling linearly as the number of sites.  

Posterior predictive distribution 
Once the draws from the posterior of HMSC model parameters have been acquired, they can be used for making 
predictions at any location, where the values of covariates are known. We denote the desired prediction location by ˙∗, the 
set of covariates included to the fixed effects component of the HMSC model at that location by ˚∗, and the vector of 
predicted outcomes by ¸∗. We denote the set of all model parameters, specified in the corresponding section above by ˝. 
Then  

˛(¸∗|˚∗, ˇ) = ! ˛(¸∗|˚∗, ˝)˛(˝|ˇ)1˝

"
≈

1

#– ˛~¸∗|˚∗, ˝
($)�

%

$ëu

 

Where &˝(u), … , ˝(%)' is the set of posterior samples. 

˛~¸∗|˚∗, ˝
($)� = ! ˛~¸∗|a∗,(($)�˛~a∗|˚∗, ˝

($)�1a∗

a∗

= ! ˛~¸∗|Β($)
d ˚∗ + Λ($)

d `∗,(($)�˛~`∗|H($),*($)�1`∗

`∗

≈
1

˜
–˛¢¸∗|Β($)

d ˚∗ + Λ($)
d `∗

(ˆ)
,(($)§

+

ˆëu

, 

where ,`∗
(u)

, … , `∗
(+)- are samples from the conditional distribution ˛~`∗|H($),*($)�, which governs the latent factors 

values in ˙∗ given the realization H$ in training locations ª. From now on we would drop the index of posterior sample . for 
the clarity of notation. This conditional distribution factorizes across the latent factors 

˛(`∗|Η,*) = •˛(NM∗|N⋅M, OM),

f´

Mëu

 

which enables to obtain conditional samples of the joint `∗ via sampling from univariate conditional distributions for 
different latent factors ℎ. This allows to retain linear asymptotic complexity in predictive distribution with respect to the 
number of latent factors '0 in the HMSC. Formulas for efficient sampling from univariate conditional variance-corrected 
GPP and NNGP distributions follow the original strategies (Finley et al. 2009, Datta et al. 2016a).  

Details on Australian plants case study 
The data originate from the Victorian Biodiversity Atlas (VBA) (https://www.environment.vic.gov.au/biodiversity/victorian-
biodiversity-atlas), which is a state database that collaborates with the Atlas of Living Australia (http://www.ala.org.au). 
The subset of the VBA used in this study involves the occurrences of 1237 herbaceous species, at 30,955 sampling locations 
within the State of Victoria, Australia (Fig. 2A), for which presence-absence were recorded. The data were collected in 
years 1984-2014 on sampling plots of 3900 m2, The number of unique survey teams involved in the collection of these data 
is not known accurately, but is in the order of 200-300. The dataset combines survey data undertaken for a range of 
purposes the predominant being:  

1. Ecosystem inventory, circumscription and mapping  
2. Characterizing the habitats of species of management interest  
3. Documenting and describing land subject to development or land-use change 

Consequently, the data is biased towards sampling public lands, typically less suitable for agriculture and peri-urban areas.   
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We selected four environmental covariates that were considered potentially important to vegetation and plant distribution 
and were not strongly correlated. These measure: 

1. Climatic conditions – Mean maximum temperature in January (the hottest and driest month in south eastern 
Australia), developed using ANUCLIM (Houlder et al 2000). See Appendix S1: Fig. S1A. 

2. Hydrology and landscape position – This a summed and normalized set of ‘vertical distance above stream’ 
calculations (Conrad et. al. 2015) for seven different channel networks, each of which satisfy seven separate, 
monotonically increasing, flow accumulation thresholds (based on catchment size weighted by catchment rainfall). 
See Appendix S1: Fig. S1B. 

3. Soil properties - Here we used the radioelement count of thorium as a general proxy for soil type. Radiometric data 
is related to soil depth, soil texture and nutrition particularly in surficial landscapes. See Read et al. (2018) and 
Appendix S1: Fig. S1C. 

4. Solar radiation and anisotrophic heating. These data have been derived from the transformation of a digital 
elevation model to indicate the relative level of terrain illumination when the sun is at 270 degrees (North-West) 
and 40 degrees above the horizon.   

Pearson correlation between selected environmental covariates at observed sites 
 climatic conditions water proximity soil properties local slope 
climatic conditions 1 -0.47 -0.09 -0.19 
water proximity -0.47 1 0.38 0.15 
soil properties -0.09 0.38 1 0.08 
local slope -0.19 0.15 0.08 1 

 

We also included available information on 9 species traits as binary indicator variables, describing whether the species (1) 
is annual or perennial, (2) is pollinated by abiotic or biotic means, (3-4) has propagules that are dispersed by wind, 
invertebrates, or another agent, (5) forms a seed bank that typically persists for two or more years, and is considered 
vulnerable to or tolerant of (6) fire, (7) prolonged snow cover, (8) protracted waterlogging, or (9) salinity. These traits were 
selected from a much larger list of expert-provided traits that potentially govern the species distribution in the studied 
community. The particular choice of those included to the model was governed by a) amount of collinearity between 
different available traits and b) availability of trait values for all the studied species. 

Details on model convergence 
As described in the main text, we fitted all models with 10,000 MCMC steps, out of which we discarded the first 2,000 steps 
as burn in. We thinned the remaining samples by 10, resulting in 800 posterior draws. To examine the convergence of the 
MCMC chains, we repeated model fitting 40 times, randomly selecting initial parameter values from the prior distribution. 
We assessed the quality of mixing by calculating the effective sample sizes (ESS) and potential scale reduction factors 

 

Figure S1. Spatial distribution of environmental covariates included to the model. 

No
rt

h

East East East

Average temperature in January Normalized vertical water proximity Radioelement count of thorium
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(PSRF) for the model parameters (Gelman and Rubin 1992). However, as the prior of Bhattacharya and Dunson (2011) leads 
to non-identifiable parameters H and Λ, and the number of unique entries in Ω = ΛûΛ is extremely high for model fitted to 
all data, we restricted our calculations to the B parameters and a randomly chosen 40 ✕ 40 symmetric submatrix of 
association matrix ˜ = cov2cor~Ω + ‡fâ

�, as those are fundamental in the ecological applications and generally 
representative for overall model mixing. Hence, for each variant of fitted model we stacked the 40 chains, each containing 
800 draws of B and ˜ parameters, and calculated the ESS and PSRF with effectiveSize() and gelman.diag() 
functions implemented in coda R package. To reduce still enormously high number of quantities, we calculated a single 
quantity for each model variant – the 5% quantile of the ESS and the 95% quantile of the PSRF point estimates among the 
D;7  or 7̃7≤  parameters in this model variant. The resulted values are summarized in the Appendix S1: Fig. S2, Fig. S3, Fig. 
S4, Fig. S5. 

As is clearly seen from the visualization of the effective sample sizes and potential scale reduction factors, the algorithm 
with selected number of steps and thinning demonstrated generally adequate mixing for numbers of training sites up to 
1600 and got significantly worse when the number of sites further increased. The drop is especially pronounced for the 
elements of association matrix 7̃7≤. On the other hand, the number of species exhibited opposite impact – with higher 
number of species the effective sample sizes were generally higher than with low number of species. Perhaps somewhat 
unexpectedly, the mixing in model fits with high number of training sites got insufficient also for non-spatial model. These 
results suggest that to keep the results of Bayesian analysis properly valid (especially concerning uncertainty 
quantifications), the number of samples or thinning for models fitted to large data must be increased, which raise the right 
parts of the expected computation times that are shown in the Fig. 1A-F.  

Despite of the fact that the bigger model indicated insufficient mixing, in terms of predictive performance our results were 
quite stable between different chains and qualitatively repeated the results averaged over the chains. This provides an 
empirical confirmation that the predictive performance is expected to behave as reported in Fig. 1 and would not 
considerably depend on initial starting position of MCMC chains. Appendix S1: Fig. S6 and Fig. S7 extend the Fig. 1 GHI and 
Fig. 1 JKL correspondingly by presenting the predictive measures calculated for each of the independent chains. The 
visualization of performance distribution for each model variant is constructed using beanplot function with standard 
smoothing parameters from beanplot R package. 

Based on the complications with mixing that we have encountered when fitting models to the larger datasets, we would 
like to summarize that the block Gibbs sampling algorithm, presented by Ovaskainen et al. (2017) is insufficiently efficient 
for modelling big datasets, at least when the outcomes are binary. One potential bottleneck is due to known inefficiencies 
of the data augmentation of Albert and Chib (1993) that is used for dealing with binary data, which leads to slow mixing for 
unbalanced outcomes, which probability is close to zero or one. The fundamental problem comes from the great mismatch 
of marginal posterior and the conditional distribution given the augmented data. Some recent work has been conducted 
aiming to efficiently deal with this issue (Duan et al. 2017), specifically to “widen” the conditional distribution at the cost of 
introducing a rejection probability. However, its utility has been demonstrated on a significantly simpler models and 
transition of those results to HMSC is not devised yet. Another opportunity, which currently seems more promising in our 
opinion, is to investigate how combination of marginal representation of HSMC’s latent liabilities as a Gaussian process 
could be coupled with approximate methods for dealing with non-Gaussian observations (e.g. Laplace approximation, 
expectation propagation, variational inference). While the resulted GP would be of dimension '('*, which in case of our 
biggest training dataset is over 1.6 ⋅ 100 and prohibits full GP fitting approach, the special structure of GP’s covariance 
matrix induced by HMSC structure provides opportunities for much more efficient solutions. For the GPP model, such 
method would have the same flavor as the approximate inference methods for Gaussian process regression/classification 
(Hensman et al. 2015). For the NNGP model, such approaches seem to be conceptually more challenging as the matrix 
sparsity there is tricky to utilize in combination with other marginalized model components. Thus, we believe that the first 
steps in that direction should be in developing an extension of the collapsed NNGP method, proposed by Finley et al. 
(2019), which extension would additionally marginalizing out the fixed effects and be applicable to non-Gaussian residuals. 
To sum up, we would like to mark this research question as a potential area of interest for statisticians and machine learner 
researchers, specializing in developing methods for multivariate Bayesian data analysis. 
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Figure S2. Visualization of effective sample sizes for covariate responses based on 
multiple fitted independent chains for each of model variants. The numbers depict 
the 5% quantiles among the !"#  parameters. 

 

Full

 

Figure S3. Visualization of effective sample sizes for association matrices based on 
multiple fitted independent chains for each of model variants. The numbers depict 
the 5% quantiles among the off-diagonal $##%  parameters. 

 

Full
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Figure S4. Visualization of PSRF for covariate responses based on multiple fitted 
independent chains for each of model variants. The numbers depict the 95% 
quantiles among the !"#  parameters. 

 

Full

 

Figure S5. Visualization of PSRF for association matrices based on multiple fitted 
independent chains for each of model variants. The numbers depict the 95% 
quantiles among the off-diagonal $##%  parameters. 

 

Full
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Figure S6. Extension of Fig. 1EFG visualizing the predictive Tjur R2 for each independent chain (black horizontal stripes). The selected coloring follow Fig 1. 
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Figure S7. Extension of Fig. 1HIJ visualizing the predictive deviance for each independent chain (black horizontal stripes). The selected coloring follow Fig 1. 
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