CHEMISTRY A European Journal

Supporting Information

Peralkynylated Tetraazaacene Derivatives

Hilmar Reiss,^[a] Frank Rominger,^[a] Jan Freudenberg,^[a, c] and Uwe H. F. Bunz^{*[a, b]}

chem_201904087_sm_miscellaneous_information.pdf

Table of Contents

Experimental Procedures	2
Optical Spectroscopy	7
Cyclic Voltammetry	11
Calculations	12
NMR-Spectra	13
IR-Spectra	25
Crystallographic Data	32
References	34

Experimental Procedures

General Procedures, General Purification

Reagents and solvents were obtained from commercial suppliers and used without further purification. For chromatographic purifications, manual column chromatography (SiO2, grain size of 0.04-0.063 mm) was used. NMR spectra were recorded on Bruker Avance Spectrometers using the specified frequency. Chemical shifts (δ) are given in parts per million (ppm) relative to internal solvent signals.^[1] The following abbreviations describe the signal multiplicities: s = singlet, m=multiplet. High-resolution mass spectra (HRMS) were obtained by matrix-assisted laser desorption/ionization (MALDI), electrospray ionisation (ESI) or direct analysis in real time (DART) experiments. IR Spectra were recorded from powder of the respective analyte on a Jasco FT/IR-4100 spectrometer. CV measurements were performed on a VersaSTAT 3 potentiostat by Princeton Applied Research. UV-vis spectra were recorded on a Jasco V670. Computational studies were carried out using DFT calculations on Turbomole 6.3.1 or Gaussian 09. Geometry optimizations were performed using the B3LYP functional and def2-TZVP basis set. At this geometry, the absolute energy and FMO energies were assigned by a single-point approach at the B3LYP/6–311++G** level.^[2]

Synthetic procedures

Procedure for stannylacetylenes: The stannylacetylenes were prepared according to the literature:^[3] In a heat-gun dried Schlenk tube under argon atmosphere the alkyne (1 equiv.) was dissolved in abs. Et_2O and cooled to -78 °C before it was treated with 1.05 equiv. of *n*-BuLi (2.5 M in hexane). The reaction was stirred for 1 h at this temperature then 1.10 equiv. of Me₃SnCl (1 M in THF) were added. Stirring over night at room temperature followed by aqueous workup, extraction with Et_2O , drying with magnesium sulfate and removal of the solvent gave the stannylacetylene, which was used without further purification.

General Procedure 1 (GP1): The N,N'-dihydroazaacene was dissolved in DCM and 10 equiv. of MnO₂ were added. After complete conversion of the starting material the reaction mixture was filtered through Celite and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography.

General Procedure 2 (GP2): In a heat-gun dried Schlenk tube under argon atmosphere the thiadiazolophenazine derivative was dissolved in abs. THF / abs. MeOH (40:1). At -10 °C SmI₂ (0.1 M in THF, 12 equiv.) was added dropwise. After 10 minutes at this temperature the mixture was poured into sat. aqueous NaCl solution. Et₂O was used for extraction. The combined organic phases

were washed with sat. aqueous NaS₂O₃ solution, then dried over magnesium sulfate. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography.

6,7,8,9-Tetrabromo-4,11-bis((triisopropylsilyl)ethynyl)-[1,2,5]thiadiazolo[3,4-b]phenazine 2

1 (250 mg, 474 μmol, 1 equiv.) and tetrabromoorthoquinone (241 mg, 569 μmol, 1.2 equiv.) were stirred for 32 h in 5.00 mL of DCM / AcOH (1:1) at room temperature. The mixture was poured into DI water and extracted with DCM. The organic phases were treated with sat. aqueous sodium bicarbonate and dried over magnesium sulfate. After evaporation of the solvent under reduced pressure, the crude product was purified by chromatography on silica using PE / DCM 9:1 -> 5:1 as eluent to give the product as a dark green crystalline solid (326 mg, 356 μmol, 75 %). M.p.: 258 °C. ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 1.31-1.28 (m, 42H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ [ppm] = 156.0, 142.3, 141.3, 133.1, 129.0, 115.2, 113.9, 101.7, 19.1, 11.8. IR (neat): v [cm⁻¹] = 2939, 2861, 1550, 1442, 1402, 1363, 1339, 1231, 1186, 1156, 1132, 1067, 1042, 1026, 994, 941, 918, 881, 854, 811, 754, 670, 612, 566, 535, 507, 489, 452, 415. HR-MS (ESI-): m/z calcd. for C₃₄H₄₂Br₄N₄SSi₂: 909.9408; found: 909.9423. UV-Vis: λ_{max, abs} (hexane) = 673 nm.

4,11-Bis((triisopropylsilyl)ethynyl)-6,7,8,9-tetrakis((trimethylsilyl)ethynyl)-5,10-dihydro-[1,2,5]thiadiazolo[3,4-b]phenazine 3a-H₂

Bis(benzonitrile)palladium(II) dichloride (16.8 mg, 43.7 µmol, 0.1 equiv.) was placed in a Schlenk tube and transferred into a glove-box under nitrogen atmosphere. 10.0 mL abs. THF were added followed by P(*t*-Bu)₃ (17.7 mg, 87.5 µmol, 0.2 equiv.). The Schlenk tube was closed and taken outside the glove-box. Then, against a counter-flow of argon, **2** (400 mg, 437 µmol, 1 equiv.) and trimethyl((trimethylstannyl)-ethynyl)silane (1.37 g, 5.25 mmol, 12 equiv.) were added and the reaction mixture stirred at room temperature for 2.5 h. After adding DI water, extraction with DCM and drying of the organic phases over magnesium sulfate, the crude solution was filtered through a pad of silica. The solvent was evaporated under reduced pressure and the crude product was purified by chromatography on silica using PE / DCM 20:1 -> 10:1 -> 5:1 as eluent to give the product as a red solid (340 mg, 345 µmol, 79%). M.p.: 280 °C decomp.. ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.23 (s, 2H), 1.19-1.17 (m, 42H), 0.31 (s, 18H), 0.28 (s, 18H). ¹³C {¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 153.1, 136.2, 129.5, 123.4, 109.1, 108.3, 106.7, 102.2, 101.6, 98.1, 97.6, 94.4, 19.0, 11.7, 0.5, 0.5. IR (neat): v [cm⁻¹] = 3355, 2942, 2864, 2146, 1563, 1457, 1405, 1374, 1317, 1280, 1246, 1040, 929, 881, 838, 757, 698, 669, 640, 574, 545, 515. HR-MS(DART+): m/z calcd. for C₅₄H₈₁N₄SSi₆: 985.4792; found: 985.4813. Elemental analysis (%) calcd. for C₅₄H₈₀N₄SSi₆: C 65.79, H 8.18, N 5.68, found: C 64.62, H 8.29, N 5.24. UV-Vis: $\lambda_{max, abs}$ (hexane) = 530 nm. Fluorescence: $\lambda_{max, em}$ (hexane) = 541 nm.

4,11-Bis((triisopropylsilyl)ethynyl)-6,7,8,9-tetrakis((trimethylsilyl)ethynyl)-[1,2,5]thiadiazolo[3,4-b]phenazine 3a

GP1 was applied to **3a-H**₂ (300 mg, 304 μmol, 1 equiv.) and MnO₂ (265 mg, 3.04 mmol, 10 equiv.) in 20.0 mL DCM. The reaction mixture quickly turned from red to green. After 2 h at room temperature the reaction was worked up. Chromatography on silica using PE / DCM 10:1 -> 5:1 -> 3:1 as eluent gave the product as a green solid (287 mg, 292 μmol, 96%). M.p.: 265 °C. ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 1.29-1.25 (m, 42H), 0.39 (s, 18H), 0.38 (s, 18H). ¹³C {¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 156.4, 143.5, 141.3, 132.1, 126.8, 115.2, 113.7, 110.5, 102.6, 102.3, 100.6, 19.2, 11.8, 0.6, 0.3. IR (neat): v [cm⁻¹] = 2942, 2863, 1737, 1449, 1381, 1364, 1246, 1198, 1109, 1040, 937, 916, 837, 757, 700, 675, 641, 575, 405. HR-MS(DART+): m/z calcd. for C₅₄H₇₉N₄SSi₆: 983.4636; found: 983.4624. UV-Vis: λ_{max, abs} (hexane) = 693 nm. Fluorescence: λ_{max, em} (hexane) = 711 nm.

6,7,8,9-Tetrakis(3,3-dimethylbut-1-yn-1-yl)-4,11-bis((triisopropylsilyl)ethynyl)-5,10-dihydro-[1,2,5]thiadiazolo[3,4-b]phenazine 3b-H₂

Bis(benzonitrile)palladium(II) dichloride (16.8 mg, 43.7 µmol, 0.1 equiv.) was placed in a Schlenk tube and transferred into a glove-box under nitrogen atmosphere. 10.0 mL abs. THF were added followed by P(*t*-Bu)₃ (17.7 mg, 87.5 µmol, 0.2 equiv.). The Schlenk tube was closed and taken outside the glove-box. Then, against a counter-flow of argon, **2** (400 mg, 437 µmol, 1 equiv.) and (3,3-dimethylbut-1-yn-1-yl)trimethylstannane (1.29 g, 5.25 mmol, 12 equiv.) were added and the reaction mixture stirred at room temperature for 2.5 h. After adding DI water, extraction with DCM and drying of the organic phases over magnesium sulfate, the crude solution was filtered through a pad of silica. The solvent was evaporated under reduced pressure and the crude product was purified by chromatography on silica using PE / DCM 9:1 -> 6:1 -> 4:1 as eluent to give the product as a red solid (349 mg, 378 µmol, 87%). M.p.: 298 °C decomp. ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 7.15 (s, 2H), 1.41(s, 18H), 1.37 (s, 18H), 1.19-1.17 (m, 42H). ¹³C {¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 153.4, 136.7, 128.1, 122.7, 110.2, 109.3, 106.3, 104.7, 99.0, 93.5, 72.4, 31.6, 31.5, 28.7, 28.6, 19.0, 11.8. IR (neat): v [cm⁻¹] = 3356, 2965, 2942, 2863, 2215, 2127, 1561, 1453, 1379, 1359, 1317, 1277, 1239, 1202, 1000, 880, 834, 814, 769, 674, 643, 576, 548, 512, 464. HR-MS(DART+): m/z calcd. for C₅₈H₈₁N₄SSi₂: 921.5715; found: 921.5703. UV-Vis: $\lambda_{max, abs}$ (hexane) = 528 nm. Fluorescence: $\lambda_{max, em}$ (hexane) = 532 nm.

6,7,8,9-Tetrakis(3,3-dimethylbut-1-yn-1-yl)-4,11-bis((triisopropylsilyl)ethynyl)-[1,2,5]thiadiazolo[3,4-b]phenazine 3b

GP1 was applied to **3b-H**₂ (500 mg, 543 μmol, 1 equiv.) and MnO₂ (471 mg, 5.43 mmol, 10 equiv.) in 30.0 mL DCM. The reaction mixture quickly turned from red to green. After 2 h at room temperature the reaction was worked up. Chromatography on silica using PE / DCM 10:1 -> 5:1 -> 3:1 as eluent gave the product as a green solid (490 mg, 533 μmol, 98%). M.p.: 273 °C. ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 1.52 (s, 18H), 1.47 (s, 18H), 1.28-1.24 (m, 42H). ¹³C {¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 156.5, 144.3, 141.1, 131.7, 125.8, 115.1, 112.9, 112.3, 112.0, 103.3, 78.8, 76.0, 31.5, 31.3, 29.1, 29.0, 19.1, 11.9. IR (neat): v [cm⁻¹] = 2964, 2941, 2863, 2209, 1452, 1391, 1360, 1238, 1201, 1121, 1052, 1002, 90, 881, 780, 702, 674, 580, 443, 409. HR-MS(DART+): m/z calcd. for C₅₈H₇₉N₄SSi₂: 919.5558; found: 919.5539. UV-Vis: λ_{max, abs} (hexane) = 692 nm. Fluorescence: λ_{max, em} (hexane) = 700 nm.

1,4-Bis((triisopropylsilyl)ethynyl)-6,7,8,9-tetrakis((trimethylsilyl)ethynyl)phenazine-2,3-diamine 4a

GP2 was applied to **3a** (230 mg, 234 µmol, 1 equiv.) and Sml₂ (28.1 mL, 2.81 mmol, 0.1 M in THF, 12 equiv.) in 10.0 mL abs. THF and 0.25 mL abs. MeOH. After workup the crude product was purified by chromatography on silica using PE / EE 20:1 -> 10:1 -> 5:1 as eluent to give the product as an orange solid (222 mg, 232 µmol, quant.). M.p.: 236. ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 5.06 (s, 4H), 1.22-1.19 (m, 42H), 0.36 (s, 18H), 0.34 (s, 18H). ¹³C {¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 145.4, 140.9, 140.4, 129.2, 126.0, 108.0, 105.8, 104.6, 102.7, 102.6, 101.6, 101.2, 19.1, 11.7, 0.7, 0.5. IR (neat): v [cm⁻¹] = 3459, 3369, 2940, 2863, 2242, 2130, 1646, 1529, 1442, 1385, 1317, 882, 756, 662. HR-MS(DART+): m/z calcd. for C₅₄H₇₉N₄SSi₆: 955.5228; found: 955.5235.

6,7,8,9-Tetrakis(3,3-dimethylbut-1-yn-1-yl)-1,4-bis((triisopropylsilyl)ethynyl)phenazine-2,3-diamine 4b

GP2 was applied to **3b** (240 mg, 261 µmol, 1 equiv.) and Sml₂ (31.3 mL, 3.13 mmol, 0.1 M in THF, 12 equiv.) in 10.0 mL abs. THF and 0.25 mL abs. MeOH. After workup the crude product was purified by chromatography on silica using PE / EE 20:1 -> 10:1 as eluent to give the product as an orange solid (231 mg, 259 µmol, quant.). M.p.: 249 °C. ¹H NMR (600 MHz, CDCl₃): δ [ppm] =4.96 (s, 4H), 1.49 (s, 18H), 1.45 (s, 18H), 1.21-1.18 (m, 42H). ¹³C {¹H} NMR 150 MHz, CDCl₃): δ [ppm] = 145.2, 140.8, 140.2, 128.7, 125.2, 109.8, 107.9, 104.1, 103.2, 102.1, 78.5, 76.5, 31.6, 31.5, 28.9, 28.8, 19.1, 11.8. IR (neat): v [cm⁻¹] = 3455, 3368, 2965, 2863, 2219, 2124, 1624,

1538, 1504, 1448, 1412, 1360, 1244, 1202, 1133, 1102, 995, 970, 882, 803, 675, 580, 445, 425. HR-MS(DART+): m/z calcd. for $C_{58}H_{83}N_4Si_2$: 891.6151; found: 891.6143.

1,2,3,4-Tetrabromo-6,13-bis((triisopropylsilyl)ethynyl)-8,9,10,11-tetrakis((trimethylsilyl)ethynyl)-quinoxalino[2,3-b]phenazine 7a

4a (56.0 mg, 58.6 μmol, 1 equiv.) and tetrabromoorthoquinone (49.7 mg, 117 μmol, 2 equiv.) were stirred for 16 h in 4.00 mL of DCM / AcOH (1:1) at room temperature. The mixture was poured into DI water and extracted with DCM. The organic phases were treated with sat. aqueous sodium bicarbonate and dried over magnesium sulfate. After evaporation of the solvent under reduced pressure, the crude product was purified by chromatography on silica using PE / DCM 20:1 -> 10:1 -> 5:1 as eluent to give the product as a brown solid (4.00 mg, 2.98 μmol, 5%). ¹H NMR (600 MHz, CDCl₃): δ [ppm] = 1.30-1.26 (m, 42H), 0.38 (s, 18H), 0.38 (s, 18H). ¹³C {¹H} NMR (150 MHz, CDCl₃): δ [ppm] = 143.7, 143.6, 142.9, 141.3, 133.0, 132.6, 129.1, 126.8, 123.5, 116.3, 111.0, 111.0, 102.8, 102.4, 100.9, 19.3, 12.0, 0.6, 0.3. IR (neat): v [cm⁻¹] = 3460 3369, 2959, 2942, 2864, 2359, 2340, 2145, 1647, 1625, 1455, 1247, 1128, 1025, 935, 844, 759, 678, 580. HR-MS(MALDI+): m/z calcd. for C₅₄H₇₉N₄SSi₆: 1339.1648; found: 1339.1693. UV-Vis: λ_{max} (hexane) = 769 nm.

Optical Spectroscopy

Figure S1. Normalized Absorption Spectrum of 2.

Figure S2. Normalized Absorption (left) and Emission (right) Spectra of 3a-H₂.

Figure S3. Normalized Absorption (left) and Emission (right) Spectra of 3a.

Figure S4. Normalized Absorption (left) and Emission (right) Spectra of 3b-H₂.

Figure S5. Normalized Absorption (left) and Emission (right) Spectra of 3b.

Figure S6. Normalized Absorption (left) and Emission (right) Spectra of 6.

Figure S7. Normalized Absorption Spectrum of 7a.

Figure S8. Normalized Absorption Spectrum of 7b-H₂.

Figure S9. Normalized Absorption (left) and Emission (right) Spectra of 8-H₂.

Figure S10. Normalized Absorption (left) and Emission (right) Spectra of 8.

Cyclic Voltammetry

Figure S11. Cyclic voltammogram of 2.

Figure S13. Cyclic voltammogram of 3b.

Figure S15. Cyclic voltammogram of 8.

Figure S12. Cyclic voltammogram of 3a.

Figure S14. Cyclic voltammogram of 6.

Calculations

	2	3a	3b	6	8
LUMO		新华天	· · · · · · · · · · · · · · · · · · ·	大中華茶	大学をなった
	-4.19 eV	-3.94 eV	-3.75 eV	-3.72 eV	-3.68 eV
номо					
	-0.37 60	-0.00 ev	-0.40 6 V	-5.57 64	-5.21 60
Gap	1.78 eV	1.71 eV	1.70 eV	1.85 eV	1.53 eV

Figure S16. Distribution of FMOs in 2, 3a, 3b, 6 and 8, calculated using TURBOMOLE B3LYP/def2TZVP//Gaussian 09 B3LYP/6-311++G**.

NMR-Spectra

6,7,8,9-Tetrabromo-4,11-bis((triisopropylsilyl)ethynyl)-[1,2,5]thiadiazolo[3,4-b]phenazine 2

Figure S18. ^{13}C $\{^{1}H\}$ NMR (100 MHz, CDCl_3) of 2.

Figure S20. ¹³C {¹H} NMR (150 MHz, CDCl₃) of 3a-H₂.

Figure S22. ¹³C {¹H} NMR (150 MHz, CDCI₃) of 3a.

Figure S24. ¹³C {¹H} NMR (150 MHz, CDCl₃) of 3b-H₂.

SUPPORTING INFORMATION

Figure S26. ^{13}C { $^{1}H\}$ NMR (150 MHz, CDCl₃) of 3b.

SUPPORTING INFORMATION

Figure S28. ^{13}C {^1H} NMR (150 MHz, CDCl_3) of 4a.

Figure S32. ¹³C {¹H} NMR (150 MHz, CDCI₃) of 6.

Figure S34. ¹³C {¹H} NMR (150 MHz, CDCl₃) of 7a.

Figure S36. ¹³C {¹H} NMR (150 MHz, CDCl₃) of 7b-H₂.

Figure S38. ¹³C {¹H} NMR (150 MHz, CDCl₃) of 8-H₂.

ppm

IR-Spectra

6,7,8,9-Tetrabromo-4,11-bis((triisopropylsilyl)ethynyl)-[1,2,5]thiadiazolo[3,4-b]phenazine 2

Figure S41. IR-Spectrum of 2.

4,11-bis((triisopropylsilyl)ethynyl)-6,7,8,9-tetrakis((trimethylsilyl)ethynyl)-5,10-dihydro-[1,2,5]thiadiazolo[3,4-b]phenazine 3a-H₂

Figure S42. IR-Spectrum of 3a-H2.

SUPPORTING INFORMATION

Figure S43. IR-Spectrum of 3a.

6,7,8,9-tetrakis(3,3-dimethylbut-1-yn-1-yl)-4,11-bis((triisopropylsilyl)ethynyl)-5,10-dihydro-[1,2,5]thiadiazolo[3,4-b]phenazine 3b-H₂

Figure S44. IR-Spectrum of 3b-H₂.

6,7,8,9-tetrakis(3,3-dimethylbut-1-yn-1-yl)-4,11-bis((triisopropylsilyl)ethynyl)-[1,2,5]thiadiazolo[3,4-b]phenazine 3b

Figure S45. IR-Spectrum of 3b.

1,4-bis((triisopropylsilyl)ethynyl)-6,7,8,9-tetrakis((trimethylsilyl)ethynyl)phenazine-2,3-diamine 4a

Figure S46. IR-Spectrum of 4a.

6,7,8,9-tetrakis(3,3-dimethylbut-1-yn-1-yl)-1,4-bis((triisopropylsilyl)ethynyl)phenazine-2,3-diamine 4b

Figure S47. IR-Spectrum of 4b.

2,3,5,12-tetrakis((triisopropylsilyl)ethynyl)-7,8,9,10-tetrakis((trimethylsilyl)ethynyl)-1,2-dihydropyrazino[2,3-b]phenazine 6

Figure S48. IR-Spectrum of 6.

 $1,2,3,4-tetra brom o-6,13-bis ((triis opropylsilyl) ethynyl)-8,9,10,11-tetrak is ((trimethylsilyl) ethynyl)-quinoxalino \cite{2},3-b\cit$

Figure S49. IR-Spectrum of 7a.

1,2,3,4-tetrabromo-8,9,10,11-tetrakis(3,3-dimethylbut-1-yn-1-yl)-6,13-bis((triisopropylsilyl)ethynyl)-5,14-dihydroquinoxalino-[2,3-b]phenazine 7b-H₂

Figure S50. IR-Spectrum of 7b-H₂.

1,2,3,4,8,9,10,11-octakis(3,3-dimethylbut-1-yn-1-yl)-6,13-bis((triisopropylsilyl)ethynyl)-5,14-dihydroquinoxalino[2,3b]phenazine 8-H₂

Figure S51. IR-Spectrum of 8-H2.

14

13

SUPPORTING INFORMATION

1,2,3,4,8,9,10,11-octakis(3,3-dimethylbut-1-yn-1-yl)-6,13-bis((triisopropylsilyl)ethynyl)-quinoxalino[2,3-b]phenazine 8

Figure S52. IR-Spectrum of 8.

462.832

19

80.703

20

413.656

73.3899

Crystallographic Data

2,3,5,12-tetrakis((triisopropylsilyl)ethynyl)-7,8,9,10-tetrakis((trimethylsilyl)ethynyl)-1,2-dihydropyrazino[2,3-b]phenazine 6

Figure S53. Crystal data and structure of 6 (CCDC 1947891).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Z
Unit cell dimensions
Volume
Density (calculated)
Absorption coefficient
Crystal shape
Crystal size
Crystal colour
I heta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed reflections
Absorption correction
Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F ²
Final R indices (I>2sigma(I))
Largest diff. peak and hole

hir30 C₈₈H₁₁₄N₄Si₂ 1284.01 200(2) K 1.54178 Å monoclinic P2₁/n 2 $\alpha = 90 \text{ deg.}$ a = 20.607(4) Å $\beta = 114.614(13) \text{ deg.}$ b = 11.2149(12) Å c = 20.920(3) Å $\gamma = 90 \text{ deg.}$ 4395.5(12) Å³ 0.97 g/cm³ 0.67 mm⁻¹ plank 0.222 x 0.043 x 0.021 mm³ purple 2.5 to 47.8 deg. -19≤h≤19, -10≤k≤9, -20≤l≤19 14830 4066 (R(int) = 0.1411) 2446 (I > 2σ(I)) Semi-empirical from equivalents 2.05 and 0.53 Full-matrix least-squares on F² 4066 / 624 / 425 2.31 R1 = 0.170, wR2 = 0.368 0.35 and -0.37 eÅ-3

Figure S54. Crystal data and structure of 8 (CCDC 1947892).

References

- [1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
- [2] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.
- [3] Y.-T. Wu, D. Bandera, R. Maag, A. Linden, K. K. Baldridge, J. S. Siegel, J. Am. Chem. Soc. 2008, 130, 10729-10739.

Author Contributions

((Please specify the contributions of each author including the type (e.g. data curation, funding acquisition, formal analysis, investigation, project administration, validation, writing of original draft) and the degree (e.g. lead, equal, supporting) of contribution.))