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1 Supplemental Methods

1.1 Alignment of co-complex structural data

In order to allow computation of pairwise expected similarity between proteins’ DNA-binding
specificities, we inferred position-specific contact frequency models from protein-DNA co-complex
structures for C2H2-ZFs and Homeodomains. Briefly, our algorithm performs multiple co-
complex structural alignment across co-complex structures from the same DBD family and
aggregates contact information between DBD positions and binding site positions based on
that alignment; finally the algorithm outputs a model, D, where D[i, j] corresponds to the frac-
tion of times that base-contacting DBD position i physically contacts “reference” binding site
position j across a collection of DBD-DNA co-complex structures.

In particular, for each DBD–DNA co-complex k that has lk DNA base pairs, we create an
h × lk dimensional matrix Ck, where h is the number of match states in an HMM (e.g., from
PFAM [1]) for the corresponding DBD family. We set Ck[i, j] = 1 if the j-th DNA base is the
closest base to the amino acid in the i-th match state and is in contact with it (as defined in the
following section), and 0 otherwise. Each matrix Ck may have a different number of columns
(DNA positions), and we wish to find a common offset and orientation (i.e., registration) across
all the matrices. Intuitively, our algorithm finds this registration by horizontally translating
and/or flipping each Ck such that the total number of non-zero cells when summing the ma-
trices (under the registration) is as small as possible. We note that searching the space of all
combinations of orientations and offsets is computationally infeasible; thus we employ a greedy
heuristic strategy (as is frequently done in multiple sequence alignment). In practice, for both
our alignment procedure and calculation of the fraction of times each DBD position contacts
a base in a particular position of the alignment, we down-weight contributions from subsets of
DBD instances that are similar to each other [2, 3].

Concretely, for each DBD–DNA co-complex k, denote the horizontal offset by ak > 0 and
the flip direction by bk ∈ {1,−1}. We begin by trimming off columns from either end of each
matrix, Ck, if no amino acids contact the corresponding base positions. We then initialize an
aggregate contact matrix D to be the contact matrix with the widest dimension after trimming.
All other matrices will be aligned relative to this one, so that j-th position in this matrix gets
mapped to j + ak ∗ bk in matrix Ck. For each remaining contact matrix, Ck, iteratively, and in
arbitrary order, we perform the following two steps: 1. Find the shift ak and flip direction bk
that maximizes the Frobenius inner product of D and Ck after padding Ck with zero columns
to be the same width as D. 2. Update the value of D by adding its current value to the padded
version of Ck corresponding to the maximizing shift/orientation. Finally, positions in D are
manually oriented relative to a well understood structure for the DBD family to obtain the
“reference” base numbering scheme.
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1.2 Preprocessing protein-DNA co-complex structures

All co-complex structures from the BioLIP database [4] for biologically relevant protein-ligand
interactions from the Protein Data Bank [5] were downloaded and subsequently peptide chains
were searched for DBD instances using probabilistic HMM matching [1], as described in previous
work [3]. Subsequently, each DBD instance in any peptide chain was assigned to its closest
paired homologous DNA ligand chains, thus creating a set of DBD-DNA pairs. We excluded
DBD instances prior to our co-complex alignment procedure (i.e., for Section 1.1) based on two
possible criteria: First, since our alignment algorithm assumes each DBD instance to have a
fixed number of match states, DBD instances with missing match states were removed. Second
since we are interested in interactions with double-stranded DNA, we removed DBD instances
whose closest matched DNA ligand did not have a corresponding homologous strand over the
region where it interacts with the DBD instance. Overall, a total of 287 C2H2-ZF and 73
Homeodomain instances remained after removing instances due to either of these criteria. For
each DBD-DNA pair in the remaining set, the bases in the DNA chain were numbered in order
choosing one of the two strands to be the forward strand arbitrarily, then contacts between
side-chains marked as corresponding to an HMM match state and DNA-base positions were
recorded, separating into base-contacts and backbone-contacts. For this work, we defined a
‘contact’ as a heavy atom (i.e., non-hydrogen) of an amino acid side chain within a distance of
3.6Å of a heavy base or backbone atom; this cutoff captures hydrogen bonds and van der Waals
interactions, but not water-mediated interactions [6].

1.3 Processing C2H2-ZF PWM datasets at the core sequence level

Initial PWMs for the PW-2015 dataset were inferred from bacterial-one-hybrid (B1H) selections
described in Persikov, Wetzel, et al. [7]. For the analyses described here, we considered only
the subset of B1H selections performed at low stringency (2mM) of the interaction inhibiter
3-aminotriazole. These selection data were processed essentially as described in our previous
work [7], with a few minor exceptions. First, C2H2-ZFs with only one possible encoding at the
nucleotide level were removed from all selections. Second, constructs encoding identical C2H2-
ZFs at the amino acid level were aggregated based on the mean observed frequency across
nucleotide variants within a selection rather than by the sum across variants. Third, when
averaging frequencies of identical C2H2-ZFs across the F2 and F3 selections (i.e., positions of
the randomized C2H2-ZF within construct, see [7]), frequencies of C2H2-ZFs that did not pass
our entropy threshold (see [7]) in one selection but did pass in the other were ‘rescued’ for the
selection where they did not pass the threshold, prior to averaging. As in our previous work,
these average frequencies (i.e., across F2 and F3) were then aggregated at the ‘core sequence’
level (i.e., positions -1, 2, 3, and 6 relative to the start of the DNA-contacting α-helix according
to the structural interface) and used as input to a ‘lookup’ procedure [7], which produced 3 bp
PWMs corresponding to 7,776 distinct C2H2-ZF core sequences.

Initial PWMs for the NM-2015 dataset were derived from matrices corresponding to relative
free energies of binding to each nucleotide as reported by Najafabadi, Mnaimneh et al. [8]. For
each of the 8,138 C2H2-ZFs with reported energy matrices, we scanned the reported protein
sequence constructs to determine unambiguous positions -1 through 6 of the α-helix via regular
expression matching, requiring no insertions or gaps within the α-helix. For the 8,129 C2H2-
ZFs that matched the regular expression, per-base-position energies were converted to per-
base-position probabilities (i.e., PWM columns) by taking the exponential of energies for each
base in a given position then normalizing to distribution. This corresponds directly to per-base
position probabilities arising from a Boltzmann distribution with the corresponding free energies
and an assumed exponential scaling factor of 1. Since the energies are unscaled (personal
communication with the first author of [8]) any chosen scaling factor will be somewhat arbitrary.
When visualizing as logos, PWMs were rescaled to match the average per-column information
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content of an external reference [9], using a procedure previously described by Christensen et
al. [10]. PWMs of C2H2-ZFs from this dataset identical in their core sequence positions were
averaged per base position, resulting in a single PWM for each of 2,599 distinct core sequences.

Finally, as an external standard, we considered the 238 C2H2-ZF PWMs provided as Sup-
plemental Dataset 1 from the work of Enuameh, Asriyan, et al. [9], where specificities were
determined in a lower throughput system, and individual C2H2-ZF domains from full-length fly
proteins were assigned manually by the authors to their corresponding binding subsites. Again,
PWMs of C2H2-ZFs identical in their core sequence positions were averaged per base position,
resulting in a single PWM for each of 150 distinct core sequences.

1.4 Gathering Homeodomain DNA-binding specificities

We extracted 612 DNA-binding specificities (in the form of PWMs) spanning 395 distinct Home-
odomain (HD) TFs from the Cis-BP database [11]. In particular, we considered PWMs of pro-
teins naturally occurring in human, mouse, or fly that were annotated as containing a HD DBD
and no other DBD type, and that had been assayed in vitro via protein-binding microarray,
SELEX, or bacterial one-hybrid assays spanning 8 distinct publications [12, 13, 14, 15, 16, 17,
18, 11]. After excluding PWMs that corresponded to binding in the presence of methylcytosine
or mutational analyses we arbitrarily chose one motif for each TF assayed in each study to
consider for further analysis. In the case of one study by Yin et al. [16], binding was assayed for
some TFs expressed either as full-length proteins or as “extended DBDs”; here we gave prefer-
ence to the extended DBD versions as they covered a larger number of total distinct TFs and
were previously demonstrated to be highly similar to the full-length versions in most cases. In
the case of motifs from FlyFactorSurvey [17], we preferentially used motifs derived from Solexa
sequencing of binding sites, if available.

1.5 Alignment of Homeodomain PWMS to reference base positions

We aligned the HD PWMs extracted from the Cis-BP database [11] to “reference” base po-
sitions within our structural contact model for HDs (see Supplemental Methods 1.1 and 1.2;
Supplemental Figure S1). While mappings between PWM positions and bases within a contact
model are not known a priori, here we inferred mappings using similarity of key base-contacting
residues to 84 distinct HD proteins in fly for which such mappings were determined experimen-
tally [19]. PWMs from these proteins clustered into 11 distinct “specificity groups”, and group
membership was well correlated with the identities of amino acids occupying DNA-contacting
DBD positions [19].

Specifically, for each of the HD PWMs in our collection (Supplemental Methods 1.4), we first
searched its corresponding protein sequence (extracted from Uniprot [20]) for an HD instance
using HMMer v.3.1.b2 [21] with the default HD gathering thresholds. We assigned each protein
a “fingerprint” by concatenating amino acids occupying base-contacting DBD positions (as
defined in the main manuscript). Each PWM was assigned to one of the 11 fly specificity
groups based on highest percent amino acid identity of its fingerprint to any of the 84 fly
HD proteins with known mappings, then aligned to an “exemplar” PWM from its assigned
specificity group by minimizing mean squared error across aligned column pairs. In order to
ensure confident mappings, we only considered alignments where the consensus sequence of
the newly aligned PWM matched a regular expression corresponding to a key pattern within
the “core” HD binding site (e.g., ‘TAAT’ in positions 1 through 4 for proteins assigned to the
Engrailed specificity group, ’T/CAAG’ in positions 1 through 4 for the NK group, etc.). If no
such alignment could be found, the PWM was excluded from further analysis. Furthermore,
PWMs were excluded if the corresponding DBD was missing fingerprint match states from the
HD HMM or if we failed to find an unambiguous mapping from the gene name to a valid Uniprot
ID.
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1.6 Structure-based similarity scores for Homeodomains

We extend the structure-aware similarity measure described in the main manuscript to com-
pute expected pairwise similarity scores for reference base positions 5 and 6 of the HD DBD
instances, allowing up to 4 varying base-contacting DBD positions between HD protein pairs.
In particular, for any pair of HD proteins, a and a′, we defined w(a, a′) = 0 if a and a′ were
non-identical in any of the DBD positions 47, 50, and 54, which are the most likely DBD posi-
tions to specify a base in position 5 or 6 according to previous literature [19] and according to
our deduced contact model (see Supplemental Figure S1). Additionally, neighboring proteins
were required to be at least 85% similar in their remaining fingerprint positions according to
a scaled BLOSUM 62 score, with w(a, a′) set proportionally to this score. More precisely, we
set w(a, a′) = max{0, f(a, a′)/max{f(a, a), f(a′, a′)} − 0.85}, where f(x, y) =

∑
iBL62(xi, yi)

across all remaining DBD fingerprint positions i, and BL62 is the BLOSUM 62 amino acid
substitution scoring matrix. These weights are normalized on a per protein basis so that∑

a′ wj(a, a
′) = 1.

2 Supplemental Results

2.1 Jointly inferring HD PWMs improves across-dataset agreement

Using the alignment procedure outlined above (Supplemental Methods 1.4 and 1.5), confident
base position mappings to a structural contact matrix for the HD DBD family (see Supplemen-
tal Figure S1) were inferred for 429 HD PWMs extracted from the Cis-BP database. These
PWMs spanned 314 distinct HD proteins, of which 231 had a single mapped PWM. Of the re-
maining proteins, 54, 26, and three had two, three, and four mapped PWMs, respectively, from
independent publications (herein referred to as the “replicate” set). We performed pairwise
comparisons of PWM columns for corresponding proteins within this replicate set, including
one base position upstream and one downstream of the six bp “core” HD binding site as defined
previously in Noyes et al. [19]. Aggregate analysis and visual inspection of the PWMs indicated
excellent agreement for the first four core motif positions (i.e., “TAAT” consensus positions
for the Engrailed and Antp subfamilies; labeled 1 through 4 in Supplemental Figure S16), in-
dicating overall accuracy of the inferred base position mappings as well as a high degree of
reproducibility across publications. However, we observed some disagreement for correspond-
ing columns in the last two core motif positions (5 and 6), where base preferences have been
previously correlated with specific DBD residue combinations in positions 47, 50, and 54 of the
HD recognition helix [19, 12]. While disagreement was also observed for flanking positions 0
and 7, these positions contribute only weakly to specificity and their specificity determinants
are poorly understood.

Based on these findings, we focused a proof-of-principle experiment to determine whether
our joint PWM estimation approach could improve concordance of positions 5 and 6 across
replicates. To do so, we partitioned the set of HD PWMs into two hypothetical independent
datasets, A and B: Each HD protein that had only a single PWM in our set was first placed
uniformly at random into either A or B, and then each HD in the replicate set had its indepen-
dently derived PWM instances stratified uniformly at random across A and B. This resulted
in A and B containing 214 and 215 motifs, respectively, allowing a total of 118 pairwise com-
parisons, per base position, for PWMs corresponding to the same protein that lie on opposite
sides of the partition. Overall, initial agreement of corresponding columns pairs for positions 5
and 6 across sets A and B is quite high, with 218 out of 236 (92%) in good agreement (PCC
≥ 0.50). We applied our QP approach to PWM columns from A and B independently using a
simple structure-based a priori expected similarity measure (considering base positions 5 and
6 only, Supplemental Methods 1.6) and at various α settings. Remarkably, using α < 1 in our
QP formulation (i.e., introducing prior information regarding expected relationships between
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proteins’ specificities based on structural knowledge) improves agreement across correspond-
ing pairs even further, with 11 out of 18 initially disagreeing column pairs (61%) moving into
agreement for α ≤ 0.7 (Supplemental Figure S17, top left). Moreover, none of the 218 columns
that initially agreed moved into disagreement for α < 1. Overall, sharing knowledge across pro-
teins resulted in higher PCCs between corresponding columns; for example, at α = 0.7, 66.4%
of paired columns increase in raw PCC agreement, 30.3% do not change in PCC, and only
3.3% decrease in PCC (Supplemental Figure S17, top right). Columns randomly paired across
A and B display substantially less agreement gain than corresponding pairs at any α setting
(18% at α = 0.7; Supplemental Figure S17, bottom left) and are substantially more likely to
decrease in raw PCC score as α is lowered (e.g., 28% vs. 3% for random vs. corresponding
pairs at α = 0.7, respectively; Supplemental Figure S17, right). We provide visual examples for
increased agreement of PWMs in Supplemental Figure S18.
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Figure S1: Contact frequency matrices inferred from co-complex structural data.
For each of two DBD families, C2H2-ZFs (top) and Homeodomains (bottom), we display a
heat map representation of the contact frequency matrix inferred by applying our algorithm
across the set of protein-DNA co-complex structures found in BioLiP [1] for that DBD family
(Supplemental Methods 1.1 and 1.2). Each grid’s horizontal axis corresponds to a DBD position,
known based on PFAM HMM match states (labeled according to the “canonical” numbering
scheme for the DBD family), while its vertical axis corresponds to a base position numbered
relative to the start of the “core” binding site (position 1), with one additional position shown
flanking either side of the core binding site. The color in each cell represents the uniqueness-
weighted fraction of DBD-DNA interfaces in which a DNA base in a given (aligned) base position
contacts (defined as at most 3.6 Å distance between heavy atoms) an amino acid side chain
in a given DBD position. Bolded DBD positions are considered as “base-contacting” for the
purpose of our analyses, in that they contact a particular base position within the core binding
site in at least 10% of uniqueness-weighted DBD-DNA interfaces. DBD-base position pairs
marked with asterisks correspond to contacts proposed in previous literature [22, 19, 23] to be
important specificity determinants, via either structural analyses or correlation of residue and
base identities in combination.
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Figure S2: Properties of similarity graphs from PW-2015 dataset. For similarity graphs
(see Methods) corresponding to base positions 1, 2, and 3 (left, middle, and right, respectively)
for the PW-2015 dataset, we display as histograms the distributions of connected component
sizes (top), degree (middle), and local clustering coefficients (bottom).
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Figure S3: Properties of similarity graphs from NM-2015 dataset. For similarity graphs
(see Methods) corresponding to base positions 1, 2, and 3 (left, middle, and right, respectively)
for the NM-2015 dataset, we display as histograms the distributions of connected component
sizes (top), degree (middle), and local clustering coefficients (bottom).
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Figure S4: Increases in across-dataset agreement are robust to changes in the PCC
agreement threshold. We apply the QP formulation to each dataset separately for different
values of α. As described in Figure 1 top of the main manuscript, across a range of α settings
(x-axis), we compare across-dataset agreement increase (y-axis) across all PWM columns for
corresponding core sequence pairs between the NM-2015 and PW-2015 datasets (solid lines) and
for random across-dataset core sequence pairs (dashed lines). Overall, our results are similar
when considering PCC agreement thresholds of 0.4 (top), 0.5 (middle; shown also in Figure 1
top), or 0.6 (bottom).
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Figure S5: Distributions of across-dataset agreement scores. We apply the QP formula-
tion to each dataset separately for different values of α. For each α setting (x-axis), we consider
agreement score distributions (PCC, y-axis) for corresponding column pairs across the NM-2015

and PW-2015 datasets (dark gray), or for random across-dataset column pairs (light gray). We
depict each distribution as a boxplot where whiskers extend to 1.5x the interquartile range.
Overall, we observe an increase in median agreement and a decrease in variance as α moves
from 1 to 0.05 for the corresponding column pairs. For random pairs, the medians remain
similar across the α range, with increases in variance as α becomes small. Notably, at low α,
for random pairs, there is a marked increase in the third quartile, corresponding to an increase
in the number of random pairs with high PCC.
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Figure S6: Distributions of across-dataset agreement scores, per base positon. We ap-
ply the QP formulation to each dataset separately for different values of α. As in Supplemental
Figure S5, we consider agreement score distributions (PCC, y-axis) for corresponding column
pairs across the NM-2015 and PW-2015 datasets (dark gray), or for random across-dataset col-
umn pairs (light gray) at each α setting (x-axis), partitioning scores for column pairs of bases
in positions 1 (top), 2 (middle), or 3 (bottom) of the PWMs. We depict each distribution as a
boxplot where whiskers extend to 1.5x the interquartile range, with individual data points over-
laid. Trends are overall similar to when considering scores form all base positions in aggregate
(see Supplemental Figure S5).
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Figure S7: Jointly inferred specificities tend to agree with initial specificities. Consid-
ering specificities for the NM-2015 and PW-2015 datasets separately (green and red, respectively)
or in aggregate (purple), we plot the fraction of columns that remain in agreement with their
initial counterparts (y-axis) after applying the QP procedure, as a function of the α parameter
(x-axis). At reasonable α settings, the inferred and initial specificities are usually in agree-
ment; e.g., across all combined columns at α = 0.4, 92% remain in agreement with their initial
counterparts.
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Figure S8: When corresponding PWM column pairs gain agreement across datasets,
at least one column in the pair tends to remain in agreement with its initial coun-
terpart. Considering the subset of PWM columns that gain agreement after application of the
QP procedure (i.e., the corresponding jointly inferred column pairs agree, but their initial coun-
terparts do not; as described in Figure 2 of the main manuscript), we plot, for the NM-2015 and
PW-2015 datasets separately (green and red, respectively) the fraction of inferred columns that
remain in agreement with their initial counterparts (y-axis), as a function of the α parameter
(x-axis). At each α, considering each corresponding column pair across the two datasets, we
also plot the fraction of the time that at least one column from the pair remains in agreement
with its initial counterpart (‘either’; purple). For example, when considering all corresponding
column pairs at α = 0.4, at least one column from the pair remains in agreement with its initial
counterpart 99% of the time.
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Figure S9: Ratio of across-dataset agreement gain to agreement loss under actual
versus shuffled within-dataset core sequence associations. For different values of α,
we apply the QP formulation to each dataset separately (top left, ‘actual’) and on random-
ized data obtained by shuffling PWM columns within each similarity graph to randomize core
sequence pair relationships within each dataset (top right, ‘shuffled’). As in Figure 2 of the
main manuscript, we consider the trade-off between agreement gain and agreement loss for
corresponding column pairs across the NM-2015 and PW-2015 datasets, when varying the regu-
larization parameter α (x-axis). (top) For each α, we plot the fraction of initially disagreeing
columns that agree (green; y-axis) and the fraction of initially agreeing columns that disagree
(red; y-axis). (bottom) We plot the logarithm of the ratios of the two values (agreement gain
over agreement loss; y-axis) at each α setting under the actual (green line) or the shuffled (red
line) core sequence associations. While there is clear enrichment for agreement gain under the
actual core sequence associations, the ratio remains close to 1 under the shuffled core sequence
associations across all α settings.
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Figure S10: Across-dataset agreement decreases when within-dataset core sequence
associations are shuffled. Similarly to Figure 1 top, we plot the increase in fraction of
corresponding columns in across-dataset agreement for NM-2015 and PW-2015 (i.e., fraction of
columns in agreement at α minus fraction of columns initially agreeing) when using QP with ac-
tual (solid line) versus shuffled (described in Supplemental Figure S9; dashed line) core sequence
relationships within each dataset. While there is clear gain of across-dataset agreement under
the actual core sequence associations, across-dataset agreement decreases under the shuffled
core sequence associations.
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Figure S11: PWM columns determined using shuffled within-dataset core sequence
associations lack information content. Considering all jointly inferred PWM columns of
core sequences present in both PW-2015 and NM-2015, we visualize as boxplots the distribu-
tions of information content (IC) of columns (using the maximum IC across each corresponding
column pair across datasets) determined using QP under either actual (green) or shuffled (de-
scribed in Supplemental Figure S9; red) within-dataset core sequence relationships, at each α
setting (x-axis). Under the shuffled relationships there is pronounced loss of IC, especially at
small α, where PWM columns tend to contain almost no information; this is substantially lower
than IC for columns determined using actual within-dataset core sequence relationships. For
each boxplot, whiskers extend to 1.5x the interquartile range.
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Figure S12: PWM columns determined using shuffled within-dataset core sequence
associations lack diversity. We visualize within-dataset PWM column diversity considering
all QP jointly inferred PWM columns of core sequences present in both PW-2015 (left) and
NM-2015 (right) under actual (green) versus shuffled (described in Supplemental Figure S9;
red) within-dataset core sequence associations. At each α level (x-axis), we compute the av-
erage similarity (PCC; y-axis) of each jointly inferred column to every other jointly inferred
column within the same dataset and display the distributions of these average similarity scores
as boxplots. For both PW-2015 and NM-2015, jointly inferred specificities under the shuffled
associations tend to become highly similar to one another as α decreases, while jointly inferred
specificities under the actual associations tend to maintain their diversity. For each boxplot,
whiskers extend to 1.5x the interquartile range.
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Figure S13: Examples of improved agreement for jointly inferred C2H2-ZF PWMs.
For three sequence-diverse C2H2-ZF core sequences present in both the NM-2015 dataset and the
external dataset [9], we show frequencies before and after applying joint PWM inference (QP).
For each core sequence, we show the external PWM from Enuameh et al. [9] (left; “external”),
the initial PWM from NM-2015 (α = 1; middle), and the PWM jointly inferred using NM-2015

with α = 0.4 (right). Red boxes highlight base positions for which the initial PWM was in
disagreement with the external standard, but is in agreement with it at α = 0.4.
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Figure S14: Similar trends are observed when using label propagation adsorption
(LPA) as when using quadratic programming (QP). We repeated all of the analyses de-
scribed in the main manuscript for the QP formulation, replacing it with LPA, observing overall
similar trends. Here we show figures analogous to main manuscript Figures 1 (top left), 2 (top
right), and 3 (bottom), but using LPA. For the plots analogous to Figures 1 and 3, we have
additionally included points to display the increase in across-dataset agreement when using a
nearest neighbors approach (‘nn’; triangles and crosses for Figures 1 and 3, respectively) based
on a single iteration of the LPA algorithm (as described in Results). For nearly all α, LPA to
convergence outperforms the nearest neighbors approach, demonstrating the benefits of reward-
ing global, rather than simply local, pairwise consistency of specificities under consideration of
the same structurally derived protein similarity measure.
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Figure S15: Similar trends are observed when using label propagation adsorption
(LPA) as when using quadratic programming (QP). We repeated all of the analyses
described in the main manuscript for the QP formulation, replacing it with the LPA, observing
overall similar trends. Here we show figures analogous to Supplemental Figures S5 (top left),
S10 (top right), S7 (middle left), S8 (middle right) and S9 top (bottom).
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Figure S16: Pairwise agreement for aligned Homeodomain PWMs from independent
publications. For 83 proteins where two or more PWMs from independent publications ex-
isted, we plot the distributions of agreement scores (PCC; y-axis) for all PWM column pairs
corresponding to the same binding site position and the same protein. We depict each distri-
bution of agreement scores as a boxplot where whiskers extend to 1.5x the interquartile range,
with the individual data points overlaid. The base positions are numbered according a canonical
numbering scheme where positions 1 through 6 correspond to the six positions of the “core”
HD binding site (i.e., positions 1 through 4 correspond to the TAAT motif shared across proteins
of the Antp and En HD subfamilies). For these four positions, we observe excellent agreement
across nearly all of the corresponding column pairs, while for positions 5 and 6 we observed
several disagreeing pairs (i.e, PCC < 0.5). As expected, flanking positions 0 and 7 show the
lowest level of agreement, as they contribute only weakly to specificity and the mechanism of
their recognition by the HD is poorly understood.
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Figure S17: Joinly inferring specificities for Homeodomain proteins via the QP ap-
proach improves agreement for positions 5 and 6 across PWMs from independent
publications. 429 oriented and aligned HD PWMs (Supplemental Methods 1.4 and 1.5) were
partitioned into two sets of roughly equal size, and our QP approach was applied to base posi-
tions 5 and 6 for each set independently using a pairwise protein similarity measure based on
structural considerations, and tested at various α settings (Supplemental Methods 1.6 and Sup-
plemental Results 2.1). (top, left) We consider agreement gain and agreement loss for column
pairs corresponding to the same position and same protein, but in opposite sets. Specifically,
we compare the jointly inferred specificities in each of the two sets and compute the fraction
(y-axis) of initially disagreeing columns that now agree (green) and the fraction of initially
agreeing columns that now disagree (red). Of the column pairs that initially disagreed, ≥61%
of them are in agreement for all α ≤ 0.7, while none of the columns that initially agreed go
into disagreement by sharing information. (bottom, left) As a control, we consider agreement
gain at each α setting for columns randomly paired (within each base positions) across the two
sets. For all α ≤ 0.95 tested, agreement gain (y-axis) is higher for corresponding pairs than
for random pairs (black and gray dots, respectively), indicating that the level of agreement
gain observed for corresponding pairs cannot be explained by protein-independent similarity of
background per-base-position nucleotide compositions across the two sets. For example, at α
= 0.7, 61% of initially disagreeing columns pairs have moved into agreement, while the same
statistic for random pairs is only 18%. (right) For each corresponding and each random column
pair (top and bottom, respectively), we compare the initial column similarity (PCC; x-axis) to
the column similarity when using QP with α = 0.7 (PCC; y-axis). We observe that the QP
procedure rarely decreases correlation for corresponding pairs (only 3% to right of diagonal),
while 28% of the random pairs decreased in correlation.
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Figure S18: Examples of improved agreement for Homeodomain PWMs from inde-
pendent publications. Frequency logos for PWMs of two transcription factors, Lhx6 (top,
Cis-BP ID T209796) and En (bottom, Cis BP ID T217414), are given before (left; ‘original’;
α = 1) and after (right; ‘new’; α = 0.7) applying our QP procedure for base positions 5 and 6
(red boxed positions) independently to two sets of HD PWMs (as described in Supplemental
Results 2.1). (top) For Lhx6, we show two PWMs (M02086 and M03108) from opposite sets
that are originally in poor agreement in base position 5, but are in good agreement after using
the QP procedure with α = 0.7, both displaying a preference for thymine over cytosine in this
position. (bottom) For En, we show two PWMs (M06213 and M03776) from opposite sets that
originally disagreed at position 6, but agree after running the QP procedure using α = 0.7, each
displaying a preference for adenine or guanine.
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